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Optimal Shielding Design For Minimum Materials Cost or Mass

Robert D. Woolley

Princeton Plasma Physics Laboratory, Princeton University, POB 451, Princeton, NJ 08543, woolley@pppl.gov

INTRODUCTION

Material costs dominate some shielding design
problems. This is certainly the case for manned nuclear
power space applications for which shielding is essential
and the cost of launching by rocket from Earth is high. In
such situations or in those where shielding volume or
mass is constrained, it is important to optimize the design.
Although trial and error synthesis methods may succeed,
a more systematic approach is warranted. Design
automation may also potentially reduce engineering costs.

The objective is to automate the design of optimal
radiation shielding to meet specified attenuation
requirements given a menu of allowed shielding
materials, their properties and their delivered costs per
unit volume. The cost-optimal design is one which, at
each location in the shield, chooses the menu material
minimizing a particular functional of forward and adjoint
angular fluxes plus material cost. Thus a Boltzmann
forward and adjoint angular flux solver with additional
calculations can evaluate whether a shield design is
optimal or whether improvements are possible.

An iterative algorithm based on approximated
optimality is proposed to solve for the optimal shield
design and numerical experiments with it are discussed.

FORMULATION

Shielding design problem specifications include a
radiation source description, a definition of the "detector"
regions in which radiation dose rates must be limited
along with their limiting dose rate values, and a definition
of which shielding materials are allowed and where. If
any shield design exists satisfying the requirements, then
other admissible designs may also exist. It is useful to
choose an optimal design minimizing total mass or cost.

Methodologies: Definitions and Notation

The convex spatial domain D R’ surrounded by
vacuum contains a radiation source and subregions
D, cD indexed by @€ A in which the dose rate

must be limited. The scalar function q(}_", Q, E)
specifies the radiation source distribution per unit solid
angle per unit energy at location ¥ and particle energy E.

With the menu represented as a sequenced list of m
allowable shielding materials, the volume fraction of
material number i, € I where [ is the material index set,

is the scalar function of position, (}7) A complete
design of a shield is given by specifying all m of these

volume fraction scalar functions of position, or
equivalently, by the single m-vector function of position,

uf)=F) @) .. w,F).

Volume fractions are by definition constrained as

0<u(F)<1,, iel andZui(F)S 1. This is stated
iel

succinctly as Q(F)EU , where U CR"is the set

equivalent to those definitional constraints. In practical
shielding design situations there may be other position-
dependent constraints further restricting the materials
choices in portions of the spatial domain, stated as

u(#eU,(F)cU. Here, U,(¥) is the position-
dependent set of material choice options under the control
of the shielding designer.  Total materials cost, C, is

modeled in terms of volumetric cost rates ¢, assigned for
each material 7 € /. Defining the materials cost vector as

c= (c1 é, c, )T , the total materials cost is

C=c [[[ufF)av 1)
D
Scattering and total cross sections are also vectorized as
o(E)=(6(E) oPE) .. o"NE)
c N> QESE

a ~ @A A '
QS(Q'—>Q,E’—>E)E o, \Q->QFE >E

as(’")(fz' >QE > E)
The Boltzman equation for angular flux, 1/1(17 ,fl, E ), is:
fz ° VW(F’ f)’ E)+ ng(E)E(;:)W(Fﬂ Q, E)_ CI(?> f),E)=
fjaa[deo (@ -0 > EWEy .0 )

0

for FeD,ucU, )

boundary condition l//(?, Q,E l sep =0 3)
fieQ2<0

where A is the outer-directed unit normal on the domain

boundary 0D . Egs (1)-(3) describe neutron or gamma

ray transport which may be combined by redefining E.

The dose rate D,, within region Da , is the response of an

omnidirectional detector separable in energy and position.
Its energy weighting function w(E) takes into account



tissue absorption and quality factors. Its position

weighting  function, w, (17), is normalized as

“:[Wa (F)dV =1. Then
D, =[[[arf} dQT dEW,Fw(EWF.OE) @

Radiation dose rate constraints required of the shielding
design are:

D, <D¥ Vaed )

Optimal Design Problem
The shield cost optimization design problem is to

choose 1_4(7 ) eU, (}7 ) so that the functional C in Eq. (1)
is minimized while Eqs (2), (3), (4) and (5) are satisfied.

Derivation of Optimality Conditions
Eq. (1) is augmented with two zero value terms:

C=c¢ ”jqu(r)+Zr (D DMAX)

aeA

[[[av faa] aeale, 0 B)«
—o, (EWF.O.E)+

fjaa|are, (> 0.8 > Y0
0

(6)

) u(F)

+4lF, 0, E)-Q eV 7,0, E)
The first added term includes Kuhn-Tucker multipliers 7,

=0 if D, - DY <0 -
>0 if D, -DM =0

Inequalities (5) and (7) together guarantee that the first
added term in Eq. (6) is identically zero. The second
added term, including the Lagrange multiplier function

A= /1(77, Q,E ), is identically zero because of Eq.(2).
It is useful to define a Hamiltonian function:

H=c"u(F)+f} dQ]g dE(

A 0,E)x
—o, (EWF.Q.E)+ ®
facfame (@ - 0,5 > B & L)"(’) )

+qlF.O.E)

+ Y W, EWEWF.O,E)

. aed

After swapping scattering integration variables, choosing

M OE)= Y w, FO.E) ©
acA

where the y/; satisfy adjoint flux equations

~Qevy FOE) o uF, FOE)=
ﬁdQ'T dE'c, (- O E > B .0, B (10)
) |

+ W, (7 )w(E)

with appropriate boundary conditions
W*(FQE)=0 7edD,neQ>0 (11)
then 1nteg1at1ng by parts, Eq. (8) becomes:

H=¢ u(r)+ZT ﬁ)dgjdE(

acAd
v..0.Ehf.0.E) V’(",Q,E)x
~o (EW. (F,fz, ;5)+
ﬁ’dﬂ’fd{g'g‘?[ﬁ_.; Q' E—> E'}y (, & L) u(7) | |)

+ W, (7 w(E)
(12)

A mathematical theorem from the calculus of
variations developed as part of optimal control theory,
i.e., Pontryagin's Maximum Principle [Pontryagin et al
1962, 17-22] is then invoked as a minimum principle. It
states that the necessary awnd sufficient condition for

optimality of a particular design, g(i’ ) is that its choice of

u at each point # € D optimizes the Hamiltonian, H, at
that point with respect to all other admissible choices of
uelU, (7) at that point, using the optimal design's own

angular flux and adjoint angular flux functions to evaluate
H. Thus, the optimality condition is as follows:
V7 eD, Uy (F)= v where v obeys

[(c +a§ a(r l//,,,l//] JQJ: (13)
et ((c +a§ d2(Fwl.w } JQJ

where the discriminant vector is
d,Fw. )= ﬁdﬁ? By (7,0, E)x
0
—o (B, Q. E)+ (14)

ffacare, 0
1]

O E- B, [F.0,5)



Discussion of Optimality Conditions

In summary, the optimal shield design is the
simultaneous solution to Eqs (2), (3), (4), (5), (7), (13)
and (14). Since total cross sections include scattering, the

. *
components of ga(r;y/a ,l//) tend to be negative.
Costs listed in the ¢ vector are nonnegative as are the

Kuhn-Tucker multipliers 7, . Therefore, components of

bF)=c+ Y7, d,Fviv) (15)

aed
may be negative or positive at different locations. Where
all m components of Q(F) are nonnegative, the optimal

shield design minimizes QT (7)11(?) by setting
Uy (7F)=0.if 0e UC(F) allows a void to be used there.

In other locations where one or more components of Q(?«)

are negative the index of the most negative component
specifies the optimal material choice. There can also be
equally negative components of Q(F). Resulting auction

ties between different materials can be awarded arbitrarily
if the regions in which this occurs have zero volume as
with a material switching boundary.

Increasing the positive value of a Kuhn-Tucker

multiplier 7, decreases the components of Q(?) and may
result in expanding the region in which some components
of Q(? ) are negative. This has the effect through Eq (13)
of adding shielding material at the expense of void
regions, thus tending to reduce dose rates D, . However,

Eq. (7) does not allow positive 7, values unless
corresponding dose rates equal their maximum limits.
Thus, optimal design solutions include precise 7, values.
Since for each dose rate strictly less than its maximum
limit the corresponding 7, is zero, it follows that

Eq.(13) does not allow such inactive constraints to
influence the optimal design.

Optimal Design Algorithm

Pontryagin's principle provides a way to determine
whether a particular radiation shield design is optimal.
Using that design's (7), solve for the angular flux and

adjoint functions, calculate dose rates, then check whether
Pontryagin's optimality condition is everywhere met for

some set of Kuhn-Tucker multipliers {Z‘a, o GA}

conforming to doserate-dependent positivity limitations.

Unfortunately Pontryagin's principle does not provide any
algorithm to directly find the optimum design. A
difficulty is that the logic is circular. To find the optimal
shield design, y,, (F) via Eq. (13) one must first compute

d, (’7;‘//;"”]@: via Eq. (14) for which one needs to know

optimal angular flux W ot and adjoint functions, (l//a. Ll

which in turn, depend on the optimal design, u,, (7).

The iterative algorithm investigated has two nested
loops. The inner loop uses old flux functions from the
previous iteration's shield design to evaluate Eqs (14)-
(15). It should be noted that a better approximation could
in principle be obtained by adjusting the old flux
functions by perturbations linearly proportional to the
design changes. However, that would require making
many forward and adjoint runs during each design
iteration in order to determine the flux perturbation
functions. Using the unmodified old flux functions as a
rough approximation to the flux is justified by only
allowing a small part of the shield to be redesigned in any
iteration. The inner loop then modifies (7) in this
restricted manner to be slightly closer to an optimal
design for some set of D values. The outer loop adjusts

7, values to drive D, towards consistency with DX

The inner loop is initialized with values for {ra }ae y

and with an initial shield design ["]2(;7) for iteration
count £=0. Eqs (2), (3), (10) and (11) are solved for
angular flux ["]y/(i,fz, E) and adjoint [k]y/;(F,f),E)
functions, then Eqs (14) and (15) are evaluated using
these functions to determine [k]Q(F). Then instead of
using Eq. (13) the algorithm evaluates the following:

vFeD, v(F)=p wherep obeys

(6 @k )= mip (e @)

vel, (F) (16)
Then

[k+1]u(;;)= X(F) Vreg <D
- Wu(F) vrFeD-E
It is appropriate to choose E based on the projected

reduction in the Hamiltonian if change were allowed,
equivalent to adding the following definition to Eqs (16):

E=¥eD: @EUu@)-v@)2e) a7
Here, ¢, is a threshold value for deciding whether

departures from optimality are severe enough to merit
changing material at a location during the current redesign
iteration. An  automated method sorts  the

g b (7 )([k]y (7)-v(7 )) values for the domain, then sets

&, based on highest percentile improvements.



RESULTS

The optimal design algorithms were implemented for
the spherically symmetric case in SCALE 5.0 in a custom
fortran code module SAS1XOPT, by modifying the
SASIX control sequence. The implementation
accommodates the sum of both neutron and gamma dose
rates via SCALE's XSDOSE module.

The chosen model problem is the design of
shielding for a family of mobile fission reactor engines
powering manned Mars surface vehicles. This application
is interesting in its own right but illustrates a situation in
which a large amount of shielding is essential but its
delivery cost is very high. Engines developing rated shaft
output powers ranging from 100 to 10,000 horsepower
would enable Mars surface missions ranging from
excursions in pressurized rover vehicles lasting for long
durations to large scale ground excavation, mining, or
deep drilling. Fission reactors would use unmoderated
HEU in uranium nitride plate fuel elements operating at
high temperature, similar to the SP100 design. An Open
Brayton Cycle implemented in three radial flow
compressors and turbine stages transfers reactor heat in
lithium-7 coolant through a heat exchanger into
compressed Martian air which then expands through
turbines extracting work and exits carrying the waste heat.

Radiation requirements for all engines were chosen to
limit the shielded dose rate (neutron + gamma) at R=6
meters from the reactor center to 1.375 mR/hr, i.e., to 12
rem per full power Earth-year. The menu of possible
shielding materials was provided, with all costs per unit
volume set proportional to material density.

Table 1: Shielding Materials Menu Choices
by SAS1XOPT in Minimum-Mass designs

Admissible Use in
Shielding min.mass
Material designs
Tungsten Used
Boron-10 Used
Beryllium Not used
Iron Not used
Polyethyleneplastic | Not used
Lead Not used
6Lithium Hydride | Used
Uranium-238 Used
Graphite carbon Not used
7Lithium Hydride | Not used
Boron-10 Carbide | Not used
Water Not used

Summaries of minimum-mass design results are
given in Table 2. Because water is expected to be
abundantly available on Mars as near-surface buried ice,
the 316 hp case was rerun with the cost for water reset to
$0.01/g while all other material costs were held at $50/g.
The resulting design uses 4.80 tonnes of water plus 17.85

tonnes of other shielding materials, thus increasing mass
by 0.862 tonnes while reducing cost.

Table 2: SAS1XOPT Designed Minimum-Mass
Spherical Shields Limiting R=6 m Dose Rate
(neutron+Gamma) to 1.375 mr/hr (12 R/yr)

# | Shaft | Reactor | Reactor+ | Shield
Power | Thermal | Shield Outer
(hp) Power Mass Radius

(MW) (Tonnes) | (cm)

1100 0.310 18.949 133.14

2| 178 0.4958 20.220 133.51

3| 316 0.8217 21.788 134.44

4 | 562 1.368 23.676 135.09

5| 1000 2.291 26.154 135.62

6 | 1780 3.931 29.320 136.15

7 | 3160 6.879 34,178 136.77

8 | 5620 12.136 38.219 137.59

9 [ 10000 | 21.274 45.671 138.43

CONCLUSIONS

The future use of 3D Boltzmann solvers will allow
extending results to shaped shield designs in which
material is not wasted to maintain unneeded spherical
symmetry. The largest cost savings of automated optimal
design of shielding is expected to be for applications
involving nuclear powered manned space missions where
the required shielding attenuation of radiation and costs
are both large. However, less exotic applications such as
the shielding of radiation facilities on Earth could also
benefit from optimal shielding design, and automation of
the design process may reduce engineering costs.

ENDNOTES

While the author is an employee of Princeton
Plasma Physics Laboratory, a National Laboratory
managed by Princeton University for the Department of
Energy, the present work initiated in Ref. 2 was
completed without employer sponsorship or involvement.
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