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The optimal pitch angle which maximizes the penetration distance, along

the magnetic field, of relativistic charged particles injected from the midplane

of an axisymmetric field is investigated analytically and numerically. Higher

order terms of the magnetic moment invariant are necessary to correctly de-

termine the mirror point of trapped energetic particles, and therefore the loss

cone. The modified loss cone resulting from the inclusion of higher order terms

is no longer entirely defined by the pitch angle but also by the phase angle

of the particle at the point of injection. The optimal orientation of the in-

jection has a nonzero component perpendicular to the magnetic field line,

and is in the plane tangential to the flux surface. Numerical integration of

particle orbits were carried out for a relativistic electron in a dipole field, show-

ing agreement with analytic expressions. The results are relevant to exper-

iments, which are concerned with injection of relativistic beams into the at-

mosphere from aboard a spacecraft in the magnetosphere.
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1. Introduction

Experiments using artificial electron beams of keV energies, injected from Earth orbiting

satellites, have been performed for a number of decades [Winckler , 1980; Neubert and

Banks , 1992; Krause et al., 1998]. Advancements in accelerator technology have recently

made it possible for spacecraft to carry aboard a compact linear accelerator capable of

producing electron beams of relativistic energies. Particle-In-Cell simulations applied to

MeV -energy electron beams indicate that relativistic beams are considerably more stable

than keV -energy beams due to the higher relativistic electron mass, a lower beam density,

and a smaller effect from spacecraft charging [Neubert and Gilchrist , 2002; Neubert and

Gilchrist , 2004]. The superior stability should allow a larger fraction of the emitted

flux to travel longer distances thus opening up the possibility to use the beams as efficient

tracers of magnetic field lines in the magnetosphere. In addition to field-line tracing, other

possible suggested uses are the excitation of electromagnetic waves, active modification of

near-Earth plasma environment and measurement of the magnetospheric plasma response.

[Neubert and Gilchrist , 2002; Starodubtsev and Krafft , 2010; Committee on a Decadal

Strategy for Solar and Space Physics (Heliophysics) et al., 2013; Delzanno et al., 2013].

Challenges associated with the injection of relativistic beams from an Earth orbiting

satellite into the atmosphere include beam stability, spacecraft charging, and signal de-

tection. A relatively less discussed topic has to do with conditions under which the

atmosphere is accessible to energetic particles injected from the magnetosphere, even if

other challenges are overcome. Estimates of the adiabatic loss cone suggest that injection

along the magnetic field line should guarantee particle precipitation into the atmosphere.
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However, if the particle energy is large enough, it may be necessary to consider higher

order terms of the magnetic moment adiabatic invariant, and this then implies that the

adiabatic loss cone estimates should be modified. The adiabatic loss cone is reviewed in

the next section, followed by a discussion on its modifications due to higher order terms

of the magnetic moment. Next, a derivation of more general loss cone angles is described,

along with an example using a dipole approximation of the Earth’s magnetic field. The

results are summarized in the last section.

2. Adiabatic Loss Cone

In a nonuniform magnetic field, charged particles may become trapped. Trapping re-

stricts the motion of the particle to a particular region along the magnetic field line.

The size of this region depends on the reflection point of the particle, called the mirror

point. At the mirror point the particle has no velocity directed along the field line, that

is, all of its energy is in the perpendicular direction. The location of the mirror point is

typically estimated using conservation of energy and conservation of magnetic moment

µ ≡ mv2⊥/2B(r), wherem is the mass of the particle, v⊥ is its velocity perpendicular to the

magnetic field, and B(r) is the magnetic field as well as the assumption that the particle’s

guiding center remains on the same field line throughout its motion. In terms of the mag-

netic moment, the non-relativistic kinetic energy of the particle is E = mv2∥/2 + µB(r),

where v∥ is the velocity along the magnetic field line. Defining the initial pitch angle in

terms of initial velocities as tan δ = vinit.⊥ /vinit.∥ [Dungey , 1965], it is then found that δ is

related to the magnetic fields at the initial position Binit. and at the mirror point Bmirr.
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by

sin2 δ =
Binit.

Bmirr.
. (1)

Larger values of Bmirr. correspond to smaller values of pitch angles δ. The loss cone

determines the range of pitch angles, 0 < δ < δlc, whose B
mirr. exceeds some predefined

value, Bmirr.
lc . In the case of the magnetosphere, the predefined value may be the magnetic

field at the atmosphere, so that any particles whose pitch angle is smaller than δlc have

mirror points inside the atmosphere, and are therefore considered to be lost.

In the case of an ideal dipole field,

B = D
√
4− 3 cos2 ϕ/r3, (2)

where D is the dipole moment, r is the radial distance, ϕ is the angle measured from the

equatorial plane towards the z axis. The loss cone is then given by

sin2 δlc = a3

√
4− 3 cos2 ϕinit.

4− 3a cos2 ϕinit.
, (3)

where a ≡ rmirr.
lc /rinit., and the conservation of the magnetic flux ψ = D cos2 ϕ/r was

used. Thus, for a particle injected from the equatorial plane (ϕinit. = 0) at a distance of

rinit. = 6.6RE, the loss cone into the atmosphere at rmirr.
lc = 1RE is δlc ≈ 2.85◦. Note that

the boundary which distinguishes trapped from lost particles may be arbitrarily chosen

to suit a particular experimental or physical scenario. Here it is chosen to be at the

approximate location of the atmosphere.

3. Magnetic Moment Invariant

The loss cone defined in the previous section assumes conservation of the magnetic

moment mv2⊥/2B(r), and based on Eq. 1 it may be concluded that particles with pitch
c⃝2014 American Geophysical Union. All Rights Reserved.



angle of δ = 0 are always lost. These particles have no initial v⊥ and thus their magnetic

moment is also zero. However the magnetic moment, as given above, is only the 0th order

term, µ(0), of a more general adiabatic invariant corresponding to the cyclotron motion,

µ, which is an asymptotic series in the small parameter ρ/LB [Northrop, 1963]. Here,

the numerator ρ is the effective Larmor radius, defined by v/Ωc, where v is the initial

velocity of the particle (total, not just v⊥), Ωc is the cyclotron frequency of the particle

|q||B|/mc, q is the particle’s charge; andm is its relativistic mass, given bym0γ, wherem0

is the rest mass of the particle, and γ ≡ 1/
√
1− v2/c2. In the case under consideration

the electric field is zero, and therefore γ is constant. The denominator, LB, of the small

parameter is the characteristic gradient length scale of the mangetic field L−1
B = |∇ lnB|.

Consequently, even if µ(0) = 0, µ itself is generally finite, corresponding to next order

terms of the asymptotic series. Particle reflection therefore occurs even if δ = 0. This

effect is especially exaggerated for energetic particles, whose ρ/LB is more significant.

Although there is a number of systematic methods to derive higher order components

of the magnetic moment µ, the task is in general nontrivial. (General discussion may be

found in [Northrop, 1963; Lichtenberg and Lieberman, 1992], and some specific methods

may be found in [Kruskal , 1958; Gardner , 1959; Hastie et al., 1967]. Automation of the

procedure for arbitrary fields using the Mathematica package VEST [Squire et al., 2014]

has recently been described in [Burby et al., 2013].) For an axisymmetric field and particle

initialization at the midplane, an expression up to and including O(ϵ2) has been given in
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[Gardner , 1966] as

µ ≈ µ(0) + ϵµ(1) + ϵ2µ(2)

=
mv2⊥
2B

− ϵ
mcB′

2B3

(
v2 + v2∥

)
vθ

+ ϵ2
m

2

{
c2B′2

B5

[
1

2

(
3v2θ + v2∥

) (
v2 + v2∥

)
+

3

8
v4⊥

]
− c2B′′

2B4

[
v2θv

2
∥ +

(
v2θ +

1

4
v2⊥

)(
v2 + v2∥

)]
+

c2B′

2rB4

[
v2θv

2 − v2⊥v
2
∥ −

5

4
v2⊥

(
v2 + v2∥

)
+ 2v2θv

2
∥

]}
, (4)

where vθ = v sin δ sinλ, v⊥ = v sin δ, v∥ = v cos δ, B′ = dB/dr, and angles δ and λ are

illustrated in Figure 1, and ϵ = m/q was introduced as a convenient way to keep track

of cyclotron time scales and thus the ordering. The angle δ has the same meaning as the

previously defined pitch angle with range 0 ≤ δ ≤ π, and the new angle λ describes the

azimuthal orientation of the initial velocity of the particle about the field line, with range

0 ≤ λ ≤ 2π. The importance of higher order terms of the magnetic moment is reflected

in the dependence of the particle phase space on angle λ. More specifically, because

µ(0) = mv2⊥/2B is independent of λ, the loss cone of the previous section is completely

determined by the initial pitch angle of the particle, δ. Inclusion of higher order terms of

magnetic moment µ will therefore introduce λ dependence in the loss cone calculation.

The effects of the higher order terms on the loss cone are especially exaggerated when

the particle is initialized with zero pitch angle, δ = 0. Although such particle has µ(0) = 0

initially, its adiabatically conserved magnetic moment, µ, is approximately ϵ2µ(2). More

specifically, as seen from Eq. 4 by setting v⊥ and vθ to zero, the only surviving term is of

O(ϵ2) and is proportional to v4∥.
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The variation of µ(0) for a 7MeV electron injected from the distance of 10RE at the

equatorial plane of a dipolar field with Earth’s magnetic moment (D = −3.3256×104nT ·

R3
E) is shown in the left panel of Figure 2. Due to the relatively weak field at the

equatorial plane, the oscillations of µ(0) are initially large. As the particle moves into the

stronger field, it slows down and begins mirroring. At the mirror point, it has no velocity

component along the magnetic field line, and therefore the dominant contribution to µ

at this point comes from µ(0). Since µ is conserved, the value of µ(0) that the particle

thus develops is approximately equal to its initial µ, that is ϵ2µ(2). The mirror point for a

particle injected along the field line from the midplane may therefore be found by equating

the initial to the final magnetic moment, i.e. µ(2)init. = µ(0)mirr., where µ(0)mirr. = mv2∥/2B,

from the conservation of energy.

In the case of the dipole field µ(2)init. = 9mc2

2D3 r
7v4∥, from the first ϵ2 term of Eq. 4. Then,

assuming that the electron’s mirror point and its initial point are connected by the same

field line, described by the flux function ψ = D cos2 ϕ/r, the mirror point radius, arinit,

for a particle initialized along the field line from the equatorial plane of a dipole field, at

radius rinit., is given by the solution of equation

9
( ρ∥
rinit.

)2√
4− 3a = a3, (5)

where ρ∥ = v∥/Ω
init.
c and Ωinit.

c = |q||Binit.|/mc. The solution is plotted in the right

panel of Figure 2 along with results obtained by numerically integrating electron orbit at

various energies. The figure illustrates that, for example, a 7MeV electron will not reach

the atmosphere from the equatorial plane at 10RE even if its pitch angle is initially zero.

c⃝2014 American Geophysical Union. All Rights Reserved.



4. Modified Loss Cone

In the previous section, the importance of higher order terms of the magnetic moment

invariant was described, and a method of finding the mirror point for a particle initialized

along the field line from the midplane of an axisymmetric magnetic field was given, along

with an example for an electron in the ideal dipole field. For a more general initialization,

the modified loss cone defining the boundaries between trapped and lost particles in the

λ− δ plane, has to be determined.

The modified loss cone may be determined by choosing some location beyond which the

particles are considered to be lost; combining equations for the conservation of energy and

magnetic moment µ; and assuming that the particle’s mirror point and its initial point

are on the same field line. The result defines a contour in the λ− δ plane. The contour is

the edge of the loss cone, and particles initialized inside this contour are lost. Specifically,

the contours are solutions of the equation

sin2 δ +∆
1

4
sinλ (5 sin δ + sin 3δ)

+ ∆2 1

384

[
275 + 68 cos 2δ + 41 cos 4δ

− 4 cos 2λ (43 + cos 2δ) sin2 δ
]
=

a3√
4− 3a

, (6)

where ∆ ≡ sgn(−q) ρ
LB

= sgn(−q) 3v

rinit.Ωinit.
c

.

Results for an electron of different energies initialized from 10RE at the equatorial plane

are shown in the left panel of Figure 3. The electron is considered to be lost if its mirror

point is at the radial distance of 1RE or less. For comparison, the dashed line shows the

loss cone computed based on only the lowest order term of the magnetic moment, µ(0). The

importance of higher order terms is most dramatically reflected in the λ-dependence of

c⃝2014 American Geophysical Union. All Rights Reserved.



the loss cone. The origin of the λ-dependence is mainly the O(ϵ) term of µ. As the energy

of the electron increases, the λ-dependence becomes more pronounced, and eventually the

loss cone becomes a closed contour with unique boundaries in both angles. The largest

range of δ angles is always at λ = −90◦, in the direction of electron drift, tangentially to

the flux surface (for positive ions, the sign of λ would be positive).

The right panel of Figure 3 shows the loss cone for a 7MeV electron initialized in

the equatorial plane at different distances. As the distance increases the loss cone again

becomes confined to small region in phase space, with unique boundaries in both angles.

The importance of the higher order terms of the magnetic moment at larger distances can

be understood from the consideration of the parameter ρ/LB, discussed in the previous

section. At larger distances, the curvature of the field decreases and therefore LB increases.

But, as the magnetic field becomes weaker, the Larmor radius increases. For the dipole

field the Larmor radius is proportional to r3, and LB is proportional to r, thus ρ/LB

increases with distance as r2.

The modifications to the loss cone computed by taking into account the higher order

components of the magnetic moment were checked by numerically integrating the electron

orbit in the dipole field. The results are shown in Figure 4. Each dot on the plot represents

the value of angles λ and δ at the time of equatorial crossing of a trapped particle, i.e.

the particle whose mirror point is above 1RE. Multiple crossings thus trace out a line in

the λ − δ space. Four such dotted lines are visible in the figure, each line corresponding

to different inital conditions of the particle. No lines are shown inside the innermost oval

because all particles initialized inside this oval were lost, i.e. had the mirror point below

c⃝2014 American Geophysical Union. All Rights Reserved.



1RE. The innermost oval thus corresponds to the boundary between trapped and lost

particles. The solid line is the loss cone computed analytically, showing agreement with

numerical results.

Since the modified loss cone always has the widest range of pitch angles at either λ =

−90◦ for electrons, or at +90◦ for positive ions, the widest opening of the loss cone may

be obtained by setting λ to this value, and solving the following expression for δ

sin2 δ −∆
1

4
[5 sin δ + sin 3δ] + ∆2 1

384
[275 + 68 cos 2δ

+41 cos 4δ + 4 (43 + cos 2δ) sin2 δ
]
=

a3√
4− 3a

, (7)

where ∆ for the dipole field is
ρ

LB

=
3v

rinit.Ωinit.
c

. The solution of this equation gives

the upper and lower bounds of the largest range of pitch angles which correspond to lost

particles, provided λ is oriented in the direction of particle drift as described above. When

∆ = 0, this expression reduces to Eq. 3, for the injection from the equatorial plane. Using

the fact that δ is typically small, Eq. 7 may be expanded around δ = 0 to yield,

∆2 − 2|∆|δ − 1

4

(
3∆2 − 4

)
δ2 =

a3√
4− 3a

. (8)

(δ −∆)2 ≈ a3√
4− 3a

(9)

δ ≈ ∆±
(

a3√
4− 3a

)1/2

, (10)

where the second equation was obtained by dropping the ∆2δ2 term from Eq. 8. The

two solutions for δ correspond to the upper and lower bound of closed contours in Figure

3. For a 7MeV particle injected from 10RE the above approximation gives δmin. = 0.72◦,

and δmax. = 3.33◦, as verified by corresponding contours in Figure 3.
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5. Discussion

When computing the loss cone, caution should be exercised that it is sufficient to use

the conservation of µ(0) as an underlying assumption. For energetic particles this may not

be the case, and to determine whether a particle is lost it may be necessary to consider the

magnetic moment, µ, up to O(ϵ2). It is then found that to ensure that a particle is lost

to the atmosphere when it is launched from the magnetospheric equator, it is generally

neither necessary nor sufficient to initialize the particle with a zero pitch angle, as would be

expected from usual loss cone calculations. Rather, the orientation of the initial particle

velocity vector should be described in terms of the angle δ, defining the angular deviation

of the velocity vector from the magnetic field line; and the angle λ, defining the degree

of rotation of the vector about the plane defined locally by the magnetic field line, as

illustrated in Figure 1. The modified loss cone has the largest range in δ when the angle λ

is such that the perpendicular component of the initial velocity vector points tangentially

to the magnetic flux surface and in the direction of the particle drift – for an electron,

this is at λ = −90◦, and for a positive ion it is at 90◦. This is determined by the O(ϵ)

term of the magnetic moment, which depends on the sign of the particle’s charge. The

two panels of Figure 3 show the effect of the higher order terms on the loss cone, when

lost particles are those whose mirror point is lower than 1RE. At high enough energies, or

at large distances, the loss cone defines a closed contour in the λ− δ space, so that there

is not only a maximum pitch angle δ beyond which the particles are trapped, but also

a minimum. The modified loss cone calculations were carried out for energetic electrons

using the dipole approximation of the Earth’s magnetic field. In reality a more realistic
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field should be used at distances larger than about 5RE, when the dipole approximation

becomes less valid. Considering that in a realistic magnetospheric field the curvature

in the midnight sector is increased, and in the noon sector the compression of the flux

surfaces creates magnetic cusps off the equatorial plane, it is reasonable to expect that in

reality the modifications to the adiabatic loss cone should be much more dramatic than

presented here for a dipole.

The loss cone modification was obtained using the conservation of energy, magnetic mo-

ment, and the assumption that the initial and mirror points of the particle are connected

by a single field line. For the dipole field, the flux function describing the magnetic field

line is ψ = D cos2(ϕ)/r, and it is assumed to have the same value at the mirror as at

the initial points. That the flux function is an adiabatic invariant on time scales longer

than the drift period is commonly proved using lowest orders of adiabatic invariants µ

and the longitudinal invariant, J . For an axisymmetric magnetic field, such as the dipole,

the canonical angular momentum in the azimuthal direction is an exact invariant, and is

related to the flux function ψ by pθ = mrvθ+eψ, where (r, θ) are the radial and azimuthal

coordinates in the cylindrical coordinate system. The change in ψ from its initial value is

therefore of order ϵ2, which is small enough to yield accurate estimates for the loss cone

using only the initial value of the flux function, as seen from the provided examples.

In context of beam injection from space, the above results are most applicable to ideal

regimes in which the beam may be assumed to propagate unaltered by its self-fields,

spacecraft charging, collisions, etc. However, even when these effects are not negligible,

the results provide guidance on how the optimal orientation for beam injection should

c⃝2014 American Geophysical Union. All Rights Reserved.



be chosen to help ensure that the beam precipitates into the atmosphere. The angular

spread of a typical beam is approximately 0.2◦. As seen from Figure 3, this is significantly

smaller than the modifications to the loss cone resulting from using the more accurate

magnetic moment invariant.

Another possible application is in the study of particle precipitation associated with the

Earth’s radiation belts. Relativistic electrons with energies upwards of 10MeV populate

the inner region of the magnetosphere (3 < L < 7) during periods of high-speed solar

wind and geomagnetic activity [Paulikas and Blake, 1979]. Knowing the characteristics

of the loss cone for different energies and locations in the magnetosphere is critical to

understanding the contribution of precipitation of particles to the energy budget of the

radiation belts.
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Figure 1. Illustration of the angles δ and λ which define the orientation of the initial velocity

vector of a particle initialized at the midplane of an axisymmetric magnetic field, in this case

that of the Earth.
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Figure 2. Left Panel: Relative variation of µ(0) for a 7MeV electron injected from 10RE at

the equatorial plane of a dipolar field with Earth’s dipole moment. Right Panel: The solid lines

correspond to mirror points for an electron initialized along the field line from the equatorial plane

of a dipole field with Earth’s magnetic moment. The ×’s are solutions obtained by numerical

integration of particle orbit. The dashed horizontal line at 1RE designates the approximate

location of the atmosphere, below which particles are taken to be lost.
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Figure 3. Left Panel: Edges of loss cones for an electron initialized from 10RE at the equatorial

plane of a dipole field for different energies. The black dashed line corresponds to the unmodified

loss cone given by Eq. 3, for the injection from the equatorial plane. Right Panel: Edges of loss

cones for a 7MeV electron initialized from different distances at the equatorial plane of a dipole

field.
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Figure 4. Comparison between numerical integration (dotted lines) of electron orbit for a

7MeV particle and analytic computation of the loss cone (solid line). Each dot forming a dotted

line corresponds to a value of λ and δ at the time of equatorial crossing of a trapped particle. A

particle whose initial conditions result in it being trapped will trace out one such line. There are

no lines inside the innermost oval, because all particles initialized at these angles were lost.
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