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Abstract

Structure-preserving algorithms obtained via discrete variational principles exhibit strong

promise for the calculation of guiding center test particle trajectories. The non-canonical Hamilto-

nian structure of the guiding center equations forms a novel and challenging context for geometric

integration. To demonstrate the practical relevance of these methods, a prototypical variational

midpoint algorithm is applied to an experimental magnetic equilibrium. The stability character-

istics, conservation properties, and implementation requirements associated with the variational

algorithms are addressed. Furthermore, computational run time is reduced for large numbers of

particles by parallelizing the calculation on GPU hardware.
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I. INTRODUCTION

One of the principle challenges of plasma physics is to accurately model multi-scale phe-

nomena. As magnetically-confined fusion plasmas progress toward the burning plasma

regime, the largest characteristic temporal and spatial scales grow increasingly disparate

from the smallest. For instance, the gyro-orbits exhibited by electrons in ITER will occur

at a timescale thirteen orders of magnitude faster than the pulse discharge length. Numeri-

cally modeling test particle dynamics in burning plasma devices thus presents a formidable

challenge. The analytic guiding center transformation partially mitigates this challenge by

shifting the shortest characteristic timescale from the gyroperiod to the toroidal transit time.

However, modeling the dynamics of fast particles such as runaway electrons and hot alphas

still requires resolving tens of thousands of toroidal transits. The numerical computation of

such long term dynamics stands to benefit from advances in algorithms and computational

hardware.

On the numerical analysis front, so-called “geometric” algorithms retain physically con-

served quantities in the discrete flow, resulting in excellent long term numerical fidelity [1].

An algorithm that conserves energy or momentum more accurately represents the physical

system after many numerical time advances than an algorithm that conserves no such quan-

tities. In essence, while truncation error is unavoidable in any numerical approximation,

numerically conserved quantities force the errors to manifest in relatively benign features,

such as in the phase of a periodic trajectory. The importance of magnetically-confined fast

particle dynamics makes the calculation of guiding center trajectories an appealing candidate

for application of structure preserving algorithms.

Moreover, the guiding center equations of motion are an especially novel context for geo-

metric integration because the most natural description of the dynamics is non-canonically

Hamiltonian [2, 3]. From a geometric perspective, the structure of Hamilton’s equations

is independent of the coordinates used to represent them [4, 5]. However, most structure-

preserving numerical methods rely on representing Hamilton’s equations in canonical co-

ordinates [1]. The task of developing numerical methods that preserve the structure of

non-canonical Hamilton’s equations remains an outstanding challenge in the field of numer-

ical analysis [1, 6]. While the guiding center equations of motion may be cast in canonical

coordinates [3, 7, 8], a global transformation may not exist for arbitrary magnetic geome-
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try, and local transformations may be undesirably complex for magnetic configurations of

interest [9].

One technique for constructing algorithms ensures the presence of conserved quantities by

discretizing the variational principle that underlies the equations of motion [10]. By requiring

the discrete trajectory to extremize a discrete action, the numerical time advance inherits the

conservation properties of the continuous dynamics. Such an approach has proven insightful

for the analysis of familiar symplectic algorithms [10] while yielding novel schemes unlikely to

arise from direct discretization of the equations of motion [11–13]. The success of variational

algorithms motivated studies in discretizing the guiding center Lagrangian, where test cases

in simple magnetic geometry exhibited the characteristic long-term numerical fidelity [14–

18].

In this article, algorithms derived from a discrete variational principle are discussed as

promising methods for the structure-preserving integration of guiding center test particle tra-

jectories. Expanding upon the early positive results, good long-term numerical fidelity has

now been observed in magnetic fields interpolated from experimental equilibria. Moreover,

the variational algorithms have been implemented on general-purpose graphics processing

units using the CUDA programming language, and excellent scaling to large numbers of par-

ticles obtained. The challenges associated with using variational guiding center algorithms

are also explicated. In particular, the multistep characteristics of the resulting algorithms

complicate interpretation of the conserved quantities and require careful initial condition

selection. An additional implementation consideration is the extraction of the vector po-

tential from the numerical magnetic equilibria. The observed long-term numerical fidelity

motivates ongoing development, particularly the pursuit of variational discretizations that

may further ameliorate the drawbacks of the present generation of variational guiding center

algorithms.

II. BACKGROUND

To establish context for the variational guiding center algorithms, this section reviews

guiding center dynamics, symplectic integration, and variational integration. Given the

inter-disciplinary nature of this work, it is helpful to summarize foundational elements of the

plasma physics, classical mechanics, and numerical analysis components. In discussing the
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guiding center coordinate transformation, emphasis is placed on understanding the resulting

equations of motion as a Hamiltonian system in non-canonical coordinates. Symplectic

integrators are then described as numerical methods that produce trajectories along solutions

of a Hamiltonian system nearby to the original being modeled. Variational integrators

may then be understood as a systematic means of deriving symplectic algorithms, given

appropriate properties of the Lagrangian governing the dynamics.

A. Hamiltonian Guiding Center Dynamics

A prominent technique for reducing the complexity of magnetized charged particle dy-

namics is the transformation to guiding center coordinates [2, 3]. If the scale length over

which the electric and magnetic fields vary is much longer than the radius at which a charged

particle orbits a magnetic field line, the dynamics are approximately invariant with respect

to the phase of the particle’s gyro-orbit. Analytically, transforming to coordinates in which

this invariance is manifest reduces the dimensionality of the dynamics from six dimensions

to four. Numerically, one no longer needs to resolve the rapid gyromotion while tracking

the guiding center of the particle orbit along and across magnetic field lines.

Starting with a charged particle in electric and magnetic fields, the guiding center trans-

formation is an approximate transformation from the original charged particle position q

and velocity v to the position of the guiding center x and three additional variables (u, µ,Θ).

Here, u is the velocity of the guiding center along the magnetic field line, µ is the magnetic

moment, and Θ is the gyrophase, which is the angle of the gyro-orbit with respect to some

initial position. In the new coordinates, the Θ, µ dynamics decouple from the other compo-

nents and may be ignored if only the guiding center position and velocity are of interest.

To determine the equations of motion in the guiding center coordinates (x, u, µ,Θ), one

turns to the origin of the equations of motion for a charged particle in a magnetic field. To

describe the charged particle dynamics, one typically resorts to a Lagrangian formalism or

a Hamiltonian formalism. Understanding the relationship between these two descriptions is

crucial to understanding the particular form of the guiding center Lagrangian and the novelty

of structure-preserving algorithms in this context. The following discussion highlights the

relevant details found in Reference [3].

From the Lagrangian perspective, one may derive the familiar Lorentz force law starting
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from the charged particle Lagrangian:

L(q, q̇) =
1

2
m|q̇|2 +

e

c
A · q̇− eφ. (1)

Here, q̇ = dq
dt

, m is the mass of the particle, e is the charge, A is the vector potential and

φ is the scalar potential. For the purposes of this discussion, we deem this Lagrangian a

“configuration-space Lagrangian”, as it acts on points (q, q̇) in the tangent bundle TQ of

the configuration space Q [4]. Given a path q(t) with t ∈ [0, T ] ⊂ R, the action integral is

given by:

S(q(t)) =

∫ T

0

L(q(t), q̇(t))dt. (2)

Requiring the action to be extremized with respect to arbitrary path variations δq, one finds

the Euler-Lagrange equations for a charged particle:

dS · δq = 0 ⇒

mq̈ = eE +
e

c
q̇×B. (3)

Here we see the electric field E = −∇φ and the magnetic field B = ∇×A.

Instead of a second order differential equation in three variables, we may describe the dy-

namics using first order equations in six variables by turning to the Hamiltonian perspective.

The Hamiltonian for a charged particle is given by:

H(q,p) =
1

2m
|p− e

c
A|2 + eφ, (4)

where p = mq̇+ e
c
A. The equations of motion are given by Hamilton’s canonical equations:

q̇ =
∂H

∂p
ṗ = −∂H

∂q
. (5)

These two formulations offer equivalent descriptions of the dynamics while exhibiting

different flexibility in their potential for coordinate transformations. From the Lagrangian

perspective, one is free to transform the three configuration coordinates qi; extremizing the

action with respect to perturbations in the new coordinates recovers the proper dynamics.

However, the velocity variables q̇i are directly determined as the time derivatives of the con-

figuration coordinates, thereby restricting the ability to transform the velocity coordinates.

Alternatively, the Hamiltonian description elevates the momenta pi to equal status as the

configuration coordinates qi. However, transformations on the six variables (q,p) 7→ (Q,P)
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must retain the canonical structure of Hamilton’s equations. Otherwise, one must consider

how the Poisson bracket transforms, which is a less straightforward task than the varia-

tional principle utilized in the Lagrangian context. Neither of these two formalisms offers

the desired freedom of transforming from physical charged particle coordinates (q,v) to the

guiding center coordinates (x, u, µ,Θ).

A hybrid approach facilitates the calculation of Hamiltonian equations in general coor-

dinates utilizing an action principle in phase space [19, 20]. Given phase-space coordinates

(q,p), consider the “phase-space Lagrangian” given by:

L(q,p, q̇, ṗ) = p · q̇−H(q,p). (6)

This expression for the Lagrangian is numerically equivalent to that given by the Legendre

transform, but here q and p are retained as independent coordinates. Extremizing the action

integral of this Lagrangian with respect to arbitrary path variations (δq, δp), one recovers

Equation (5) as the “Euler-Lagrange equations”. By deriving Hamilton’s equations from

a variational principle, arbitrary transformation of the six phase-space coordinates may be

performed and determining the dynamics in the new coordinates involves application of the

familiar variational principle.

This phase-space Lagrangian is the starting point for the transformation to guiding center

coordinates. One manipulates the charged particle phase-space Lagrangian, neglecting small

terms in the mass-to-charge ratio. The resulting guiding center Lagrangian is given by:

L(x, u, µ,Θ, ẋ, u̇, µ̇, Θ̇) =( e

mc
A + ub

)
· ẋ +

c

e
µΘ̇−

(
u2

2
+ µB +

e

m
φ

)
, (7)

where b is the magnetic field unit vector and B the magnetic field magnitude. We emphasize

that this Lagrangian originates from Equation (6), not the charged particle Lagrangian

Equation (1). In resemblance to the canonical phase-space Lagrangian of Equation (6), the

guiding center Lagrangian is linear in the velocities (ẋ, u̇, µ̇, θ̇), and includes the guiding

center Hamiltonian:

Hgc(x, u, µ,Θ) =
u2

2
+ µB +

e

m
φ. (8)

The action of the guiding center Lagrangian is extremized with respect to variations
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(δx, δu, δµ, δΘ) by paths satisfying the following first order ODE system:

(
A†i,j − A

†
j,i

)
ẋi −

(
µB,j +

e

m
φ,j

)
= 0 j = 1, 2, 3

u− biẋi = 0

µ̇ = 0

Θ̇− eB

mc
= 0 (9)

Here, A† = e
mc

A + ub, summation over repeated indices is implied, and indices appearing

after a comma denote differentiation with respect to the corresponding component. As

desired from the onset of the guiding center transformation, the (µ,Θ) dynamics decouple

from the (x, u) dynamics. Henceforth, µ will be treated as constant and the gyrophase Θ

ignored.

Upon inspection of the guiding center Equations (9), it is clear the ODE system does

not have the canonical Hamiltonian form of Equations (5). Indeed, they were obtained

via an action principle in phase space following a non-canonical coordinate transformation.

While Equations (5) are the familiar setting for discussing Hamiltonian dynamics, Hamilton’s

equations may defined more generally as:

Ωij ż
i = H,j, (10)

where Ω is a non-degenerate anti-symmetric matrix. The canonical case of Equation (5)

may be viewed as a specific case of Equation (10) in which z = (q,p) and Ω =

 0 I

−I 0

.

The guiding center equations are also in the form of Equation (10) with z = (x, u) and

Ω =


0 B†3 −B

†
2 −b1

−B†3 0 B†1 −b2
B†2 −B

†
1 0 −b3

b1 b2 b3 0

 , (11)

where B† = ∇×A†. It is in this sense that the four-dimensional guiding center equations

are considered non-canonically Hamiltonian.
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B. Symplectic Integration

For the numerical integration of Hamilton’s Equations (5), a class of algorithms known

as as symplectic integrators display excellent long-term numerical fidelity [1]. The discrete

numerical advances of symplectic algorithms share a central property with exact solutions to

Hamilton’s equations; they preserve a symplectic structure. In fact, numerical trajectories

generated by symplectic algorithms lie asymptotically near exact solutions to a Hamiltonian

system that converges to the original as the numerical step size tends to zero. As a con-

sequence, important metrics like energy error remain bounded by some small number for

exponentially long simulation times. Leveraging the properties of symplectic algorithms is

therefore a powerful tool for obtaining good numerical behavior after many time steps when

the dynamical system of interest is Hamiltonian.

A map Φ is symplectic when the pullback of the symplectic structure by Φ is equivalent to

the original symplectic structure. Precisely, a Hamiltonian system is defined by a symplectic

manifold (M,Ω) and a Hamiltonian function H. A map Φ : M →M is symplectic when:

Ω = Φ∗Ω, (12)

where Φ∗ is the pullback. The maps we’ll be considering in this work will all be time advance

maps. That is, Φ will be the solution to a differential equation specified in terms of a vector

field or it will be the solution to a numerical update rule.

For an intuitive understanding of the symplecticity condition Equation (12), recall that

symplectic structures are operators acting on pairs of tangent vectors to yield real numbers [1,

5, 21]. For instance, the canonical symplectic structure defined in Sec. (II A) determines the

oriented area spanned by a pair of tangent vectors in phase space. In this canonical context,

one checks whether a map Φ is symplectic by advancing a pair of test vectors along Φ and

checking whether the area spanned by the new vectors is equivalent to the original area.

This is the essence of the pullback in Equation (12); in effect, one calculates the new vectors

according the calculus chain rule [5].

The symplecticity of maps is central to Hamiltonian mechanics because flows of Hamilto-

nian vectors fields are symplectic. In the canonical context, solutions to Hamilton’s equations

are area preserving. More generally, suppose the time-t flow map φt satisfying:

dφt

dt
= XH(z(t)), (13)
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where the Hamiltonian vector field XH is defined by XH = ż in Equation (10). The flow

map φt satisfies the symplecticity condition Equation (12) for all t, as is shown in many

standard references [1]. So, solutions of Hamilton’s equations are symplectic.

Conversely, a numerical trajectory generated using a symplectic algorithm lies asymptot-

ically near the exact solution of some Hamiltonian system. In practice, this means a discrete

trajectory {zk}Nk=0 generated by a symplectic numerical algorithm is indistinguishable from

a discrete sampling of a continuous solution to Hamiltonian equations for some Hamiltonian

H̃. Because the numerical trajectory is the flow of a Hamiltonian system that is close to

the original for small h, the numerical trajectory will strongly resemble the true solution.

In particular, the numerical energy will differ from the original by H̃ −H for exponentially

long times [1].

This result is obtained by performing a backward error analysis. Given a numerical

method ϕh(zk) = zk+1 with numerical step size h, one presumes the existence of a continuous

flow map ϕ̃t such that ϕ̃t=kh = ϕk
h. That is, backward error analysis seeks a continuous

system whose solution sampled at discrete times exactly matches the discrete numerical

trajectory. Insight may then be gained by comparing the vector field governing the backward

error dynamics to the original vector field. In detail, one supposes φ̃t satisfies:

dφ̃t

dt
= X̃ = X0 + hX1 + h2X2 + ... , (14)

where the Xi may be determined from the numerical update rule and X0 = XH must hold

for consistent algorithms. If the numerical map ϕh is symplectic, it can be shown that the

Xi are Hamiltonian [1], so

ΩijX̃
i = H̃,j (15)

with H̃ = H + hH1 + .... In general, the series in Equation (14) is asymptotic and must be

truncated at optimal order for specific values of numerical step size h.

Much of the literature on symplectic integrators focuses on Hamiltonian systems written

in canonical form, as in Equation [5]. However, several important systems possess the more

general Hamiltonian structure of Equation [10], and may be difficult to cast in canonical

form. Examples of non-canonical Hamiltonian systems include magnetic field line flow [22]

and guiding center dynamics [2, 3]. In these settings, preservation of the non-canonical

symplectic structure governing the Hamiltonian dynamics is desirable to obtain numerical
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trajectories with good long term behavior. In specific cases, this has been achieved, but

general non-canonically symplectic numerical methods are not known [6].

C. Variational Integration

Additional insight regarding symplectic algorithms can be found in discrete variational

principles [10]. The conventional setting for discussing symplectic numerical methods refers

to modeling Hamilton’s equations. However, just as a complimentary description of the

continuous dynamics resides in the Lagrangian formalism, symplectic integrators may be

understood as resultant from discrete variational principles. In brief, all symplectic maps

may be constructed from generating functions, and discretizing the Lagrangian action prin-

ciple is a systematic means of constructing a generating function for a symplectic numerical

time-advance map.

Suppose, for instance, a configuration space Lagrangian L(q, q̇) with action given by

Equation (2) and Euler-Lagrange equations:

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (16)

If the Lagrangian is regular, i.e. ∂2L
∂q̇2 is non-degenerate, then a unique path q(t) extremizes

the action integral. From this, we define a discrete Lagrangian as an approximation to a

small interval of the action:

Ld(qk,qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt, (17)

where q(t) in the integrand is the unique trajectory extremizing the action integral with

endpoints (tk, tk+1). A discrete action corresponding to a particular choice of discrete La-

grangian is identified as:

Sd(q0, ...,qN) =
N−1∑
k=0

Ld(qk,qk+1). (18)

Variation of the action with respect to δqk for arbitrary k yields the “discrete Euler-Lagrange

equations”:

dSd · δqk = 0⇒

D2Ld(qk−1,qk) +D1Ld(qk,qk+1) = 0, (19)
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where the slot derivative Di denotes differentiation with respect to the i-th argument. The

discrete Euler-Lagrange Equations (19) are a numerical method for approximating solutions

to the continuous Euler-Lagrange Equations (16). Simple choices for the discrete Lagrangian

can yield familiar algorithms, such as the Störmer-Verlet method [10].

The variationally-derived discrete Euler-Lagrange equations may be formulated as a

canonically symplectic map for the solution of Hamilton’s Equations (5). The identifica-

tion of a symplectic map follows from defining a “discrete Legendre transform”:

pk = −D1Ld(qk,qk+1)

pk+1 = D2Ld(qk,qk+1). (20)

These seemingly different definitions for the discrete momenta are equivalent for numerical

trajectories satisfying the discrete Euler-Lagrange Equations (19). One may thus iterate

Equations (20) as a numerical integrator for Hamilton’s equations; symplecticity of the

algorithm is a consequence of the discrete action principle [10]. Inspection of Equations (19)

identifies the discrete Lagrangian Ld as a type-one generating function for the canonical

transformation (pk,qk) to (pk+1,qk+1), guaranteeing the numerical time advance will be

symplectic.

III. VARIATIONAL GUIDING CENTER ALGORITHMS

We turn now to the task of integrating the guiding center equations of motion Equation

(9) in a structure-preserving manner. Ideally, a non-canonically symplectic algorithm could

be constructed that preserves the guiding center symplectic structure Equation (11) in the

sense of Equation (12). Given the non-canonical formulation, familiar symplectic algorithms

such as symplectic Runge-Kutta methods are not directly applicable.

Inspired by the success of discretizing configuration-space action principles, recent work

has developed guiding center algorithms by discretizing the guiding center Lagrangian Equa-

tion (7) [14–18]. Test problems in two spatial dimensions demonstrated excellent long-term

numerical fidelity [14–16]. Here, we’ll extend these results to experimental magnetic equilib-

ria while describing the peculiarities that arise for variational guiding center algorithms. Be-

cause the guiding center Lagrangian originates from a non-regular phase-space Lagrangian,

discretization yields different properties than those observed for the regular configuration-
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space Lagrangians presumed in Section (II C). In particular, the methods are multistep

algorithms for the integration of first-order differential equations, presenting initialization

and stability considerations. An additional factor for the variational guiding center algo-

rithms is the necessity of evaluating the magnetic vector potential in the numerical update

rule.

A. Midpoint Discretization

The variational integrators literature offers many candidate discretization schemes for

application to the guiding center Lagrangian [10–13]. As a representative example, we will

primarily consider a midpoint discrete Lagrangian as in Reference [16]:

Ld(xk, uk+1/2,xk+1) =A†i

(
xk + xk+1

2
, uk+1/2

)
(xik+1 − xik)−

hHgc

(
xk + xk+1

2
, uk+1/2

)
, (21)

where Hgc is given by Equation (8). The centered position evaluations are expected to yield

a second-order accurate algorithm, and the absence of u̇ in the guiding center Lagrangian

allows staggering the u coordinate at half-integer times.

The discrete Euler-Lagrange equations corresponding to the midpoint discrete Lagrangian

are given by:

1

2
A†i,j(k + 1/2)[xik+1 − xik] +

1

2
A†i,j(k − 1/2)[xik − xik−1]−[

A†j(k + 1/2)− A†j(k − 1/2)
]
− h

2
[µB,j(k + 1/2) + µB,j(k − 1/2)+

φ,j(k + 1/2) + φ,j(k − 1/2)] = 0, j = 1, 2, 3

bi(k + 1/2)[xik+1 − xik]− huk+1/2 = 0. (22)

Here, factors of e and m have been normalized into the definitions of the fields and (k+1/2)

in the function evaluations indicates evaluation at
(
x = xk+xk+1

2
, u = uk+1/2

)
, and (k − 1/2)

is one time index earlier. These equations resemble the non-canonically Hamiltonian guiding

center equations of motion written in the form of Equation (10).

The variational guiding center algorithm Equation (22) exhibits three features of interest:

it is implicit, it is multistep, and the vector potential is evaluated. As an implicit algorithm,
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implementation involves performing a nonlinear solve. In practice, Newton-Rhapson itera-

tions typically converge within two to three iterations. One might strive for a discretization

yielding an explicit variational algorithm, but the work of Reference [17] demonstrated

that all explicit variational guiding center algorithms within a natural family of discrete

Lagrangians were unstable. By multistep, we mean that Equation (22) depends on the pre-

vious two positions in time (xk−1,xk) to determine the new position (xk+1). This may be

expected from the form of the discrete Euler-Lagrange Equations (19), but is novel for inte-

grating a first-order system of differential equations. Finally, the presence of the magnetic

vector potential A will require constructing a vector potential from experimental equilibria

specified in terms of the magnetic field B.

B. Multistep Characteristics

Multistep numerical methods possess several drawbacks in the context of structure-

preserving algorithms that must be addressed and mitigated to successfully utilize the vari-

ational guiding center algorithms. From a stability perspective, multistep methods are

well-known to exhibit parasitic modes [1, 23, 24]. These modes must remain small for the

temporal simulation domain of interest. A related issue is that linear multistep methods

cannot be symplectic in the conventional sense [25], and although Equation (22) is not a

linear multistep method, it would be a surprising feature if it were symplectic in the sense

of Equation (12).

Despite these drawbacks, the encouraging long-term behavior of the preliminary guiding

center studies [14–16] suggests that the variational midpoint algorithm possesses desirable

features nonetheless. This subsection endeavors to explain (and improve) the good behavior

by investigating the parasitic modes present in the guiding center trajectories and establish-

ing the presence of a conserved symplectic structure in the stable mode of the dynamics.

1. Parasitic Modes

Multistep numerical algorithms admit parasitic modes, which are unphysical artifacts

arising from the numerical dynamics occurring in a larger-dimensional space than that of

the physical dynamics. The modes manifest as, for instance, even-odd oscillations in the
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numerical trajectory. Ensuring the parasitic modes are smaller than the principle behavior

is therefore important for successful application of multistep methods.

The presence of parasitic modes in the variational midpoint algorithm Equation (22) is

demonstrated by performing an eigenvalue analysis. Letting z = (x, u)T and ϑ = (A†, 0),

the h→ 0 limit of the algorithm is given by:

1

2
ϑi,j

(
z0 + z1

2

)
(zi1 − zi0) + ϑj

(
z0 + z1

2

)
+

1

2
ϑi,j

(
z1 + z2

2

)
(zi2 − zi1)− ϑj

(
z1 + z2

2

)
= 0. (23)

In the above, indices range from one to four and we have treated uk+1/2 as (uk +uk+1)/2 for

simplicity and illustration. Linearizing about z0, we find:

1

2
(ϑi,j(z0)− ϑj,i(z0))(z

i
2 − zi0) = 0. (24)

The non-degeneracy of the symplectic structure Ω ensures ϑi,j − ϑj,i is invertible, and the

ansatz that z2 = λz1 = λ2z0 yields the eigenvalue equation:

(λ2 − 1)z0 = 0. (25)

For our four dimensional system of interest, this yields four roots at λ = 1 and four at

λ = −1. The behavior corresponding to the λ = 1 roots is referred to as the “principle

mode”, as it corresponds to a smooth trajectory in the h→ 0 limit [1, 23, 24]. The behavior

at λ = −1 is referred to as the “parasitic mode”, as the trajectory oscillates between even-

and odd-numbered numerical time steps. Indeed, we see from Equation (24) that the even

and odd trajectories are completely decoupled in the linearized system.

Performing the eigenvalue analysis for staggered u demonstrates the impact on stability

of staggering the fourth coordinate. In particular, we find that one of the parasitic roots

is eliminated, yielding four principle roots at λ = +1 and three parasitic roots at λ = −1.

Staggering u thus reduces the possibility for instability. Note that the staggering was only

made possible by the lack of dependence of the guiding center Lagrangian on u̇.

The most important consideration is whether the parasitic modes are stable or unstable.

The above analysis shows the modes to be marginally stable for the variational midpoint

algorithm. Backward error analysis may be performed to derive vector fields governing the

parasitic mode behavior [1, 24], but the analysis for nonlinear stability can be complicated.

14



Empirically, we find the modes to be weakly unstable - growing to detrimental amplitudes

after several hundred or thousand toroidal transits.

Given the weak instability of the parasitic modes, the initial amplitude of the undesired

modes is an important factor in determining the overall impact on the numerical fidelity.

As might be expected, the initial amplitude of the parasitic modes is determined by the full

set of initial conditions; for a k-step numerical method applied to a first order ODE, there

are k − 1 excess initial conditions and k − 1 parasitic roots. Careful initialization of the

system has a strong impact on the numerical fidelity of the variational midpoint guiding

center algorithm.

2. Initial Conditions

To initialize the parasitic modes to minimum amplitude, backward error analysis guides

a particular starting procedure [1, 24, 26]. Typically, the k initial conditions required to

iterate a k-step method are provided by (i) the initial value problem and (ii) accurate

approximations to the true solution. That is, if XH is the vector field specifying the ODE and

φt its flow map, the conventional starting procedure selects z0 as given, z1 = φh(z0), ..., zk =

φk
h(z0), where an accurate one-step method is used to approximate φh.

Alternatively, one can determine a “modified vector field” governing the dynamics of the

principle mode. By sampling initial conditions along the flow of the vector field describing

the smooth behavior, the parasitic modes can be reduced to initial amplitudes scaling with

large powers of the step size h. A sketch contrasting the starting procedures is provided

in Fig. (1).To determine the modified vector field, consider the flow of the principle mode,

denoted ϕ̃t, defined by:

D2Ld(z0, ϕ̃h(z0)) +D1Ld(ϕ̃h(z0), ϕ̃2h(z0)) = 0. (26)

Constraining the dependence of the flow to a single position z0 restricts the dynamics to the

original space and precludes the possibility of parasitic mode behavior. Next, the backward

error ansatz assumes ϕ̃t obeys:

dϕ̃t

dt
= X̃ = X0 + hX1 + h2X2 + ... . (27)

The Xi may be iteratively determined by expanding Equation (26) about the initial time

t = 0. Letting £X denote the Lie derivative with respect to the vector field X, the expansion
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p

q

FIG. 1. Phase space portrait illustrating the standard starting procedure (red) and backward

error initialization procedure (green). Blue curves represent integral curves of the continuous

Hamiltonian vector field XH , while green dashed curves represent integral curves of the modified

vector field X̃. An initial condition z0 is specified by the initial value problem, and depicted in the

figure as the blue circle. The standard selection of z1 approximates the flow of the original vector

field, depicted in red; while the backward error initial conditions selects z1 along the flow of the

modified vector field, depicted in green.

takes the form: [
h0 (d2Ld(z0, z1) + d1Ld(z1, z2)) +

h1
(
£(0,X̃)d2Ld(z0, z1) + £(X̃,2X̃)d1Ld(z1, z2)

)
+

h2
(
£(0,X̃)£(0,X̃)d2Ld(z0, z1) + £(X̃,2X̃)£(X̃,2X̃)d1Ld(z1, z2)

)
+ ...

]
z2=z1=z0

= 0. (28)

Here, di denotes exterior derivative with respect to the i-th argument. To determine Xi,

collect the preceding expression in powers of h and set to zero. For the midpoint discrete

Lagrangian Equation (21), the h0 and h1 terms dictate X0 = XH as expected for a consistent

algorithm. Moreover, the symmetry of the midpoint discrete Lagrangian implies Xi is zero

for all odd i. In general, the hp term specifies the Xp−1 vector field in terms of lower-order

vector fields, the Hamiltonian, and derivatives of these quantities.

16



a) b)

FIG. 2. Demonstration of reduced parasitic mode amplitude by backward error initialization. A

single non-zero correction term is retained in the modified vector field at order h2. a) Energy of a

guiding center particle in straight magnetic field and harmonic potential. The trajectory initialized

with the true solution (circles) exhibits a prominent even-odd oscillation in the energy, while the

backward error initialized trajectory (triangles) is significantly smoother. b) Scaling of parasitic

mode amplitude with true solution initialization and backward error initialization.

The parasitic mode amplitude reduction caused by backward error initialization is demon-

strated in Fig. (2). For a simple test case, a guiding center particle is initialized in a straight

magnetic field B = ẑ and quadratic electric potential φ = z2/2. Initial conditions are

sampled first along the flow of the original vector field XH and secondly along the modified

vector field X̃ truncated after X2. The mode-amplitude reduction is directly apparent in the

numerical energy, and a scan in numerical step size indicates the backward error initialized

parasitic mode scales with h5 while the true-solution initialized mode scales with h3. The

step size scalings are a consequence of the level of agreement between the vector field used

to generate the initial conditions and the modified vector field Equation (27).

3. Conservation Properties

In addition to stability considerations, the multistep aspect of the variational guiding

center algorithms complicates the interpretation of the conserved quantities. As stated

at the beginning of the section, the most natural notion of a symplectic guiding center
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algorithm is a numerical time advance preserving the guiding center symplectic structure.

Unfortunately, the multistep dynamics preserve a structure on a larger dimensional space

than the physical dynamics. The excellent long-term behavior is then a surprising feature

of the variational midpoint algorithm Equation (22). To explain the observed long-term

numerical fidelity, we demonstrate that the principle mode preserves a two-form on the

original space. The presence of a preserved structure is an indication that the long-term

dynamics will behave well provided the parasitic modes remain small.

First, we analyze the symplectic structure preserved by the multistep variational mid-

point algorithm Equation (22). Calculation of a preserved two-form is facilitated by the

discrete variational principle, and has been performed for variational integrators in several

References [10, 15, 17]. The calculation proceeds as follows. In contrast to the discrete

action of Equation (18), which acts on arbitrary discrete trajectories {zk}Nk=0, consider the

restricted discrete action, S̄d, which acts on discrete paths satisfying the discrete Euler-

Lagrange equations:

S̄d(z0, z1) =
N∑
k=0

Ld (ϕkh(z0, z1)) =
N∑
k=0

(ϕ∗khLd) (z0, z1). (29)

Here, ϕh(zk−1, zk) = (zk, zk+1) according to Equation (19). An exterior derivative of the

restricted action yields:

dS̄d(z0, z1) = d1Ld(z0, z1) +
(
ϕ∗(N−1)hd2Ld

)
(z0, z1). (30)

All other terms in the summation vanish because the discrete trajectories satisfies the dis-

crete Euler-Lagrange equations. An additional exterior derivative together with d2 = 0

obtains the desired result:

ϕ∗(N−1)hd1d2Ld(z0, z1) = d1d2Ld(z0, z1). (31)

That is, ϕh is symplectic with discrete symplectic structure Ωd given in coordinates by:

Ωd =
∂2Ld

∂zi0∂z
j
1

dzi0 ∧ dz
j
1. (32)

The discrete symplectic structure Ωd may be calculated for particular choices of discrete

Lagrangian according to Equation (32). For the purposes of this discussion, the significant

feature of Equation (32) is that Ωd is defined on a space twice as large as that on which
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continuous dynamics occur. Using the notation of Section (III B 1), the continuous guiding

center symplectic structure has the form Ω = ϑi,jdz
i∧dzj; it is defined on a four-dimensional

space. In contrast, Ωd is defined on an eight-dimensional space, according to Equation (32).

This discrepancy explains the possibility of divergent parasitic modes despite constructing

a structure-preserving algorithm from the onset. In particular, the bounded energy error

obtained via backward error analysis for symplectic algorithms is not directly applicable

to the multistep variational algorithms constructed by discretizing the phase-space action

principle.

Despite the discouraging result of the preceding calculation, the excellent long-term nu-

merical fidelity observed in variational guiding center algorithms suggests that the numerical

dynamics behave well when the parasitic modes are not prominent. For the selection of sta-

ble initial conditions, we supposed a map ϕ̃h that acted directly on the original dynamical

space, as defined in Equation (26). Indeed, such a map has played an important role in the

analysis of multistep methods, referred to as the “underlying one-step method” [27]. For

the long-term assessment of the principle mode of the variational midpoint algorithm, it is

the conservation properties of ϕ̃h that are of interest.

The conservation properties of the underlying one-step method ϕ̃h are similarly calcu-

lated by restricting the discrete action to act on paths generated by the map ϕ̃h. The

procedure does not substantially differ than the multistep calculation, and the resulting

discrete symplectic structure Ω̃d is given by:

Ω̃d =

(
∂2Ld

∂zi0∂z
j
1

)
(z0,z1)=(z,ϕ̃h(z))

(
ϕ̃j
h

)
,k
dzi ∧ dzk. (33)

As an explicit representation of ϕ̃h is not known for non-zero h, it is difficult to represent

Ω̃d directly in terms of known quantities for the midpoint discrete Lagrangian Equation

(21). However, in the limit h→ 0, ϕ̃0 is the identity map and Ω̃d reduces to the continuous

symplectic structure. Most significantly, the symplectic structure Ω̃d resides on a four-

dimensional space even for finite h.

Overall, the symplecticity of the underlying one-step method ϕ̃h with respect to Ω̃d is a

moderately encouraging result. For nonzero h, the discrete two-form differs from that of the

continuous dynamics. However, the principle mode behavior is Hamiltonian, converging to

the original in the zero step size limit. While the sense in which it is a nearby Hamiltonian

system differs from the conventional notion of symplectic integrators, the long-term numer-
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ical behavior of the variational midpoint algorithm suggests that the preservation of Ω̃d is

effective for constraining the numerical dynamics to remain close to the true dynamics.

C. Equilibrium Interfaces

The final practical consideration for implementing variational guiding center algorithms

is the need to extract the magnetic vector potential from experimental equilibria. As an

experimentally-relevant test case, we have interfaced the guiding center code with the EFIT

equilibrium solver [28]. The ability to model test particles in experimentally determined

equilibria is an important progression from previous studies in which the fields were ana-

lytically prescribed by a known vector potential [14, 15, 17]. The calculation of particle

trajectories in experimental apparatus requires interfacing with magnetic fields specified at

discrete locations on a numerical grid.

In the case of EFIT, the magnetic geometry of an experimental tokamak discharge is

represented by the poloidal flux ψ on a two-dimensional spatial grid and a poloidal current

function F on a flux grid. That is, the EFIT output specifies ψ(Ri, zj) and F (ψi), where

(R, z, θ) are cylindrical coordinates and indices identify points on the numerical grid. From

these quantities, the magnetic field may be determined according to:

B =
1

R

(
(−ψ,z) r̂ + F θ̂ + ψ,R ẑ

)
. (34)

For evaluation of the magnetic field at arbitrary position, one must interpolate F (ψ(R, z))

and ∇ψ(R, z) to the location of interest.

To model the guiding center equations of motion with the variational midpoint algorithm

Equation (22), a vector potential must be determined that yields the magnetic geometry in

Equation (34). As in Reference [29], we determine a vector potential by selecting a gauge

for A and integrating the magnetic field the determine the unknown functions. Specifically,

suppose a vector potential of the form:

A = ψ dθ + Az dz. (35)

The magnetic field is calculated according to:

B = dA = ψ,R dR ∧ dθ + ψ,z dz ∧ dθ + Az,R dR ∧ dz. (36)
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Accounting for the metric tensor and matching components, the vector potential yields the

magnetic field of Equation (34) if:

Az,R = −F
R
. (37)

Construction of the magnetic vector potential then consists of the following steps: First, rep-

resent ψ(R, z) using bicubic splines. Second, evaluate F (ψ(Ri, zj)) on the grid and represent

F/R (R, z) using bicubic splines. Third, integrate to determine Az(R, z) =
∫ R

0
F (R′,z)

R′ dR′.

The vector potential can then be interpolated to any location in the domain for evaluation

in the variational midpoint algorithm. The additional magnetic field quantities are derived

from the interpolating polynomial of the vector potential. As a final note, the variational

midpoint algorithm is implemented in three cylindrical dimensions; the axisymmetry of the

magnetic geometry is not assumed at any point even though EFIT yields axisymmetric

configurations.

IV. RESULTS

Now that the context, formal properties, and practical considerations of the variational

guiding center algorithms have been established, we turn to the numerical results. This

section presents the variational algorithm’s performance in analytic and experimental equi-

libria and shows time to solution improvements for large numbers of particles using GPGPU

hardware.

A. Analytic Axisymmetric Tokamak

As an initial test case, we consider a simple analytic toroidal geometry given by:

A =
B0R0z

2R
dR +

B0r
2

2q
dθ − log(

R

R0

)
B0R0

2
dz, (38)

where B0, R0 are constants, q is the safety factor and r =
√
z2 + (R−R0)2 the minor radius.

This field was used for the test case in Reference [15], but the present study differs in the

choice of discrete Lagrangian and by tracking the full four-dimensional motion in (R, θ, z, u).

The results of a trapped particle with B0 = 1 T, R0 = 1 m, and q =
√

2 are shown in

Fig. (3). The orbit fidelity of the 2 keV ion degrades substantially using the Runge-Kutta

algorithm, despite the higher order local accuracy of the method. It is interesting to note that
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the energy error at the end of the simulation is actually less for Runge-Kutta by about 30%;

the Runge-Kutta integration slowly accumulates a fractional energy error of 7× 10−4 while

the variational midpoint algorithm exhibits periodic oscillations in energy with a maximum

fractional error of 1× 10−3.

FIG. 3. Comparison of variational midpoint algorithm (left) and fourth-order Runge-Kutta (right)

for the integration of a trapped particle trajectory. Particle is a 2 keV ion with initial state

(R, θ, z, u) = (1.05 m, 0 rad, 0 m, 1.3× 105 m s−1). Numerical step size is h = 12 µs and total run

time is 3.6 s.

B. Experimental Tokamak Equilibria

To demonstrate practical relevance of the variational guiding center algorithms, the guid-

ing center test particle code has been interfaced with the EFIT magnetic equilibrium code.

While interpolated magnetic fields do not formally differ from concise global analytic ex-

pressions, several practical considerations arise as detailed in Section III C.

For a test case, we have simulated a 10 keV ion in an experimentally determined equi-

librium from the National Spherical Tokamak Experiment (NSTX). Shown in Fig. (4) is a

sample trapped particle trajectory and convergence test in numerical step size. The spatial

trajectory remains tighter for the variational algorithm than the Runge-Kutta algorithm of

same order. Convergence of the variational algorithm to an accurate short-time simulation

demonstrates successful construction of the magnetic vector potential necessary for Equation

(22).
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FIG. 4. Sample trapped particle trajectory using a 10 keV ion in an NSTX EFIT equilibrium over

2000 bounce times. Left) Overlay of second-order Runge-Kutta (blue) and second-order variational

midpoint guiding center algorithms (green). Right) Convergence of variational midpoint trajectory

to an accurate short-time Runge-Kutta trajectory.

It is interesting to note that the test particles drift in the EFIT magnetic geometry

represented using bicubic splines. As the numerical step size decreases, the trajectories

increasingly approximate closed orbits. However, the local error of the algorithm allows

particles to sample magnetic geometry away from their trajectory, resulting in an overall

drift. Given this fact, improvements in the variational calculations may be gained by using a

smoother representation of the magnetic field [9] or by constructing higher-order variational

algorithms.

C. GPGPU Parallelization

In conjunction with algorithmic advances, innovations in computational hardware may

be leveraged to improve guiding center test particle calculations. Given the increasing

prevalence of general-purpose graphics processing units (GPGPUs) at high performance

computing facilities, parallelizing test particle codes to utilize such hardware can significantly

reduce the run time for a given problem. The lack of interaction among drifting test particles

simplifies the difficulty of parallelization, and motivates the investment of time to use highly

parellel resources.

Using the CUDA progamming language, we have implemented a parallel driver for the
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FIG. 5. Run time in seconds as a function of number of particles for a single core 2.5 GHz AMD

Opteron CPU (blue) and a 2496 core nVidia Tesla k20m card (green).

guiding center test particle code. The run time as a function of the number of particles

is shown in Fig. (5), where comparison is made between using the serial driver on a single

2.5 GHz CPU core and the CUDA driver on a 2496 core nVidia Tesla k20m GPGPU. For

small numbers of particles, the CPU is faster by a factor of approximately 16. As the number

of particles increases, the GPGPU becomes the more efficient hardware for the task. For

large numbers of particles, the GPGPU is approximately 100 times faster than the single

core CPU.

The strong performance of the GPU should be considered within the broader perspective

of computing hardware. That is, nearly all CPU computing nodes possess more than a single

core for use. A more “fair” comparison might compare the run time between a 16 core CPU

and the GPU device. Extrapolating the preceding results, we would find use of the GPU

device remains advantageous with a run time improvement factor of approximately six.

V. CONCLUSION

In summary, this work has improved the practical relevance of variational guiding center

algorithms by interfacing with a magnetic equilibrium code and parallelizing the calculation

for use on GPGPU devices. The magnetic vector potential was successfully constructed
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from the discrete magnetic field data, and parallel calculations scaled well to large numbers

of particles.

Additionally, the formal conservation properties of the algorithms and stability considera-

tions have been thoroughly discussed. While the motivating application centered on guiding

center test particle calculations, the discussion of multistep variational methods is pertinent

to the broader class of phase-space Lagrangians. As long as the parasitic modes remain at

small amplitude, variational discretizations of action principles in phase-space yield algo-

rithms exhibiting desirable long-term features. Of course, it would be desirable to construct

non-canonical structure-preserving algorithms which either preclude the possibility of para-

sitic modes or ensure the unphysical modes are damped, but such an endeavor remains for

future work.

For the guiding center system, an important next step is to incorporate collisional effects

in the numerical test-particle dynamics. While fast particles such as fusion alphas and

runaway electrons may be approximated as collisionless over short time scales, collisions

inevitably play an important role over longer time scales. For non-dissipative stochastic

effects, such as a pitch-angle scattering event, it is likely the system may be formulated as

a stochastic Hamiltonian system [30, 31] and stochastic variational integrators constructed

by discretizing the corresponding action principle [32, 33]. For dissipative effects, including

polarization drag, the non-Hamiltonian dynamics may still be formulated (and discretized) as

an action extremization condition by using a Lagrange-d’Alembert variational principle [10].

The potential benefits of such constructions for the time evolution of fusion-relevant fast

particle distributions are an interesting prospect.

Overall, variational integration and, more generally, geometric integration are promising

approaches for performing high-fidelity guiding center test particle calculations. The authors

are grateful to J. W. Burby and M. Kraus for helpful discussions on Hamiltonian systems

and variational integrators. Similarly, we would like to thank N. Logan and S. Hudson for

assistance with the EFIT equilibrium code. This work was performed under DOE contract
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