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Abstract

In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to

simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center for-

malism is not sufficient. Relativistic guiding center equations including flute mode time dependent

field perturbations are derived. The same variables as used in a previous nonrelativistic guiding

center code are adopted, so that a straightforward modifications of those equations can produce a

relativistic version.

PACS numbers: 52.65.Cc, 52.27.Ny
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I. INTRODUCTION

Ions in toroidal fusion devices are rarely to be found at relativistic velocities, but this can

easily happen for electrons. Thus it is useful to have a relativistic guiding center formalism

for energetic electron simulation. Previous derivations insisted on the use of exact canon-

ical coordinates[1–5], making the equations unnecessarily complicated, or used coordinate

systems significantly different from those used in a previously published[9] nonrelativistic

version used in the code Orbit. In this work we derive relativistic guiding center equations

which are a straightforward modification of those equations, requiring a simple modification

of the code Orbit. It is shown that a non explicit periodic modification of the toroidal

particle motion puts the equations into canonical Hamiltonian form.

Introducing units of time given by ω−1

0
, where ω0 = eB/(mc) is the on axis gyro frequency,

and units of distance given by the major radius R, the basic unit of energy becomes mω2

0
R2,

which can also be written as (mv2/2)(2R2/ρ2), the gyro radius is ρ = v/B ≪ 1, and the

magnetic moment µ = mv2

⊥/(2B) is of order ρ2. Particle motion both along and across the

field lines is of order ρ, but to leading order the cross field motion is the gyro motion, and

cross field drift is of order ρ2.

The Lagrangian for guiding center motion was derived by Littlejohn using Lie algebra,

capable of producing the correct expression to all orders in the gyro radius. The method

consists of an order by order expansion in gyro radius, at each step adding exact time

derivatives to the Lagrangian in order to produce simplification at that order.

Begin with the Lagrangian for a charged relativistic particle[6]

L = ( ~A+Qρ‖γ ~B) · ~v + µξ̇ −H (1)

with γ = 1/
√

1 − v2/c2 and the Hamiltonian

H = mc2
(

1 +
v2γ2

c2

)1/2

+ Φ (2)

with mv2γ2 = mρ2

‖B
2γ2 + 2µB, and Φ the electric potential, m the particle rest mass,

ρ‖ = v‖/B, with v‖ = ~B ·~v/B the parallel velocity, µ the magnetic moment, ξ the gyrophase.

The factor Q is 1 for ions and -1 for electrons. Because we have normalized time in terms

of the gyro frequency, both ~A and ~v change sign for electrons. We also have

v2

c2
=

(H − Φ)2 −m2c4

(H − Φ)2
. (3)
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Equilibrium field quantities are given by ~A = (ψ∇θ−ψp∇ζ) and ~B = g∇ζ + I∇θ+ δ∇ψ

with ψ the toroidal flux, ψp the poloidal flux, θ a poloidal angle coordinate, ζ a toroidal

angle coordinate, and g, I and δ are equilibrium functions. The vector potential through

~B = ∇× ~A provides a contravariant representation of the field. The function δ is given by

the nonorthogonality of the coordinate system and is normally small[7]. We will consider

an axisymmetric equilibrium, so field quantities I, δ are functions of ψp and θ and γ =

γ(ψp, θ, ρ‖).

Introduce a field perturbation of the form δ ~B = ∇ × α~B with α a function of ψp, θ, ζ

and time[8], and substitute ~B and ~A in the Lagrangian L(ρ‖, ψp, θ, ζ, ρ̇‖, ψ̇p, θ̇, ζ̇), giving

L = [ψ + (Qρ‖γ + α)I]θ̇ + [(Qρ‖γ + α)g − ψp]ζ̇ +Qδqγρ‖ψ̇p + µξ̇ −H. (4)

Lagrange’s equations are,

d

dt

∂L

∂q̇
=
∂L

∂q
, (5)

immediately giving the constancy of the magnetic moment, and taking the equilibrium

axisymmetric, ∂ζI = ∂ζg = 0 and using g = g(ψp) we find

d

dt

∂L

∂ρ̇‖
= 0 = QIγθ̇ +Qgγζ̇ +QIρ‖γ

′
ρ‖
θ̇ +Qgρ‖γ

′
ρ‖
ζ̇ +Qδqγψ̇p +Qδqγ′ρ‖ρ‖ψ̇p − ∂ρ‖H, (6)

d

dt

∂L

∂ψ̇p
= Qδ′θqγρ‖θ̇ +Qδqρ‖γ

′
θθ̇ +Qδqρ‖γ

′
ρ‖
ρ̇‖ = qθ̇ +Qρ‖Iγ

′
ψp
θ̇

+(Qρ‖γ + α)I ′θ̇ + Iα′
ψp
θ̇

+Qρ‖gγ
′
ψp
ζ̇ +Qρ‖γg

′ζ̇ + (gα′
ψp

+ αg′ − 1)ζ̇ − ∂ψp
H, (7)

d

dt

∂L

∂θ̇
= qψ̇p +Qρ̇‖γI + (Qρ‖γ + α)I ′ψ̇p +Qρ‖I(γ

′
θθ̇ + γ′ψp

ψ̇p + γ′ρ‖ ρ̇‖)

+I(α′
θθ̇ + α′

ζ ζ̇ + α′
ψp
ψ̇p +Q∂tα) = Qρ‖Iγ

′
θθ̇ + Iα′

θθ̇ +Qρ‖gγ
′
θζ̇ + gα′

θζ̇

+Qδ′θqγρ‖ψ̇p +Qδqγ′θρ‖ψ̇p − ∂θH, (8)

d

dt

∂L

∂ζ̇
= −ψ̇p +Qρ̇‖γg + (Qρ‖γ + α)g′ψ̇p +Qρ‖g(γ

′
θθ̇ + γ′ψp

ψ̇p + γ′ρ‖ ρ̇‖)

+g(α′
θθ̇ + α′

ζ ζ̇ + α′
ψp
ψ̇p +Q∂tα) = Iα′

ζ θ̇ + gα′
ζ ζ̇ − ∂ζH, (9)
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where we use the notation f ′
β = ∂βf .

Write these in matrix form
∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

0 W L M

−W 0 F C

−L −F 0 K

−M −C −K 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣
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∣
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∣

∣
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ψ̇p
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∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ρ‖H

∂ψp
H

∂θH + I∂tα

∂ζH + g∂tα

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(10)

whereK = gα′
θ−Iα

′
ζ+Qρ‖gγ

′
θ, C = −1+Qρ‖γg

′+αg′+gα′
ψp

+Qρ‖gγ
′
ψp

, M = Qgγ+Qgρ‖γ
′
ρ‖

,

F = q + (Qγρ‖ + α)I ′ + Qρ‖Iγ
′
ψp

+ Iα′
ψp

+ Qδ′θqγρ‖ + Qδqγ′θρ‖, L = QIγ + QIρ‖γ
′
ρ‖

,

W = Qδqγ +Qδqγ′ρ‖ρ‖.

Inverting this equation gives

∣

∣
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∂ψp
H

∂θH +QI∂tα

∂ζH +Qg∂tα
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∣
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∣

∣

∣

∣

(11)

with denominator

D = WK + FM − CL. (12)

Note that there are no derivatives of I with respect to θ.

Consider the resulting stepping equations with no field perturbation and an axisymmetric

equilibrium, so ∂ζH = 0 and α = 0. The terms in δ appear only in F , W and D. The

time derivatives ρ̇‖, ψ̇p, and θ̇ are given by terms independent of δ divided by D. Thus a

renormalization of time using D leaves invariant the projection of the orbits in the poloidal

plane, and thus this projection is independent of δ. Now consider mean toroidal precession

∆ζ =

∫

ζ̇dt =

∮

ζ̇

θ̇
dθ =

∮

F∂ρ‖H − L∂ψp
H +W∂θH

M∂ψp
H − C∂ρ‖H

dθ (13)

where the integral is taken following an orbit. The terms in δ are

∆ζδ =

∮

Qqρ‖∂θ(γδ)∂ρ‖H +Qqδ∂ρ‖(ρ‖γ)∂θH

M∂ψp
H − C∂ρ‖H

dθ (14)

Use the identies

∂θH =
ρ‖γB

2∂θ(ρ‖γ) + (mγ2ρ2

‖B + µ)∂θB

ρ‖γ2B2
∂ρ‖H, (15)
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and

∂ψp
H =

(mγ2ρ2

‖B + µ)∂ψp
B

ρ‖γ2B2
∂ρ‖H. (16)

Following an orbit γρ‖ and ψp are functions of θ, but to lowest order in ρ, ψp is constant,

so to lowest order energy conservation following an orbit involves only the variation of γρ‖

and B, giving HdH = [m2c2B2ρ‖γ∂θ(ρ‖γ) + (m2c2ρ2

‖γ
2B +mc2µ)∂θB]dθ = 0, or

(mγ2ρ2

‖B + µ)∂θB = −mγρ‖∂θ(ρ‖γ)B
2, (17)

and keeping only first order in ρ in Eq 14 we find

∆ζδ = Q

∮

∂θ[qρ‖γδ]dθ = 0. (18)

Thus δ produces a nonsecular modification of the toroidal precession but no change in the

poloidal projection of the orbit. Deleting δ results in a simple periodic modification of the

toroidal position of the guiding center. We thus drop the term δ in the expression for the

equilibrium. This leaves the Lagrangian in Hamiltonian form with canonical variables

Pθ = ψ + (ρ‖γ + α)I, θ, (19)

Pζ = (ρ‖γ + α)g − ψp, ζ. (20)

Dropping δ produces an implicit change of the guiding center coordinate to produce canonical

variables, leaving invariant both the poloidal projection of the orbit and the mean toroidal

precession. There is no explicit redefinition of these coordinates in this process. Guiding

center equations are only accurate to second order in ρ/R, including particle drifts but not

higher order corrections. However it is important that this truncation in the expansion

in orders of ρ/R maintain the Hamiltonian character of the equations, to guarantee the

Liouville theorem and other properties.

We also have

∂θv
2 = 2

ρ2

‖B + µ/mγ2

1 + 2µB/mc2
∂θB, ∂ζv

2 = 2
ρ2

‖B + µ/mγ2

1 + 2µB/mc2
∂ζB (21)

∂ψp
v2 = 2

ρ2

‖B + µ/mγ2

1 + 2µB/mc2
∂ψp

B, ∂ρ‖v
2 =

2ρ‖B
2

1 + 2µB/mc2
(22)

∂βγ
2 =

γ4

c2
∂βv

2, β = θ, ζ, ρ‖, ψp. (23)
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H ′
β =

m

2(1 + v2γ2/c2)1/2
[v2∂βγ

2 + γ2∂βv
2] + Φ′

β, β = θ, ζ, ρ‖, ψp. (24)

The resulting guiding center equations are a straightforward modification of the classical

case derived previously[9] and used in the code Orbit. It is convenient to use energy E =

H−Φ−mc2 so that it agrees with the kinetic energy in the nonrelativistic limit. For initial

particle values, if given position, energy and pitch λ = v‖/v, one uses Eq. 3 to find v, then

ρ‖ = λv/B, and then µB = mv2 −mρ2

‖B
2γ2 to define µ. Given H and µ one uses Eq. 3 to

find v and γ and then this last equation to find ρ‖.
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