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Fusion Utility in the Knudsen Layer
Seth Davidovits1 and Nathaniel J. Fisch1

Princeton University, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08544,
USA

In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the
reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free
paths of fast ions, compared to those of thermal ions. We introduce a fusion utility function to demonstrate
essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility
concept is also used to evaluate restoring the reactivity in the Knudsen layer by manipulating fast ions in
phase space using waves.

I. INTRODUCTION

Knudsen layer reduction of fusion reactivity occurs
when some fusion fuel ions stream out of the fusing re-
gion of the capsule before having a chance to fuse. The
fast fuel ions, which typically have the best chances of
fusing, also have very long mean free paths compared to
thermal ions. Thus, even when the bulk of the plasma is
collisionally confined over the time of the fusion burn, the
highly effective fast particles may be lost before fusing,
substantially decreasing the fusion reactivity.

The possibility for Knudsen layer reduction of the fu-
sion reactivity was initially explored by Henderson1 and
Petschek and Henderson2. Molvig et al. formulated an
asymptotic, steady state theory of the effect, and applied
it in radiation-hydrodynamic simulations of OMEGA im-
plosions3. They found that including the Knudsen layer
model significantly improved agreement in calculated D-
T fusion neutron yield between the simulations and ex-
periments. The treatment of the boundary in this model
was subsequently improved by Albright et al.4. This past
work found the effect to be pronounced only in capsules
with small fuel ρr. Tang et al. considered larger capsules
that may still have Knudsen losses due to hydrodynamic
mix, and the recovery of some portion of the losses due to
lost fast ions fusing in the surrounding cold fuel5. Tang
et al.6,7 and McDevitt et al.8 studied a hierarchy of re-
duced Fokker-Planck operators to capture the essentials
of the Knudsen layer effect and to compute the tail dis-
tributions at hot-cold plasma interfaces.

In the case where the implosion is magnetized, the pic-
ture of fast ion trajectories changes, since ions are lim-
ited in traveling in the direction perpendicular to the
magnetic field. This fundamentally changes the length
and velocity scalings. Schmit et al. considered the ef-
fect of magnetization on the Knudsen layer reduction of
fusion reactivity, giving heuristic conditions for the re-
activity to be largely restored, and showing the applica-
bility of these conditions by numerically generating the
steady state fast ion distribution function in cylindrical
and spherical magnetized geometries9.

The present work describes the Knudsen layer phe-
nomenon in a way that is complementary to previous
work. By identifying a fusion utility function for fast

ions, we address the question, “How much fusion energy
is an ion starting at position x0 with velocity v0 expected
to produce over its lifetime?” After deriving the fusion
utility function we show how it can be used to consider
both the unmagnetized and magnetized Knudsen layer
problems, while allowing for spatial density dependence.

In the unmagnetized case we find that it is the total
density between a fast ion and the boundary that de-
termines its lifetime fusion utility, not the absolute dis-
tance to the boundary. The fusion utility increases as the
amount of density to the boundary increases until the fast
ion is far from the boundary. For the magnetized case,
the fusion utility is independent of the density.

The fusion utility function is a particularly powerful
construct for evaluating incremental effects. For exam-
ple, waves can be used to locally change the fast ion dis-
tribution function, both by increasing ion energy and by
pushing ions away from the Knudsen layer. The util-
ity function gives the change in lifetime fusion energy
production that occurs on moving an ion from x0,v0 to
x1,v1, thereby giving the effect on fusion energy produc-
tion of such waves.

The utility function approach, in general, has been use-
ful in considering incremental or differential effects of ex-
ternal perturbations in plasma. It has been particularly
useful in resonant rf interactions with plasma, particu-
larly in the case of wave-driven electrical current10. The
rf waves diffuse particles along well-constrained diffusion
paths, so that, essentially, the rf removes particles from
one phase space location, and inserts those particles in
an adjacent phase space location, with the phase space
residing in the 6D space of velocity and position. By
associating with each point in phase space a utility, the
differential utility, as well as the energy cost, can be cal-
culated under any rearrangement of the phase space by
wave excitation. Thus, the current-carrying utility of a
superthermal electron at an initial position in the 6D
phase space may be used to calculate the current drive
efficiency11. Similarly, a runaway probability can be as-
sociated with each initial position of an electron in the
6D phase space12. In both cases, the differential effect
relates the rf power dissipation to either the generation
of current or the production of runaways.

Here the fusion utility function gives the total extra
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fusion energy at the cost of moving the ion in phase
space. The utility function may thus be used to answer
whether it is useful to expend rf power to move parti-
cles away from the boundary, say if the rf power is sim-
ply applied from an external antenna. If, however, the
power were supplied from tapping the alpha particle en-
ergy, say through an instability driven by the alpha par-
ticles themselves, then there would be a number of added
benefits. Among the added benefits, for example, would
be to avoid direct electron heating, thereby obtaining a
hot ion mode, where the ion temperature exceeds the
electron temperature13. Another benefit is that, if the rf
wave is generated by the alpha particles, then the alpha
particles may be transported toward the boundary. The
present analysis considers only the direct utility of extra
fusion energy, rather than these added benefits which de-
pend on whether the rf power is internally generated or
externally supplied. It is also beyond the scope of this
paper to propose specific waves that might be destabi-
lized by the alpha particles specifically near the Knudsen
layer boundary.

The paper is organized as follows. In Sec. II, we
describe the basic idea of the utility function and the
scheme for mitigating Knudsen layer fusion reactivity
losses. Next, Sec. III describes the fusion utility function
more formally. Section IV shows example calculations
of an unmagnetized utility function and a magnetized
utility function. In Sec. V we find the theoretical fusion
energy production gains from phase space manipulation
in the Knudsen layer. Finally, Sec. VI discusses caveats
for the reactivity restoration scheme, and possible im-
provements and generalizations of our work.

II. UTILITY FUNCTION

Consider tracking a fast ion moving through a plasma
as it pitch angle scatters and slows down due to drag. The
quantity of interest is the total expected fusion energy
generated by the ion over its lifetime in the plasma. This
lifetime is defined by following the fast ion until it slows
down to thermal speed (at which point its chance for
fusion is negligible) or until it leaves the plasma by exiting
at a boundary. The boundary might be unreacting liner
surrounding the ICF implosion hotspot.

We write the expected fusion energy generated by the
fast ion over its lifetime as E (x0,v0), where x0 and v0

are the fast ion’s initial position and velocity. In the limit
where the fast ion starts very far (in mean free paths)
from the boundary, the chance it leaves the plasma be-
fore slowing down to thermal speed is negligible, and the
expected lifetime fusion energy will tend to depend only
on the initial velocity, E (x0,v0) → E0(v0). As x0 gets
closer and closer to the boundary, the fast ion is more and
more likely to leave the plasma before slowing down com-
pletely, decreasing the expected fusion yield. This region
of decreased yield coincides with the Knudsen layer.

It is possible in some circumstances to use plasma

waves to change the velocity and position of particles,
for example, in alpha channeling in tokamaks14. If a fast
ion that starts near to the boundary is pushed in posi-
tion away from the boundary by ∆x while being heated
in energy by ∆ε, the expected lifetime fusion energy yield
(the utility) E will increase,

E→ E +
∂E
∂x
·∆x+

∂E
∂ε

∆ε. (1)

The gain, g, from such pushing will be the incremental
fusion energy produced divided by the energy required
to do such pushing, represented by the change in the fast
ion’s energy in the push, ∆ε

g =

(
∂E
∂x
·∆x+

∂E
∂ε

∆ε

)
/∆ε. (2)

In certain cases14, the spatial push ∆x can be propor-
tional to the energy push ∆ε - a larger push in energy
yields a larger spatial push. Moreover, the direction of
this push can be arranged through the wave polariza-
tions. In regions where the fusion yield is lost most
rapidly |∂E/∂x| is large, so that a small spatial push can
give significant gains. Thus, the regions of rapid yield loss
are also those where yield can be regained with lowest
energy cost. Indeed, we will show that in some circum-
stances, the gain may be high enough to consider such
a mitigation strategy for counteracting Knudsen layer
losses of fusion yield.

III. APPROACH

To write a fusion utility function as described in Sec. II,
consider a function g(x,v, t;x′,v′, t′) that gives the prob-
ability an ion initialized at phase space point x′,v′ at
time t′ is found later at time t at phase space point x,v.
The instantaneous expected fusion production at time t
for this ion is

E(t;x′,v′, t′) =

∫
dx

∫
dv g(x,v, t;x′,v′, t′)W (x,v)

(3)
where W (x,v) is the fusion energy production rate for
a fast ion located at point x,v. Here W is taken as,

W (x,v) = Ef 〈σv〉 (4)

the Maxwellian averaged fusion reactivity multiplied by
the energy from fusion, Ef , with σ the velocity dependent
fusion cross-section. The function W may depend on po-
sition through its dependence on the density. One could
generalize this to account for multiple species reacting,
but for simplicity we consider the fast ion reacting with
only one species here. The integrals in Eq. (3) are car-
ried out over the domain of g in the unprimed variables -
anywhere the ion may exist at time t. An integration of
g in the unprimed variables may give a total probability
less than 1 if the ion can be lost, say through a boundary.
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The fusion utility is the integral of Eq. (3) over all time,

Et′(x′,v′) =

∫ ∞
t′

dt E(t;x′,v′, t′) . (5)

This gives a more precise definition of the utility function
appearing in Eqs. (1),(2). Finding the function g and
then integrating it to find E is the Langevin approach to
finding the fusion utility.

There is another approach, based on an adjoint formal-
ism. This approach gives a more direct way of solving for
the utility, and shows that the utility is the function that
connects forcings on the distribution function to changes
in fusion energy production. The adjoint approach is out-
lined here; it is discussed more completely elsewhere15.

Consider the general kinetic equation for a single
plasma species, with a collision operator that includes
all relevant collisions (e.g. electron-ion, electron-electron,
for a two species plasma),

∂f

∂t
+v · ∂f

∂x
+F · ∂f

∂v
−C [f ] = − ∂

∂v
·Γv −

∂

∂x
·Γx. (6)

Here Γx,v are wave induced fluxes in space and velocity
respectively, which will be useful when we consider wave
manipulation of ions.

Expand the distribution function f as

f = fM (1 + χ) (7)

with χ assumed to be a small correction, induced in our
case by an external perturbation such as waves or bound-
ary effects. Plugging Eq. (7) into Eq. (6), assuming that
the background non-drifting Maxwellian quantities (den-
sity, temperature) have no time dependence, and lineariz-
ing the collision operator, yields

∂

∂t
(fMχ) + v · ∂

∂x
(fMχ) + F · ∂

∂v
(fMχ)− Ĉ (χ) =

− v · ∂fM
∂x
− F · ∂fM

∂v
− ∂

∂v
· Γv −

∂

∂x
· Γx. (8)

Equation 8 has the form

L̂χ = s (9)

where L̂ is a linear operator and s is a source term.
In the present application, our interest is in the change

in fusion energy production in the plasma when it is per-
turbed from Maxwellian, not the full solution of Eq. (8).
That is to say, the relevant quantity is a moment of the
distribution function χ, rather than χ itself. In this case,
it is natural to use an adjoint formulation, which allows
us to write an equation for a general moment M of the
distribution,

M(t) =

∫
dx

∫
dvW (x,v) fMχ(x,v, t) . (10)

For purposes of calculating the fusion energy production
W is given by Eq. (4).

The Green’s function solution to an equation of the
form of Eq. (9) is

χ(x,v, t) =

∫
dt′
∫

dx′
∫

dv′ g(x,v, t;x′,v′, t′) s(x′,v′, t′)

−
∫

dt′
∫

dσ′ · J[χ(x′,v′, t′) , g(x,v, t;x′,v′, t′)] (11)

with the Green’s function g solving

L̂g = δ(x− x′) δ(v − v′) δ(t− t′) . (12)

Integrals in x′,v′ are carried out over the interior of a
general, possibly bounded domain, while the integral in
σ′ is over the x′, v′ domain boundary. Time integrals
are carried out over an appropriate time domain (e.g.
[0,∞]). The operator J is defined through the relation∫

dt
({
ψ, L̂χ

}
−
{
χ, L̂†ψ

})
=

∫
dt

∫
dσ · J[χ, ψ] . (13)

This relation also serves to define the adjoint operator
L̂†. The inner product is defined as{

ψ, L̂χ
}

=

∫
dx

∫
dv ψL̂χ. (14)

Given an operator L̂, one uses Eq. (13) to find L̂† and
J. Substituting χ from Eq. (11) into M , Eq. (10), it is
possible to write an equation for M and the moment of
χ over the domain boundary. Carrying out this proce-
dure for the current L̂, and specializing for homogeneous
boundary conditions on ψ gives an equation for M ,∫

dx

∫
dvW (x,v) fMχ(x,v, t)

=

∫
dt′
∫

dx′
∫

dv′
(
∂ψ

∂x′
· Sx +

∂ψ

∂v′
· Sv

)
(15)

with the fluxes

Sx = v′fM + Γx, (16a)

Sv = F fM + Γv. (16b)

With W given by Eq. (4), Eq. (15) gives the volume
averaged fusion energy production of the perturbed dis-
tribution χ.

The function ψ is defined as

ψ(t;x′,v′, t′) =

∫
dx

∫
dv g(x,v, t;x′,v′, t′)W (x,v) .

(17)
It obeys the adjoint equation

L̂†ψ = −fM
∂ψ

∂t′
−fMv′ ·

∂ψ

∂x′
−fMF ·

∂ψ

∂v′
−Ĉ[ψ] = 0 (18)

with an initial condition given by W , and homogeneous
boundary conditions for the present work. The function
ψ in Eq. (17) is the same as the fusion energy production
rate, Eq. (3).



4

In order to get the utility, E, ψ must be integrated in
t,

Et′(x′,v′) =

∫ ∞
t′

dtψ(t;x′,v′, t′) . (19)

Thus, in the case that the ion obeys a linear equation, the
utility can be found by integrating in time the solution
to the adjoint equation with initial condition W . Fur-
thermore, the function g becomes the Green’s function
for the kinetic equation.

In the applications considered here ψ will only depend
on the time difference t− t′, and an integration in t cor-
responds to integrating the adjoint equation in t′ from
−∞ to an initial condition at t.

Since ψ is the fusion production rate, Eq. (15) shows
that the instantaneous fusion energy production of the
perturbation χ can be written in terms of fluxes and this
fusion production rate. The same relationship will hold
after time integration; the total fusion energy production
of the perturbation can be written in terms of fluxes and
the utility.

IV. EXAMPLE UTILITY CALCULATIONS

We make a number of simplifying assumptions in our
example calculations for both the unmagnetized and
magnetized cases, but the adjoint formulation is also ap-
plicable to more complicated scenarios. The unmagne-
tized case contains no magnetic fields, while the magne-
tized case has a constant z directed field. We assume
that the plasma region of interest has no electric fields,
and allow spatial dependence in only one direction, the z
direction in the unmagnetized case, and the x direction in
the magnetized case. This dependence is on the half line
z, x ∈ [0,∞], with an absorbing boundary at z, x = 0, so
that we can isolate the effects of the boundary.

Additionally, we use the high velocity limit of the col-
lision operator. In this limit, the fast ion only undergoes
velocity drag and pitch angle scattering, with frequencies
νE and νµ, respectively,

Ĉ [φ] =
1

2
νµ
V 3
T

v′3
∂

∂µ′
(
1− µ′2

) ∂φ
∂µ′

+ νE
V 3
T

v′2
∂φ

∂v′
. (20)

The lack of dependence on the thermal velocity is made
clear by writing

V 3
T νE = CEn(z′), (21a)

V 3
T νµ = Cµn(z′), (21b)

where CE and Cµ are constants independent of the ther-
mal velocity and density (and any coordinates), and n(z)
is the density, which we allow to vary in the z direction.
While the collisional dynamics are somewhat more com-
plicated for the magnetized case, they can still be ex-
pressed in terms of these frequencies. In factoring out
the density we assume that collision partner species all

have the same functional form of dependence in z, al-
though they need not appear in equal amounts. In other
words, consider

V 3
T νµ =

e4Z2
a ln(Λ)

4πm2
aε

2
0

∑
b

Z2
bnb(z

′) (22)

where we have ignored dependence inside the Coulomb
logarithm, Za,b are the charge numbers of the fast ion and
collision partner species, ma is the fast ion mass, and ε0
is the permittivity of free space. Each nb(z

′) is assumed
to have the same functional form, nb(z

′) = nb0n(z′), so
that the functional dependence can be factored out of the
sum, ∑

b

Z2
bnb(z

′) = n(z′)
∑
b

Z2
bnb0. (23)

The coefficients nb0 are dimensionless. Thus Cµ is defined
by Eqs. (21b), (22), and (23). The same process gives CE ,

CE =
e4Z2

a ln(Λ)

4πm2
aε

2
0

∑
b

Z2
b

ma

mb
nb0. (24)

As previously mentioned, in the unmagnetized case, we
allow z dependence, for the magnetized case, the depen-
dence is in the x direction, and so z should be replaced
with x in the preceding expressions.

A. Unmagnetized utility

When the pitch angle scattering frequency is much
larger than the rate at which the fast ion slows down,
the particle motion is diffusive on scales longer than the
mean free path. This is shown formally through an ex-
pansion and averaging in µ, see, for example Melrose16,
or Albright4. Such an approximation would be most valid
for, say, protons in proton-boron fusion where the high
Z and mass of boron make pitch angle scattering occur
significantly faster than slowing down for protons. Its ap-
plication to D-T fusion has also been discussed3,4. The
presence of impurities in the plasma can also make the
approximation more valid. To derive the fusion utility in
this limit, the kinetic equation

∂f

∂t
+ vµ

∂f

∂z
=
Cµn(z)

2v3

∂

∂µ

(
1− µ2

) ∂f
∂µ

+
CEn(z)

v2

∂f

∂v
(25)

is rewritten in terms of the variable Z,

Z(z) =

∫ z

0

n(ẑ) dẑ. (26)

Performing the expansion and averaging in µ gives the
diffusive kinetic equation

1

CEn(Z)

∂f

∂t
=

v5

3CECµ

∂2f

∂Z2
+

1

v2

∂f

∂v
. (27)
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The adjoint equation, as defined by Eq. 13, rewritten in
primed variables, is

− 1

CEn(Z ′)

∂ψ

∂t′
=

v′5

3CECµ

∂2ψ

∂Z ′2
− 1

v′2
∂ψ

∂v′
. (28)

To get the utility E, Eq. (19), integrate this equation in
t′ from −∞ to an initial condition of W at t, per the
discussion at the end of Sec. III,

CE
v′2

∂E
∂v′

=
1

3

v′5

Cµ

∂2E
∂Z ′2

+
W (Z ′, v′)

n(Z ′)
. (29)

The dependence of W on Z is only through the density.
To see this, consider, for simplicity,

W (Z, v) = Efnf0n(Z) vσ(v) (30)

which approximates the collision partners in the
Maxwellian average to all be stationary with respect to
the fast ion. The density of collision scattering centers
is nf = nf0n(Z), typically representing a single species
from the sum in Eq. (22). Then the solution of Eq. (29)
on the domain z ∈ [0,∞] is

E(v̄′, z̄′) = E0

∫ v̄′

0

dv̄σ̄(v̄) v̄3Erf

( √
6√

v̄′8 − v̄8

∫ z̄′

0

n̄(z̄) dz̄

)
(31)

in variables where the velocity is normalized to the ve-
locity at the peak of the fusion cross-section, the density
is normalized to a mean density, the cross section to the
peak cross section, and distance is normalized to a hybrid
mean free path that naturally appears,

v̄ =
v

vG
, (32a)

n̄ =
n

n0
, σ̄ =

σ

σ0
, (32b)

z̄ =
z

λ∗
=

z

vG/
√
νGµ ν

G
E

. (32c)

The constants are grouped into E0 = Efv
4
Gσ0nf0/CE ,

which has units of energy. The superscript G on the
collision frequencies indicates the collision frequency at
velocity vG and mean density n0. Note that nf0 will also
appear in the sum in CE Eq. (24), so that E0 does not
scale linearly with it. The contours of the fusion utility
E, as given in Eq. (31), normalized to Ef are shown in
Fig. (1). Normalizing to Ef effectively turns the utility
into the lifetime probability of the particle fusing, assum-
ing no removal of the particle after a fusion event. The
limit Z →∞ (equivalently z →∞ for non-vanishing den-
sity profiles) gives the utility in the absence of a bound-
ary. Horizontal contours in Fig. 1 indicate the region
where fast ions are fully utilized; moving the ion spatially
in a region of horizontal contours has no effect on the util-
ity. In other words, the ion does not feel the boundary.
Figure 1 shows that as z approaches the boundary, there

FIG. 1. Normalized utility function E/Ef in the unmagne-
tized case for a 50/50 D-T plasma. The normalized utility
gives the lifetime probability of fusing for a particle starting
with velocity v′ at position Z′. The expected lifetime energy
production is the contour value times the 17.6 MeV fusion
energy release. The absorbing boundary is located at Z′ = 0.
The right axis gives the particle energy corresponding to v′,
assuming the particle is a deuteron. The utility values shown
are for a deuteron. For a triton, the plot is identical except
that both the normalized utility values and right axis energy
values are higher by a factor of 3/2.

is increasing underutilization of fast ions that is charac-
teristic of Knudsen layer effects. The utility in Fig. 1 is
plotted using the D-T cross section17 for σ(v) and as-
suming a 50/50 D-T plasma, but would have a similar
structure for any cross section in these normalized units,
assuming it is qualitatively similar in being peaked, and
that the background plasma temperature is well below
the peak so that the scattering centers can be approxi-
mated as stationary. Using a fusion reaction other than
D-T would scale the utility by affecting various factors in
E0, especially Ef and σ0. Subsequent figures also use the
D-T cross section and a 50/50 D-T plasma. The fact the
plasma is 50/50 D-T, instead of some other ratio, affects
the distance scale through the collision frequencies in the
hybrid mean free path, Eq. (32c), and the utility scaling,
E0, through nf0 and CE , but not the overall structure of
the utility contours. The density dependence of Eq. (31)
makes clear an earlier assertion – that it is the total den-
sity between the fast ion’s starting position and the edge
that matters in determining its utility, not the absolute
distance. Furthermore, as a result of the error function,
there are initially large gains in utility for adding den-
sity between a particle and the edge, which then quickly
become diminishing.

Figure 1 shows, for example, that a particle at v′ = 1
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(deuteron energy of 108 keV) has a normalized utility of
0.01, so that it is expected to produce 176 keV of energy
in its lifetime as a fast particle. On the other hand, a
particle that is ∼ 300 keV hotter, and it is located at
least 8 λ∗ from the boundary, has a normalized utility of
0.09, so that it produces nine times the energy, 1.58 MeV,
while having approximately only four times the energy.
Far from a boundary, the ratio of utility to particle energy
increases rapidly up to a peak around v′ = 2 (deuteron
energy of 433 keV) and then falls off gradually. Note
that, infinitely far from a boundary, the utility itself will
be a strictly increasing function of velocity, which can be
seen from Eq. (31), since the cross section is positive and
the error function evaluates to one.

B. Magnetized utility

To treat the magnetized case we use a guiding center
Fokker-Planck collision operator, specializing for simplic-
ity to a uniform magnetic field in the z direction18,19. In
order for the fast ions to be treated by this collision op-
erator, their cyclotron frequency ωc must be greater than
the collision frequency for fast particles, ωc � νGµ . The
length scale of the density variation allowed must also be
larger than the gyroradius scale.

∂f

∂t
= −vµ∂f

∂z
+
Cµn(x)

2v3

∂

∂µ

(
1− µ2

) ∂f
∂µ

+
µ2

v

Cµ
4ω2

c

∂2

∂x2
[n(x) f ] +

CEn(x)

v2

∂f

∂v
. (33)

The first and second terms after the equal sign are pre-
cisely those that lead to diffusive transport in the un-
magnetized case, and will lead to similar transport along
the magnetic field in this case. To isolate the cross field
effects, we ignore the z dynamics. We also average over
a Maxwellian in pitch angle. This assumption of unifor-
mity in pitch angle breaks down when near a boundary.
After dropping terms and averaging out µ, the kinetic
equation is

∂f

∂t
=

Cµ
6vω2

c

∂2

∂x2
(n(x) f) +

CEn(x)

v2

∂f

∂v
(34)

for which the adjoint must be found and then integrated
in time, as in Sec. IV A. The adjoint equation is

−∂ψ
∂t′

=
Cµn(x′)

6v′ω2
c

∂2ψ

∂x′2
− CEn(x′)

v′2
∂ψ

∂v′
. (35)

Integrating in time gives the lifetime utility equation

CE
v′2

∂E
∂v′

=
Cµ

6v′ω2
c

∂2E
∂x′2

+
W (x′, v′)

n(x′)
. (36)

Solving this equation gives the lifetime utility function

E(v̄′, z̄′) = E0

∫ v̄′

0

dv̄σ̄(v̄) v̄3Erf

( √
3x̄′√

v̄′2 − v̄2

)
. (37)

In this case the distance coordinate is normalized to a
modified fast particle gyro-radius,

x̄ = x/ρ∗ (38)

where

ρ∗ =
√
R

(
vG
ωc

)
(39)

and R is the ratio of collision frequencies, R = Cµ/CE .
Figure 2 shows this utility function on similar (normal-
ized) axes as Fig. 1 for the unmagnetized case. As might
be expected, given the effects included, we can see the
weaker penetration of the Knudsen layer effect, as well
as the altered scaling of utility with increased velocity. In
the unmagnetized case, fast ion utility decreases beyond
a certain velocity, due to much higher edge loss prob-
ability outcompeting gains in fusion production. In the
magnetized case, this is no longer true, and the utility in-
creases with increasing velocity, albeit at a much slower
rate near the edge than would occur with no bound-
ary. Note that the z scales in the magnetized and un-
magnetized cases are very different. The observation of
this decreased Knudsen penetration with magnetization
is consistent with the work of Schmit9. With the present
approximations, the magnetized utility is independent of
density. The much higher maximum normalized utility
values in the magnetized case compared to the unmagnet-
zied one result from full fast ion utilization in the highest
velocity phase space region shown. In other words, at 3
ρ∗ and v′ ∼ 2.75, the normalized utility of 0.15 in the
magnetized case is the same value as would be achieved
in the absence of a boundary. The unmagnetized case
will reach this same normalized utility, at the same ve-
locity (as it must), at a distance much greater than the
maximum distance shown in Fig. 1.

V. INCREMENTAL UTILITY CALCULATION AND
REACTIVITY LOSS MITIGATION

Figures 1 and 2 show that the energy produced by
a fast ion in the edge region can be increased substan-
tially by moving the ion away from the boundary. For
example, Fig. 1 shows that moving an ion with velocity
v′ = 1.5 by one λ∗ away from the boundary, from Z ′ ∼ 1
to Z ′ ∼ 2, increases the expected fusion probability by
more than 50% (from ∼0.03 to ∼0.05), and therefore also
the expected energy production. All the while, the par-
ticle energy remains the same. While the numbers are
different for the magnetized case, the effect is clear. In
the magnetized case, the magnetic field can link wave
pushes in energy to pushes in space, making it possible
to move hot ions away from the boundary and increase
their utility. Here we calculate the fusion gains possible
from such pushing.

Using the magnetized fusion utility, Eq. (37), and sim-
plifying the moment Eq. (15) under the same set of as-
sumptions, we can write the expected change in fusion
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FIG. 2. Same as Fig. 1, the normalized utility function E/Ef ,
but in the magnetized case. The horizontal axis scale is now
ρ∗ instead of λ∗.

power production as a result of wave induced fluxes in
space and velocity,

E =

∫
dv

∫
dxW (v,x) fMχ(v,x) =∫

dv′
∫

dx′
∂E
∂x′

Γx +
∂E
∂v′
· Γv. (40)

To isolate the impact of the waves in phase space, con-
sider localized fluxes

Γx,v = Γx0,v0δ(x
′ − x0) δ(v′ − v0) . (41)

If pushing the fast ion to a new point in phase space
produces more net fusion energy over its lifetime than
energy required to push, there will be a net gain in energy.
This gain is defined by

g (x0,v0) =
E
ε∆

(42)

where ε∆ is the energy absorbed by the ion during the
push,

ε∆ =

∫
dx′
∫

dv′Γv0 ·
d
(
mv′2/2

)
dv′

. (43)

The gain for the magnetized case is then

g(z0, v0) =

(
∂E
∂x0

Γx0 +
∂E
∂v0

Γv0

)
/(mv0) =

E0

mv2
G

(
σ̄(v̄0) v̄3

0

+2

√
3

π

∫ v0

0

dv̄
σ̄(v̄) v̄3√
v̄2

0 − v̄2
exp

(
− 3z̄2

0

v̄2
0 − v̄2

)[
dx̄0

dv̄0
− x̄0v̄0

v̄2
0 − v̄2

])
.

(44)

The first and third terms in Eq. (44) occur due to changes
in utility with changing velocity, the second term (first
in the square brackets) occurs due to changes in utility
with changing position. In writing this expression, we
have made the replacement

Γx0 =
dx0

dv0
Γv0 (45)

without loss of generality. The flux Γv0 is set to 1 so that
g represents the single particle gain, which is useful to
see for gaining intuition. The amount of gain in the edge
region depends heavily on the factor dx̄0/dv̄0, which rep-
resents the amount of change in spatial position a wave
can impart for a given velocity change. For an ion gyro-
orbiting a z directed magnetic field, and a wave directed
in the y direction, we can write a simple resonance condi-
tion as ω− kyvy = 0. If the wave imparts a velocity kick
dvy and a corresponding energy change mvydvy, then the
change in guiding center for the particle is

dx̄gc
dv̄0

= −v0ky
ω

. (46)

Equation 46 shows that the amount of change in position
for a given velocity change is in large part determined by
the wave properties. Figure 3 shows the gain, Eq. (44),
plotted for dx̄0/dv̄0 = 2. In this case, the gains may
be quite high in the region where Knudsen effects are
prominent. For ions pushed over a non-infinitesimal path
through phase space, the gain would be averaged along
the path. In Fig. 3 this path is constrained to be a line of
slope 1/2, since the gain contours are calculated assuming
dx̄0/dv̄0 = 2.

As before, regions of horizontal contours indicate
where Knudsen effects cease to have an impact. Larger
values of dx̄0/dv̄0 will result in even larger gains, but
these gains won’t extend into regions of horizontal con-
tours. For example, Knudsen impacted gains for particles
less than 1.5 vG (or equivalently 244 keV deuteron energy
in the D-T plasma considered here) have a maximum ex-
tent of approximately 1 ρ∗ from the boundary. Far from
the boundary, pushing in space has no effect, so that the
gains are due purely to a baseline gain from pushing in ve-
locity. This baseline is given by the first term in Eq. (44).
In the present case, the baseline has a maximum gain of
approximately 49.2/ln(Λ) for fast ions near the peak of
the fusion cross section. Gains here are calculated us-
ing the full 17.6 MeV fusion energy for Ef , and must be
scaled down accordingly if one is only interested in the
3.5 MeV alpha particle energy. Figure 3 uses ln(Λ) = 8.
A different Coulomb logarithm value would, again, affect
the scaling of the figure but not the structure. Having
large gains requires being able to find a wave with the
right properties (e.g. phase velocity, wavenumber) in the
edge region of the ICF plasma.

The gains calculated here assume that the only in-
crease in fusion energy production as a result of the in-
jected energy is that generated by increases in the ion
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chance of fusion. However, the effective gains may be in-
creased by the fact that the some portion of the injected
energy will be transferred by collisions from the ion to
other plasma particles, heating them. Energy transferred
from the fast ion that helps generate other fast ions would
most increase the gain in fusion reactions, but any energy
going into ion heating is useful.

FIG. 3. Gain function g in near boundary region, giving the
multiplier between input energy and increase of expected fu-
sion energy output, when a fast ion at x0, v0 is pushed incre-
mentally in space and velocity. Axis scales are the same as
discussed in Fig. 1, but with a horizontal scale of ρ∗ instead of
λ∗. Gain values are the same for both deuterons and tritons.

VI. DISCUSSION

Ultimately, the usefulness of the scheme for restor-
ing fusion reactivity lost to the deleterious effects of the
Knudsen layer depends on two factors: the efficiency with
which reactivity can be restored, and the total amount
of reactivity that can be restored compared to the entire
hot spot reactivity. With the right wave, the theoretical
single particle efficiency may be high. Pushing many fast
particles from the edge region towards the interior may
result in a lower individual efficiency, since such pushing
requires diffusion paths in phase space - once a particle
has been pushed inwards to a new position in the phase
space, it raises the phase space density there, eventually
making it infeasible to push to the same location. Since
the distribution function drops off quite rapidly as a func-
tion of velocity in the region of velocity space occupied
by fast particles, pushing particles more in velocity for a
given spatial push opens up more phase space, but low-

ers the efficiency. Tackling the global efficiency of the
scheme in a dynamic situation is a challenging problem.

The second factor depends largely on the design of
magnetized ICF experiments. The larger the fraction
of the burning plasma volume that is subject to the de-
pletion of fast ions due to edge loss, the more theoret-
ically useful the mitigation scheme. The point design
for magnetized liner experiments and recent magnetized
OMEGA implosions are not expected to suffer substan-
tial Knudsen related losses9. However, it is possible that
future magnetized ICF experiments may be in a regime
where there is some level of magnetized Knudsen edge
loss. Unforeseen kinetic or dynamical effects may also
cause more ion loss than currently expected. The miti-
gation strategy presented here should remain relevant for
more inclusive physics models of edge ion loss, so long as
the loss is kinetic in nature. While no mitigation may
be needed, it is reassuring that the more necessary it is
the more theoretically efficient it may become - when the
utility decreases rapidly near the edge, large restorations
can be had for small spatial pushes.

Note that neither utility function derived here is ex-
pected to be accurate immediately near the boundary.
This is due to the breakdown of underlying assumptions
in each model at the boundary, particularly the lack of
dependence of the distribution function on µ, which is
not sensible for an absorbing boundary but underlies the
diffusive approximation. This is a well known problem.
Albright et al. have demonstrated the implementation of
an improved boundary condition for the unmagnetized
diffusive model used here in the Knudsen layer context4.
Improvements for the unmagnetized case, beyond the dif-
fusive model used here, have been discussed by Tang et
al.6 and McDevitt et al.8. For simplicity of demonstrat-
ing the technique and ideas, we have used a zero bound-
ary condition and diffusive approximations.

The linearization in Eq. (7) is not strictly valid near
boundaries, where past work3,4,9 has indicated the ex-
cursion from Maxwellian in the tail of the distribution
function can be rather large. This affects the validity of
equations involving χ, like the adjoint moment equation
for the differential fusion energy production, Eq. (15).
However, the utility, given by Eq. (19), is relatively in-
sensitive to the background distribution so that it is still
well defined and valid within the approximations used in
its calculation. The utility is in essence a single particle
calculation that helps determine what we can say without
calculating the actual distribution function.

The high velocity approximation discussed in Sec. IV
can be accurate for the calculation of the utility of very
fast particles because the vast majority of the expected
lifetime fusion energy created by a particle that starts
fast will occur while it is fast. Even if we fail to accu-
rately capture the particle dynamics when it starts get-
ting closer to thermal speed (for example, velocity diffu-
sion which starts to kick in), the contribution to the fu-
sion utility is negligible there, so we will still get a reason-
able estimate of the expected fusion energy production.
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Note that this is true since we are considering a finite
‘lifetime’, i.e., there is some velocity, say the thermal ve-
locity or some substantial fraction of it, below which we
stop tracking the particle. This means we are not treat-
ing the circumstance when a fast ion has slowed down
to nearly zero velocity and is then jostled back into be-
ing a fast ion. This circumstance does not matter when
calculating the incremental energy production due to an
initial energy or spatial push, since the ion loses memory
of the push after it slows down. However, the finite life-
time may limit the applicability of the utility functions
given here for other problems. This is not a fundamental
limitation of the utility function formulation, but rather
of the present approximations.

For the approximately 10 keV operating temperature
targeted in typical ICF experiments, the Gamow peak in
a 50-50 DT plasma is located at approximately 3 times
the thermal energy (less than 2 VT ). The Gamow peak
gives the particle energy value where the maximum fu-
sion production occurs, when both the fusion cross sec-
tion and the number of particles at each energy in a
Maxwellian distribution are taken into account. The high
velocity approximation means utility values for these par-
ticles will not be quantitatively accurate, although trends
in the utility at these lower velocities can still be cor-
rect. As the temperature considered decreases, the broad
Gamow peak will start to contain more and more high
(normalized to VT ) velocity particles. Then the high ve-
locity approximation will yield increasingly accurate util-
ity results. (For reference, far from the boundary, Monte
Carlo simulations indicate that the high velocity utility
for a particle starting at 4 VT is off by ∼ 10% compared
to a utility calculated with the next order velocity dif-
fusion term included.) For an accurate utility function
across the full width of the Gamow peak, the high veloc-
ity approximation should be relaxed.

The utility function and adjoint approach could be
applied to calculate a total reactivity reduction, which
past Knudsen layer work has focused on3–6,9. However,
a full consideration of the relative benefits of different
approaches for calculating reactivity reduction is beyond
the scope of this present work.

The adjoint approach for the utility function can be
systematically generalized to increasingly complex situa-
tions. More general moment equations than Eq. (15) can

be written, allowing for more complicated boundary con-
ditions. One could include other effects not considered
here, such as electric fields or more complex collisional
dynamics. The adjoint formulation can also be expanded
to include a time evolving background15.

While the examples given in this work could be made
quantitatively more accurate, the approach should be
useful as more inclusive and accurate pictures of ion ki-
netic physics in ICF implosions are developed. With a
simple application, it has given us insight into the den-
sity dependence of magnetized and unmagnetized Knud-
sen dynamics, as well as a basic evaluation of a scheme
for combating Knudsen losses.
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