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The paper gives the derivation of the MHD boundary condition for the plasma flow to the wall

during disruptions. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894533]

In December 2007, when the theory of Wall Touching

Kink Mode just emerged,1 one of us (LZ) revealed the impor-

tance of the plasma physical contact with the wall and the

necessity of including the plasma flow to vessel surface into

simulations of disruptions. This also revealed a significant flaw

in all existing 3-dimensional magneto-hydrodynamic codes in

using an improper boundary condition Vnormal¼ 0 at the wall.

Initially, the correction seemed to be easy to make. In

the magneto-hydrodynamic (MHD) model, an absorption

boundary condition would be consistent with the basic

physics of plasma interaction with the wall. Indeed, the

plasma ion, moving with an ionized plasma toward the wall

in accordance with MHD equations, picks up an electron

from the wall with a high probability and becomes a neutral

atom, not participating anymore in plasma dynamics. In fact,

due to the ion gyro-rotation in a magnetic field this probabil-

ity is essentially 1. It is clear that Vnormal¼ 0 is in sharp con-

tradiction with the plasma physics, which strips the ability of

numerical codes to simulate disruptions processes, where the

interaction of the plasma with the wall starts from the begin-

ning of a disruption.

After 6.5 years, the wrong boundary condition,

Vnormal¼ 0, taken from the hydro-dynamics of conventional

fluids remains uncorrected. The recent publication by Strauss2

is another attempt to justify this condition in M3D code.

In this paper,2 the author claims that “There are at least

four possible boundary conditions that may be applied to the

normal velocity at a plasma-wall boundary.” The first three

of them, listed as Eqs. (1)–(3) in Ref. 2, are not applicable to

the plasma at all, while the forth one in Eq. (4), although rea-

sonable, is only approximate.

There is no mystery in deriving a boundary condition for

the plasma velocity. Thus, in the moving plasma, Faraday (or

Ohm’s) law in MHD approximation has the well known form

� @A

@t
�r/pl

E þ V� Bð Þ ¼ gpljpl: (1)

Here, A is a vector potential of a magnetic field B, r/E is a

scalar potential of an electric field, V is the plasma velocity,

j is the current density, and g is the local resistivity. The sub-

script “pl” refers to the plasma.

In a conducting wall, the same equation is simply

� @A

@t
�r/wall

E ¼ gwalljwall: (2)

Regarding the component of the current densities perpendic-

ular to the wall surface, the matching condition is

jwall;? ¼ jpl;?: (3)

Another matching condition is the continuity of the surface

electric field Ek parallel to the wall surface

Ek � �
@Ak
@t
�rk/wall

E ¼ �
@Ak
@t
�rk/pl

E ; (4)

thus, giving the boundary condition for the plasma velocity

ðV� BÞk ¼ gpljpl;k � gwalljwall;k: (5)

If the plasma current contribution is neglected, Eq. (5) gives

the approximate condition, listed by Strauss as Eq. (4).

In contrast to this transparent physics, Strauss claims

that Vnormal¼ 0 is a good approximation for disruption dy-

namics. This, might be true for the M3D code, which is a

hydro-dynamic code modified by an additional j�B force,

where the numerical scheme is driven by plasma inertia and

when any process, slower than the Alfven transit time, looks

slow and negligible.

This is not the case for the plasma dynamics in disrup-

tions, which are much slower than the Alfven transit times.

In disruptions, the balance of MHD forces, which are much

bigger than the inertia, is the dominant effect.

Accordingly, in Eq. (3), the current density in the wall is

determined by the force balance, while the plasma velocity

is determined by this equation as the secondary variable.

This physics makes disruption forces determined by the

plasma deformation, rather than by resistivity of the wall

as in Ref. 2.

Being irrelevant to disruption modeling in many aspects,

including the inability to implement Eq. (5) as the most visi-

ble one of them, the M3D needs manipulations and tricks in

order to make its results looking as reasonable. Thus, Ref. 3,

which pretends to simulate forces in ITER, in fact, is hiding

deeply in the text such a “minor” detail as “the current

enhancement factor” of 1.6.

Introduced by the authors in order to present a benign

internal m/n¼ 1/1 mode in tokamaks as a driver of disrup-

tions, this hidden factor elevates the plasma current in M3D

1070-664X/2014/21(9)/094701/2/$30.00 VC 2014 AIP Publishing LLC21, 094701-1
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simulations to the level of 24 MA, not made clear to the

community and to the ITER project, where the planed value

is Ipl¼ 15 MA. Without this 1.6 times amplification, hidden

from the reader in Ref. 3 in the middle of a large paragraph,

the internal kink mode would not produce appreciable forces.

In Ref. 2 on boundary conditions, Strauss relies on the same

disruption simulations with the same hidden scaling factor,

which makes M3D simulations irrelevant to ITER and to

other tokamaks.

Another claimed “result” of M3D is a recent

“discovery” that the sideways forces are produced by the

m/n¼ 2/1 kink mode.4 The reality is that a comprehensive

disruption data base of JET tokamak,5 containing thousands

of cases, clearly indicates that the sideway forces are result

of a m/n¼ 1/1 mode, well distinguished from the m/n¼ 2/1

mode, which is invisible in measurements.

Returning to the boundary conditions on plasma velocity

to the wall, in fact, the MHD physics does not require any.

The Faraday law (1) in the plasma and the Ohm’s law (2) in

the wall are the part of the MHD model. Accordingly, the

electromagnetic boundary condition on continuity of Ek,

which is claimed to be implemented in 3-D numerical codes,

automatically determines the plasma velocity to the wall.

The necessity of a special boundary condition is only a

reflection of the fact of internal inconsistency of numerical

schemes of these codes.

It is not possible to correct the M3D code simply by

implementation of boundary condition Eq. (5), which is valid

for all MHD regimes, including irrelevant to tokamak disrup-

tions fast instabilities, which M3D code, driven by plasma

inertia, simulates, and for the plasma dynamics on intermedi-

ate Alfven-resistive time scales as in experiments. In toka-

mak MHD, the meaning of this condition is reversed with

respect to an electro-dynamic interpretation: the current in

the wall is determined by the force balance in the plasma,

while the plasma flow velocity to the wall is a derived vari-

able. This meaning is inconsistent with the hydro-dynamic

nature of numerical schemes in 3-D codes and requires spe-

cial implementation. As an example, this was done in the

simulations of the m/n¼ 1/1 disruption mode in Ref. 6.

Another important property of Eq. (5) is that it reverses

the direction of velocity in the areas of the wall, where the

current density has the same direction as the plasma current.

It shows the basic inconsistency of substitution of the vac-

uum region by a fluid in all MHD codes with plasma physics.

In the plasma MHD, a “vacuum” bubble would be created,

but for the present hydro-dynamic numerical schemes, these

areas should “supply” plasma from the wall surface, which is

not physical. As a practical manner, the problem could be

mitigated in the hydro-dynamics schemes only with a special

care and understanding of this inconsistency with the plasma

physics. E.g., for these areas, a artificial supply of a low den-

sity plasma in accordance with Eq. (5) can be arranged in the

codes with a care about force balance in the plasma core.

The issue of sideways forces, which the M3D code for

6.5 years pretends to address, was, in fact, resolved for ITER

7 years ago. Discovered in 1995 and explained in 1996 by

JET engineers, the sideways forces in JET cases of disrup-

tions were scaled for the ITER project in 2007 and then used

as a guidance for its vessel design. The LZ theory of Wall

Touching Kink Mode (WTKM) in 2007–2009 confirmed the

engineering scaling and gave the understanding of details.

The broader physics of disruptions requires the development

of numerical codes using field aligned adaptive grids,7 capa-

ble of providing the physics scale separation for highly ani-

sotropic tokamak plasmas, of reproducing the surface and

Hiro currents during disruptions and of providing the basis

for implementation of realistic plasma-wall interactions.

Note some other issues with the Strauss paper. The for-

mulas (15, 16) in Ref. 2 are not applicable for disruptions

conditions, where high voltage is generated along field lines.

For the same reason, it is incorrect to make assessment of the

sheath potential based on the plasma temperature.
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