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1. Introduction

The Boris algorithm is a popular technique for the numerical time advance

of charged particles interacting with electric and magnetic fields according

to the Lorentz force law [1, 2, 3, 4]. Its popularity stems from simple imple-

mentation, rapid iteration, and excellent long-term numerical fidelity [1, 5].

Excellent long-term behavior strongly suggests the numerical dynamics ex-

hibit conservation laws analogous to those governing the continuous Lorentz

force system [6]. Without conserved quantities to constrain the numerical

dynamics, algorithms typically dissipate or accumulate important observ-

ables such as energy and momentum over long periods of simulated time

[6]. Identification of the conservative properties of an algorithm is important

for establishing rigorous expectations on the long-term behavior; energy-
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preserving, symplectic, and volume-preserving methods each have particular

implications for the qualitative numerical behavior [6, 7, 8, 9, 10, 11].

A recent Journal of Computational Physics article [12] argued that the

Boris algorithm is a variational integrator [13] and effectively equivalent to

a symplectic integration of Hamilton’s equations for the charged particle dy-

namics. However, this claim contradicts claims made in Refs. [5, 14], which

demonstrate the volume-preserving property of the Boris scheme. Although

symplectic integrators are also volume preserving, volume-preserving integra-

tors are not necessarily symplectic, and Ref. [5] concludes the Boris algorithm

is only volume-preserving based on direct calculation of a symplecticity condi-

tion. Interestingly, the calculations in Ref. [5] do not preclude a discrete vari-

ational formulation, as claimed in Ref. [12]. The reason for this is that there

exists freedom in the identification of a discrete momentum pk correspond-

ing to a particular state with position qk and velocity vk. The calculations

in Ref. [5] show that the Boris scheme is not symplectic when pk = mvk or

pk = mvk + e
c
A(qk), where m is the particle’s mass, e its charge, c the speed

of light and A the magnetic vector potential. For variational integrators, the

discrete momenta depend on the particular choice of discrete Lagrangian, and

would likely differ from the preceding two definitions. There therefore exists

a controversy in the literature, and identifying the conservation properties of

the Boris method requires resolving this discrepancy.

In this letter, we prove that the Boris algorithm does not possess a discrete

variational formulation by demonstrating violation of a discrete Helmholtz

condition [15]. The discrete Helmholtz condition is a necessary and sufficient

requirement for second-order finite-difference equations to be variational al-
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gorithms. The argument for the variational formulation of Boris presented

in Ref. [12] therefore cannot be correct, and we detail two invalidating flaws

in the argument. The first flaw involves improper calculation of the discrete

Euler-Lagrange equations corresponding to the specified discrete action. The

second flaw is the introduction of truncation error after performing the dis-

crete action minimization, as identified as suspect in Ref. [14]. Ultimately,

the Boris algorithm has only been demonstrated to be volume-preserving,

and the long-term behavior should be attributed to this property.

2. The Boris Algorithm is not a Variational Integrator

A popular technique for constructing conservative numerical algorithms

is to discretize the variational principle underlying the equations of motion

[13]. By performing all approximations at the level of the action principle,

the numerical update inherits several conservation laws of the continuous

dynamics, including a discrete Noether’s theorem. Centrally, provided cer-

tain regularity and consistency conditions are satisfied, performing a time

advance using a variational integrator is equivalent to using a symplectic

integrator on Hamilton’s equations [13], and is therefore known to exhibit

bounded energy error for exponentially long times [6].

Given a finite difference approximation of an Euler-Lagrange equation,

then, it is of interest to determine whether the algorithm constitutes a vari-

ational integrator. In the continuous setting, determining whether a second-

order differential equation may be derived as the Euler-Lagrange equations

corresponding to an action principle is known as “Helmholtz’s inverse prob-

lem of the calculus of variations” [16, 17]. Recent work has established a
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discrete analog to the solution of this problem for determining whether a

given finite difference method for second-order differential equations may be

derived from a discrete action principle, i.e. is a variational integrator [15].

This section applies the discrete Helmholtz condition to the Boris algorithm,

and finds that it is only satisfied when the magnetic field B(q, t) is a constant.

A second-order differential equation is specified by a function f(q,v, a, t)

and the condition that

f(q(t),
dq

dt
(t),

d2q

dt2
(t), t) = 0, ∀ t = [0, T ] ⊂ R. (1)

Suppose we want to approximate the solution to the differential equation q(t)

at discrete instances in time tk = 0, h, ..., Nh, with Nh = T . A second-order

finite difference equation is specified by a function P(q,v−,v+, a, t, ξ) and

the condition that:

P(qk,
qk − qk−1

h
,
qk+1 − qk

h
,
qk+1 − 2qk + qk−1

h2
, tk, h) = 0, ∀ k = 1, ..., N−1,

(2)

where qk is the numerical approximation to the solution q(t = tk). Following

Ref. [15], the finite-difference equation is a variational integrator if and only

if P satisfies:

1

h

(
∂P

∂a
(?k)− ∂P

∂a
(?k−1)

)
=

∂P

∂v+

(?k)+
∂P

∂v−
(?k−1), ∀ k = 2, ..., N−1, (3)

where ?k = (qk,
qk−qk−1

h
, qk+1−qk

h
, qk+1−2qk+qk−1

h2 , tk, h), and the condition must

hold for arbitrary (qk, tk) for all k. Equation (3) is known as the discrete

Helmholtz condition. Note that although the condition in Ref. [15] presumes

a one dimensional system for notational clarity, we verified the necessity of

this condition in higher dimensions.
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The Boris algorithm may be written as [1]:

qk+1 − 2qk + qk−1

h2
=

(
qk+1 − qk−1

2h

)
×B(qk) + E(qk). (4)

So, the Boris algorithm is a second-order finite difference method where the

i-th component of the vector-valued function P is given by:

P i(q,v−,v+, a, t, ξ) = ai − εijl

(
vj+ − v

j
−

2

)
Bl(q, t)− Ei(q, t), (5)

where ε is the Levi-Civita symbol, and summation over repeated indices is

implied. Evaluation of the terms in the discrete Helmholtz condition Eq. (3)

yields the condition that:

0 = −1

2
εijl
(
Bl(qk, tk)−Bl(qk−1, tk−1)

)
, (6)

for all i and j equal to 1, 2 or 3, and for arbitrary (qk−1,qk, tk−1, tk) in R8.

We can see, then, that the Boris algorithm admits a variational formulation

only in the case when B(q, t) is a constant function of position and time.

3. Critique of the Argument in Ref. [12]

Because the Boris algorithm violates the discrete Helmholtz condition,

the claim in Ref. [12] that the scheme is a variational integrator cannot be

correct except in the case of constant magnetic field B(q, t). The first misstep

in the argument of Ref. [12] involves mis-calculation of the discrete Euler-

Lagrange equations corresponding to the specified discrete action. In short,

only the first component of a two-step map is presented. Although this is a

critical flaw for the particular argument as presented, we find that the discrete

Euler-Lagrange equations as presented in Ref. [12] are indeed variational, and
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we identify a different discrete action yielding these discrete Euler-Lagrange

equations. The second critique is the introduction of truncation error after

derivation of the discrete Euler-Lagrange equations, and we investigate the

claim that the approximation may be considered equivalent to re-definition

of the electric and magnetic field quantities. We find that this claim only

holds in the case when the magnetic field B(q, t) is a constant, consistent

with the result of Section 2.

3.1. Incomplete Calculation of the Discrete Euler-Lagrange Equations

In constructing a method for non-relativistic charged particle dynamics

and ultimately arguing for the symplecticity of the Boris update, Ref. [12]

approximates a small time interval of the continuous action by specifying a

pair of discrete Lagrangians. Given a charged particle of mass m and charge e

moving in electromagnetic fields described by normalized vector potential a =

e
mc

A and scalar potential ϕ = e
m
φ, Ref. [12] specifies the following discrete

Lagrangians:

L1
d(q

0
k,q

1
k, tk, h) =

1

2

‖q1
k − q0

k‖2

h/2
+

1

2

(
a(q0

k, tk) + a(q1
k, tk + h/2)

)
·
(
q1
k − q0

k

)
−

h

2
ϕ(q1

k, tk + h/2) (7)

L2
d(q

1
k,q

2
k, tk, h) =

1

2

‖q2
k − q1

k‖2

h/2
+

1

2

(
a(q1

k, tk + h/2) + a(q2
k, tk + h)

)
·
(
q2
k − q1

k

)
−

h

2
ϕ(q1

k, tk + h/2). (8)

The corresponding discrete action is given by:

Sd(q
0
0,q

1
0,q

2
0 = q0

1, . . . ,q
2
N) =

N−1∑
k=0

L1
d(q

0
k,q

1
k, tk) + L2

d(q
1
k,q

2
k, tk), (9)
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where the dependence on numerical step size h is now implied and the iden-

tification q2
k = q0

k+1 is made to link between steps. The discrete action is

extremized by trajectories that satisfy the following discrete Euler-Lagrange

equations:

D2L
1
d(q

0
k,q

1
k, tk) +D1L

2
d(q

1
k,q

2
k, tk) = 0 (10)

D2L
2
d(q

1
k,q

2
k, tk) +D1L

1
d(q

0
k+1,q

1
k+1, tk+1) = 0. (11)

Here, Di is the slot derivative indicating differentiation with respect to the

i-th argument. These equations correspond to Eqs. (13a, 13b) in Ref. [12].

For the specific discrete Lagrangians defined in Eqs. (7-8), the discrete Euler-

Lagrange equations become:(
q1
k − q0

k

h/2
− q2

k − q1
k

h/2

)
+

1

2

(
a(q0

k, tk)− a(q2
k, tk + h)

)
+

1

2
∇a(q1

k, tk + h/2) ·
(
q2
k − q0

k

)
− h∇ϕ(q1

k, tk + h/2) = 0

(12)(
q2
k − q1

k

h/2
−

q1
k+1 − q2

k

h/2

)
+

1

2

(
a(q1

k, tk + h/2)− a(q1
k+1, tk+1 + h/2)

)
+

1

2
∇a(q2

k, tk + h) ·
(
q1
k+1 − q1

k

)
= 0.

(13)

Equation (23) in Ref. [12] is presented as the set of discrete Euler-Lagrange

equations corresponding to the discrete action in Eq. (9). However, compari-

son with Eqs. (12-13) reveals that this is incorrect. Equation (23) in Ref. [12]

represents only the first component of a two-step map, namely Eq. (12) or

Eq. (10). Trajectories generated by iterating Eq. (12) alone do not extremize

the discrete action given in Eq. (9), so a discrete variational formulation of

the Boris update cannot be concluded from the proposed discrete action.
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While the preceding criticism is sufficient to invalidate the specific argu-

ment presented in Ref. [12] for the discrete variational formulation of the Boris

scheme, an important question is whether inclusion of the full set of discrete

Euler-Lagrange equations or selection of a slightly different discrete action

could repair the argument. Indeed, if one checks the discrete Helmholtz con-

dition on Eq. (12), one finds that it is satisfied. A variational formulation for

Eq. (12) exists, specifically with a discrete Lagrangian and action given by:

Ld(qk,qk+1, tk) =
‖qk+1 − qk‖2

2h
+

1

2
(a(qk) + a(qk+1)) · (qk+1 − qk)−

hϕ(qk, tk) (14)

Sd(q0, ...,qN) =
N−1∑
k=0

Ld(qk,qk+1, tk). (15)

To resolve the conflict with the result of Section 2, we turn to the second

critique.

3.2. Truncation of the Discrete Euler-Lagrange Equations

Proofs of the structure-preserving properties of variational integrators uti-

lize the discrete variational principle and therefore do not necessarily apply to

approximations of the discrete Euler-Lagrange equations. Any introduction

of truncation error after performing the action extremization procedure is

liable to violate the formal conservation properties, so the variational nature

of the truncated equations must be independently established. In the case

of the Boris algorithm, the calculation in Section 2 demonstrates this is not

possible.

In the process of relating the familiar Boris scheme to variational integra-

tion of charged particle dynamics, Ref. [12] introduces the following approx-
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imation:

1

2

(
a(q0

k, tk)− a(q2
k, tk + h)

)
≈ −1

2
(q2

k−q0
k)·∇a(q1

k, tk+h/2)−h
2

∂a

∂t
(q1

k, tk+h/2).

(16)

While Ref. [12] correctly argues that such a truncation does not affect the lo-

cal order of accuracy of the method, the justification that the approximated

equations retain a variational formulation is insufficient. The Reference iden-

tifies that justification is required, and states that the approximation may

be instead interpreted as a re-definition of the electric and magnetic fields.

Presumably, this means that functions B̃(q, t), Ẽ(q, t) may be defined such

that:

(qk+1 − qk−1)

2h
× B̃(qk, tk) + Ẽ(qk, tk) =

1

2h
(a(qk−1, tk−1)− a(qk+1, tk+1))−

1

2h
∇a(qk, tk) · (qk+1 − qk−1)−∇ϕ(qk, tk),

(17)

for all qk−1,qk,qk+1. However, investigation of the dependence on qk+1,qk−1

reveals that such a definition is possible only in the case of constant magnetic

field. The left hand side of this equation is linear in the quantities qk−1,qk+1

and independent of tk−1, tk+1, so the right hand side must depend on these

variables in the same manner to be satisfied at all qk−1,qk,qk+1, tk−1, tk, tk+1.

This implies that the magnetic vector potential a(q, t) is linear in its spatial

dependence and independent in time, and therefore, B(q, t) is constant. Of

course, the case of constant magnetic field indicates that there are no higher-

order terms in the Taylor expansion, and that no approximation is performed

in Eq. (16).
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4. Conclusion

In summary, the arguments delivered in Ref. [12] endeavor to establish

the popular Boris scheme as a variational integrator, contradicting claims

to the contrary in Refs. [5, 14]. Because the arguments in Refs [5, 14] do

not rule out the existence of a discrete variational formulation for the Boris

algorithm, we have furnished a proof that no such formulation exists based on

a discrete Helmholtz condition. The establishment of the discrete variational

formulation of the Boris scheme in Ref. [12] falls short due to the incomplete

specification of the discrete Euler-Lagrange equations and (primarily) the

introduction of truncation error after the action minimization procedure. The

same critiques pertain to the parallel arguments for the relativistic charged

particle algorithm in Ref. [12]. The good long-term behavior should then be

attributed to the volume-preserving properties of the Boris scheme.
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