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ABSTRACT
We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using nonmodal stability tech-
niques. Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis
that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest
growing linear MRI structures on both local and global domains can look very different to the eigenmodes,
invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can
grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely
different region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural
connection between the global MRI and the local shearing box approximation. By illustrating that the fastest
growing global structure is well described by the ordinary differential equations (ODEs) governing a single
shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many
previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis tech-
niques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong
growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental
importance in MRI turbulence (Squire & Bhattacharjee 2014).
Keywords: Accretion disks

1. INTRODUCTION
Following the seminal work in Balbus & Hawley (1991),

the magnetorotational instability (MRI) has become a stan-
dard explanation for the origin of enhanced angular momen-
tum transport in ionized astrophysical disks. The instability
arises in rotating magnetohydrodynamic (MHD) systems with
strong velocity shear and is far more virulent than any known
hydrodynamic instability of such systems (Balbus & Hawley
1998). Of particular importance is its tendency to develop into
sustained turbulence with a flux of angular momentum that is
sufficiently high to match that inferred through observation.
This behavior has been studied in detail using nonlinear sim-
ulations on simplified local domains (e.g., Hawley et al. 1995;
Brandenburg et al. 1995; Simon et al. 2012), as well as in cal-
culations that capture the global structure of the disk (e.g.,
Sorathia et al. 2012; Hawley et al. 2013). However, despite
the success of these works in showing that sustained MRI tur-
bulence and an associated dynamo is possible, the research
community lacks a coherent theory of the dynamo that would
allow the application of current results to astrophysically rel-
evant regimes (Blackman 2012).

In addition to nonlinear simulation, the linear behavior of
the MRI has been extensively studied over the past 20 years.
With the basic character of the axisymmetric MRI in a verti-
cal field well established (Balbus & Hawley 1991), these stud-
ies have both considered how more complex physical effects
might change MRI growth (e.g., Kersalé et al. 2004; Pessah &
Psaltis 2005; Hollerbach & Rüdiger 2005), and studied the va-
riety of other MRI modes (e.g., Balbus & Hawley 1992; Curry
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& Pudritz 1996; Terquem & Papaloizou 1996). Since the ba-
sic axisymmetric MRI mode is so virulent, the motivation
behind the latter class of studies is that linear results might
tell us something useful about the nonlinear turbulence, and
a number of nonlinear scenarios have been advanced in this
regard (Goodman & Xu 1994; Lesur & Ogilvie 2008b; Latter
et al. 2009; Pessah & Goodman 2009; Kitchatinov & Rudi-
ger 2010). Despite their lower growth rates, the influence of
non-axisymmetric modes is very important for such theories,
since Cowling’s anti-dynamo excludes the possibility of sus-
tained turbulence in an axisymmetric system (Balbus & Haw-
ley 1998). Whether linear ideas can be useful in explaining
the more complex aspects of MRI turbulence remains to be
seen. While some studies have discounted the importance of
linear eigenmodes in fully developed turbulence (Longaretti
& Lesur 2010), there have also been hints that linear shearing
waves3 may have substantial dynamical importance (Lesur &
Ogilvie 2008a; Heinemann et al. 2011), in particular in re-
lation to the MRI dynamo (Rincon et al. 2007; Riols et al.
2013).

The study of linear stability is often synonymous with the
study of eigenmodes, those perturbations that grow, oscillate
or decay in an exponential manner with no change in their
structure over time. The motivation behind this is that over
long time periods, the least stable eigenmode will emerge
from general initial conditions and thus be important for any
subsequent development of the system (particularly if it is un-
stable). However, there are many linear systems, in particular
those that are not self-adjoint, that can exhibit growth that is
substantially faster than that predicted by eigenvalues over in-
termediate time-scales. This is the concept behind nonmodal
stability theory (Trefethen & Embree 2005), which studies the
maximum possible growth (under a chosen norm) of any ini-

3 These are linear waves that shear with the background flow, also known
as Kelvin waves or spatial Fourier harmonics
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tial perturbation over a given time frame. Why might such
information be useful? The most obvious reason is that non-
modal effects can sometimes lead to sufficient linear growth
in a spectrally stable system to cause nonlinear effects to be-
come important. This can be profoundly relevant, explaining
for instance the transition to turbulence in pipe flow at rela-
tively moderate Reynolds numbers, despite there being no un-
stable eigenmodes (Schmid 2007). Aside from this, there are
other somewhat more subtle reasons nonmodal growth may
be significant. For instance, in attempting to understand the
transition from a linear regime to one where nonlinear effects
are important, one may wish to anticipate the relative signifi-
cance of different mode numbers. Depending on the important
time-scales, estimates based on eigenmode growth rates may
be incorrect. Such considerations will be especially important
in any linear or quasi-linear interpretation of turbulence char-
acteristics (Farrell & Ioannou 1994), since with strong fluctu-
ations, growth rates over short times are almost certain to be
more relevant than the t → ∞ limit explored by eigenmode
analyses (Friedman & Carter 2014).

The subject of this article is the analysis of the linear MRI
from this nonmodal standpoint. Despite the spectral insta-
bility of the MRI, we find this to be a fruitful and natural
approach, in particular illustrating that simple local shearing
wave approaches (Balbus & Hawley 1992) often have much
greater relevance to global models than the global eigen-
modes. While the general applicability of local approxi-
mations has been noted in previous works (Terquem & Pa-
paloizou 1996; Papaloizou & Terquem 1997), so far as we
are aware, this work is the first to explicitly explain the
connection between global and local approaches for general
modes. In addition to the qualitative connection that is evi-
dent upon observing the spatial structures that appear in non-
axisymmetric nonmodal calculations (e.g., Figs. 2 and 4),
there is very good quantitative agreement, as evidenced by
comparison of global calculations to solutions of the shear-
ing wave equations. This connection illustrates that non-
modal techniques are also particularly natural for analysis of
the shearing wave equations themselves; such methods are
straightforward and easy to interpret, and may be useful for a
possible quasi-linear theory of MRI turbulence. As also dis-
cussed in Squire & Bhattacharjee (2014) (hereafter SB14 ), an
appropriate choice of time-scale is of enormous importance in
the consideration of MRI growth rates, changing the relative
importance of different modes and how this varies with pa-
rameters (e.g., background magnetic field).

Given the large number of studies of the local and global
linear MRI, as well as many works on the nonmodal stabil-
ity of hydrodynamic disks (e.g., Ioannou & Kakouris 2001;
Yecko 2004; Mukhopadhyay et al. 2005; Tevzadze et al. 2008;
Zhuravlev & Razdoburdin 2014), it is somewhat surprising
that the MRI has not been previously investigated using for-
mal nonmodal techniques. Most studies using global do-
mains have focused on eigenmodes for both axisymmetric
(e.g., Curry et al. 1994; Kersalé et al. 2004; Mahajan & Kr-
ishan 2008) and more general non-axisymmetric (e.g., Curry
& Pudritz 1996; Ogilvie & Pringle 1996; Bonanno & Urpin
2008; Goedbloed et al. 2010; Rüdiger et al. 2013) modes,
most often solving for eigenmodes directly using a suitable
numerical discretization. In contrast, there have also been a
number of local studies (e.g., Balbus & Hawley 1992; Johnson
2007; Salhi et al. 2012; Mamatsashvili et al. 2013) that have
approached the stability problem by considering the shearing
wave equations. These equations certainly exhibit nonmodal

growth, although this is often attributed to the explicit time-
dependence in the shear wave equations, rather than an inher-
ent property of the original local MHD model. Our approach
here bridges the two aforementioned methods. We solve the
full equations on the global domain numerically, focusing on
the nonmodal structures rather than the eigenmodes of the
system. Since these structures resemble shearing waves, this
gives an obvious justification for the use of the shear wave
equations and illustrates that they are more relevant than the
global eigenmodes in many situations. In addition, this inter-
pretation implies that the shear wave equations, including the
time-independent axisymmetric case, are most naturally stud-
ied using nonmodal techniques also. A simple analytic expla-
nation of these ideas has been given in SB14, where a com-
parison of the short time growth rates of shearing and static
structures illustrates why nonmodal structures should always
resemble shearing waves.

1.1. A simple motivational example
To introduce ideas used in the remainder of this work, we

give here a very simple example showing the physical ori-
gins of nonmodal growth of the simplest axisymmetric MRI.
While the general idea (which is nothing but the standard Ω
effect) has been discussed in previous works in a somewhat
different context (Rincon et al. 2007, 2008), we feel that its
presentation as a linear instability is a useful starting point for
our examination of more complicated non-axisymmetric situ-
ations later in the text.

Consider a magnetohydrodynamic system with a back-
ground linear shear flow and impose an initial perturbation
to the magnetic field (the lack of a velocity perturbation ren-
ders the presence of a background magnetic field irrelevant).
For perturbations that depend only on the vertical co-ordinate
as B(z, t) = B exp(ikzz), the induction equation,

∂B
∂t

= ∇ × (U × B) + η̄∇2B, (1)

with U = (0,−qx, 0) becomes

∂

∂t

( Bx
By

)
=

(
−η̄k2

z 0
−q −η̄k2

z

) ( Bx
By

)
. (2)

This system is perhaps the simplest paradigm of nonmodal
stability theory, appearing in many introductory treatments
due to its tendency to exhibit strong transient growth at small
η̄k2

z (Trefethen & Embree 2005). More precisely, although the
eigenvalues of the system (−η̄k2

z repeated) indicate it is stable,
in the limit η̄k2

z → 0 the system can grow many orders of mag-
nitude before eventually decaying exponentially. Indeed, with
η̄k2

z = 0 the solution, Bx(t) = Bx(0), By(t) = By(0) − qtBx(0),
can grow indefinitely, the physical mechanism being sim-
ple advection of the initial perturbation by the shear (Ω ef-
fect). Of course, over long time-scales this algebraic growth is
dwarfed by the standard MRI (if there is a vertical background
field), which can grow as exp (qt/2) in these units. Nonethe-
less, it is interesting to note that with the initial conditions
Bx(0) = −By(0) the magnetic energy growth ∂t ln

(
B2

x + B2
y

)
for Eq. (2) at t = 0 is q, the same as for the standard MRI.
This result – over short time scales the MRI energy growth
rate is q – holds for all axisymmetric and non-axisymmetric
MRI modes given an appropriate choice of initial conditions
(SB14).

1.2. Outline
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Rather than examining a particular case in detail, we have
structured this paper to survey several different ways that non-
modal methods can be useful for the analysis of the MRI.
This choice was made because the techniques are useful in
understanding both global (i.e., r dependent) and simplified
local versions of the MRI, as well as the connection between
them. After describing our models and the fundamentals of
nonmodal stability theory (Secs. 2 and 3 respectively) we
give a basic explanation of the relationship between MRI
eigenmodes and nonmodal structures in Sec. 4. This is done
for non-axisymmetric modes in both local and global mod-
els with hard-wall boundary conditions, to illustrate the ori-
gins and fundamental importance of structures that shear with
the background flow (shear waves). Having seen the im-
portance of such structures, we then illustrate the utility of
the local model in Sec. 5 by directly comparing global non-
modal structures to the shearing wave equations (see Sec. 2.2).
This relationship between the global and local pictures im-
plies that the shearing wave equations should themselves be
interpreted from the nonmodal standpoint and this is the pur-
pose of Sec. 6. We illustrate how such an interpretation of
the equations can be fruitful, perhaps allowing simple quasi-
linear interpretations of MRI turbulence.

2. EQUATIONS AND PHYSICAL MODELS
In order to present our ideas in a clear and concise manner,

our models are chosen to be as simple as possible while re-
taining the features necessary to illustrate the importance of
nonmodal growth. In particular, we neglect compressibility,
vertical stratification, radial density stratification and vertical
gravity in both local and global calculations, and consider a
rather restricted set of global field profiles for illustrative pur-
poses. While there are many physical effects excluded by such
simplifications (e.g., magnetic buoyancy, density waves), our
results are not intended to provide an accurate description of
a real accretion disk. Very similar conclusions about the im-
portance of transient effects would almost certainly hold in
a more general model. In any case, many previous studies
(e.g., Pessah & Psaltis 2005; Rosin & Mestel 2012; Mamat-
sashvili et al. 2013) have shown that MRI growth is generally
weakly affected by the introduction of more complex physi-
cal models, probably because the MRI itself is so virulent an
instability.

2.1. Global model
Our starting point is the incompressible, resistive magneto-

hydrodynamic (MHD) model,

∂u
∂t

+ (u · ∇) u = −∇p + ∇ × B × B − ∇Φ + ν̄∇2u,

∂B
∂t

+ (u · ∇) B = (B · ∇) u + η̄∇2b,

∇ · u = 0, ∇ · B = 0. (3)

In Eq. (3), as for the remainder of the article, we use di-
mensionless variables; u = usi/u0, B = Bsi/

(
u0
√
µ0ρ0

)
, p =

psi/
(
u2

0ρ0

)
, Φ = Φsi/

(
u2

0ρ0

)
, where usi, Bsi, psi, Φsi are

respectively the fluid velocity, magnetic field, pressure and
gravitational potential in SI units, and u0, ρ0, and µ0 are a
characteristic velocity, the density (considered constant for
simplicity) and the vacuum permeability. Lengths have been
scaled by characteristic scale L0 in Eq. (3), and time is scaled
by L0/u0. The fluid and magnetic diffusivities, ν̄ and η̄, are

defined as ν̄ = ν/ (u0L0), η̄ = η/ (u0L0), where ν and η are the
kinematic viscosity and resistivity of the plasma. Since most
parameters in our problem are of order one, ν̄ and η̄ are ap-
proximately the inverses of the fluid and magnetic Reynolds
numbers respectively.

For all global calculations we use a simplified version of the
equilibrium in cylindrical co-ordinates proposed by Kersalé
et al. (2004). This model includes a very small radial inflow
velocity

Ur = α/r

driven by the viscosity acting on the azimuthal component of
the velocity,

Uθ = U0r1+α/ν̄.

We take α to be −3/2 ν̄ to give a Keplerian rotation profile and
set U0 = 1 in keeping with our normalization. For simplicity,
we use the magnetic field

B0 = (0, rB0θ, B0z) ,

with B0θ, B0z constant. The pressure is determined through
the equilibrium equation, and Φ = −1/r. Note that
the equilibrium is determined by only four free parameters
B0θ, B0z, ν̄ and η̄. For all calculations presented here, we use
the domain (0.25, 2.25) in r. While not given here, we have
also carried out calculations with more general profiles and
results seem to be quite similar.

The global linear equations are obtained by linearizing
Eqs. (3) about the background profile, i.e.,

u = u0 + u′, B = B0 + B′,
p = p0 + p′, (4)

and inserting the ansatz

f (r, θ, z, t) = f (r, t) eimθ+ikzz,

for each of the variables u′, B′, p′. Finally, we rewrite the
equations in terms of the Orr-Sommerfeld like variables

ur = u′r, Br = B′r,

ζ = ikzu′θ − i
m
r

u′z, η = ikzB′θ − i
m
r

B′z, (5)

and rearrange to eliminate as many derivatives as possible.
This choice of variables eliminates the pressure and reduces
the eight equations to four, at the cost of causing fourth-order
derivatives of ur to appear in the equations. Because of the
length of the equations resulting from this variable choice, we
present them in Appendix A.

2.2. Local model
We use the incompressible shearing box (SB) equations for

the local studies presented in this work. These equations are
derived from the global equations with a shearing background
velocity profile by transforming into the rotating frame and
considering a small patch of fluid, see Umurhan & Regev
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(2004). In dimensionless variables they are,

∂u
∂t

+ (u · ∇) u + 2Ω ẑ × u = −∇p + ∇ × B × B
+ 2qΩ2xx̂ − ∇Φ + ν̄∇2u,

∂B
∂t

+ (u · ∇) B = (B · ∇) u + η̄∇2b,

∇ · u = 0, ∇ · B = 0. (6)

Here u = usi/u0, B = Bsi/
(
u0
√
µ0ρ0

)
, p = psi/

(
u2

0ρ0

)
, where

usi, Bsi, psi are respectively the fluid velocity, magnetic field,
and pressure in SI units, and ρ0, µ0 are the density (consid-
ered constant) and the vacuum permeability. Lengths have
been scaled by characteristic scale L0 in Eq. (6), time is scaled
by 1/Ω (with Ω the local rotation frequency), and the veloc-
ity scale u0 is L0Ω. As such, Ω = 1 in Eq. (6). We have
kept it explicitly to show more clearly how the basic MHD
equations have been altered by the rotation, but will not in-
clude it explicitly for the remainder of this work. The direc-
tions x, y, z correspond respectively to the radial, azimuthal
and vertical directions from the global model. The parame-
ter q = −d ln Ω/d ln r embodies the radial velocity shear, and

for all examples in this work we set q = 3/2 as for Keplerian
rotation. The fluid and magnetic diffusivities, ν̄ and η̄, are de-
fined as ν̄ = ν/

(
ΩL2

0

)
, η̄ = η/

(
ΩL2

0

)
, where ν and η are the

kinematic viscosity and resistivity of the plasma. Since most
parameters in our problem are of order one, ν̄ and η̄ are ap-
proximately the inverses of the fluid and magnetic Reynolds
numbers respectively. The background velocity is azimuthal
with linear shear in the radial direction, u0 = −qΩx and
the background magnetic field is taken to be constant, B0 =(
0, B0y, B0z

)
. As for the global case we linearize the equations

about the background, u = u0 + u′, B = B0 + B′, p = p0 + p′,
and Fourier analyze in y and z by inserting

f (x, y, z, t) = f (x, t) eikyy+ikzz (7)

for each dependent variable. Changing into the variables

u = u′x, B = B′x,
ζ = ikzu′y − ikyu′z, η = ikzB′y − ikyB′z, (8)

and simplifying we obtain the four linear partial differential
equations in x and t,

∂

∂t


∇2u
ζ
B
η

 =


ν̄∇4 + iqxky∇

2 2ikz iF∇2 0
i(q − 2)kz ν̄∇2 + iqxky 0 iF

iF 0 η̄∇2 + iqxky 0
0 iF iqkz η̄∇2 + iqxky

 ·


u
ζ
B
η

 , (9)

where F ≡ kyB0y + kzB0z and ∇2 ≡ −k2
y − k2

z + ∂2/∂x2. Since
these equations have no time dependence they can be Fourier
analyzed in time using ∂

∂t → −iω to obtain a set of linear
eigenvalue ODEs; however, since much of this work focuses
on nonmodal stability methods, we prefer to keep the time-
dependence general even though they have been solved com-
putationally from the eigenvalue standpoint (see Sec. 3).

Shearing wave equations — A common way to study the local
non-axisymmetric linear MRI has been using a decomposi-
tion in terms of shearing waves. Shearing waves are simply
sinusoidal waves that are static in the frame of the background
flow; they have also been termed spatial Fourier harmonics or
Kelvin waves by various authors. As part of this work we
compare the solutions obtained from assuming such a decom-
position with global nonmodal stability calculations, showing
impressive agreement.

The shearing wave equations are straightforwardly derived
by inserting the ansatz

f (x, t) = f (t)eiqky(t−tS W )x, (10)

for each dependent variable in Eqs. (9), where the initial
orientation of the wave is determined by the parameter tS W
through kx(0) = −qky(0− tS W ). This yields the set of ordinary
differential equations in time

∂

∂t
U(t) =


−ν̄k2 − 2qkxky/k2 −2ikz/k2 iF 0

i(q − 2)kz −k2ν̄ 0 iF
iF 0 −k2η̄ 0
0 iF −iqkz −k2η̄

 ·U(t) .

(11)

with U(t) = (u, ζ, B, η) and k2 =
√

k2
x + k2

y + k2
z . Due to

the time dependence of kx and k, Eqs. (11) cannot be use-
fully Fourier analyzed in time and must be solved numeri-
cally in general, although various analytic results have been
obtained in previous works (Balbus & Hawley 1992; Terquem
& Papaloizou 1996; Johnson 2007; Mamatsashvili et al. 2013;
Squire & Bhattacharjee 2014). It so happens that Eqs. (11)
are actually nonlinearly valid (Goodman & Xu 1994; Balbus
& Hawley 2006) due to rather fortuitous cancellations of non-
linear terms. As such, they can be derived by simply inserting
the shearing wave ansatz directly into the nonlinear equations
[Eqs. (6)] and changing variables [Eqs. (8)], skipping the lin-
earization step entirely.

3. NONMODAL STABILITY METHODS
The general idea of nonmodal stability methods is to com-

pute the maximum possible linear amplification of distur-
bances under some chosen norm at finite times. If the system
is self-adjoint, the choice of the time is unimportant, since
the most strongly amplified perturbation is always the most
unstable eigenmode, with the growth rate given by its corre-
sponding eigenvalue. If the system is not self-adjoint, the non-
orthogonality of the eigenmodes allows for the possibility of
transient growth, where the perturbations can grow substan-
tially faster than the most unstable eigenmode over interme-
diate time-scales (Trefethen & Embree 2005; Schmid 2007).
This effect is most commonly studied in spectrally stable sys-
tems, since the transient growth can have an especially pro-
found effect in this case.

Here we give a brief overview of the methods used to cal-
culate nonmodal growth, introducing some notation and im-



5

portant concepts. Unlike standard treatments, we allow for
time-dependence of the operator and norm (Farrell & Ioan-
nou 1996), necessary for application to the shearing wave
equations. More information and references to applications in
many areas of physics and engineering can be found in Tre-
fethen & Embree (2005); Schmid (2007); Camporeale (2012).

For the sake of clarity, consider the general linear system,
∂U
∂t

= L(t)U(t), (12)

with the solution U(t) = K(t)U(0). Here K(t) is the propaga-
tor and in the case thatL is time-independent K(t) = exp (Lt).
The maximum possible growth at time t is given by

G(t) = max
U(0)

‖K(t)U(0)‖2E
‖U(0)‖2E

, (13)

where ‖·‖2E denotes the energy norm (Eq. (17) below). Chang-
ing from the energy norm to the standard 2-norm using the
Cholesky decomposition

‖U‖2E = U† ·ME(t) ·U = U† ·F†(t)F(t) ·U = ‖F(t)U‖22 , (14)

Eq. (13) can be calculated as the largest singular value of the
matrix

F(t)K(t)F−1(0). (15)

The initial conditions that achieve this growth are given by
F−1(0)κ, where κ is the right singular vector corresponding
to the largest singular value. We have allowed for time-
dependence of the inner product since this is necessary for
shearing waves in our variable choice [Eqs. (5) and (8)].

Computationally, the most challenging step in the above
procedure is the calculation of the propagator K(t). For time-
independent systems this is most easily calculated through the
eigenspectrum by noting that in the eigenmode basis

K(t) = exp (Lt) = exp (Λt) , (16)

where Λ is the diagonal matrix of eigenvalues. The in-
ner product F [c.f. Eq. (14)] must be formed using the
eigenmodes to account for the change of basis. We use the
Chebyshev-Tau method to calculate the spectrum, since this
generally has very good numerical properties for fluid eigen-
value problems (Dongarra et al. 1996). After truncating the
spectrum to the top K most unstable modes and removing
spurious eigenvalues, we compute the inner product matrices
in the Chebyshev spectral basis (Reddy et al. 1993). The num-
ber of modes K should be chosen such that the results are
unchanged if this is increased, usually K ≈ 120 is sufficient.
The calculation of the spectrum can be rather computation-
ally challenging due to numerical errors caused by round off
in the Chebyshev matrices, a problem that is exacerbated as
the number of polynomials used is increased (Dongarra et al.
1996). Because of this we have generally restricted Reynolds
numbers to less than ∼ 104. In addition, we have found that
results can be very sensitive to errors in the Cholesky decom-
position used to calculate F (especially for high K) and use
high-precision arithmetic for this part of the calculation. We
have scrutinized the numerical quality of our eigenmodes and
nonmodal results using several separate methods: compar-
ison to previous hydrodynamic results (e.g., Yecko (2004);
Mukhopadhyay et al. (2005)), comparison with a finite dif-
ference eigenmode solver, and consistent checks that pseudo-
modes were insensitive to an increase in K .

In the case that L is time-dependent K(t) cannot be calcu-

lated using the eigen-decomposition, since K(t) , exp (Lt).
If we consider the discrete system ∂tUi(t) =

∑N
i, j=1Li jU j(t), a

simple way to calculate K(t) is to evolve the system for each
initial condition Un (0) = 1,Ui (0) = 0 for i , n, n = 1 → N.
We use this technique with the shearing wave equations to cal-
culate the initial conditions that lead to maximum growth at
some chosen time. Such a technique could also be used to cal-
culate growth for space-time dependent systems (for instance
the local equations with shearing box boundary conditions)
with a suitable discretization. However, K(t) can become
very expensive to calculate and more sophisticated variational
techniques have been developed (Schmid 2007; Zhuravlev &
Razdoburdin 2014) for such systems.

Throughout this work we use the total energy of the pertur-
bation as the norm,

E =

ˆ
dx

(
|u|2 + |B|2

)
, (17)

since it has been the standard choice for hydrodynamic stud-
ies (Reddy et al. 1993). Of course, due to the background ve-
locity, this norm does not represent the full (background plus
perturbation) energy, and other choices can be well justified.
Thus, we prefer to consider the norm Eq. (17) to be a useful
measure of the size of a disturbance, rather than a physical en-
ergy. We relegate an investigation of the effects of changing
norms to future work (see Zhuravlev & Razdoburdin (2014)
for a more thorough discussion of this issue for hydrodynamic
disks, including the effects of using a different norm).

In the local Orr-Sommerfeld variables [Eq. (8)] choosing
the y and z domains to stretch from 0 to 2π,

E =
2π2

k2
y + k2

z

ˆ
dx

[
|ζ |2 + |η|2 +

(
k2

y + k2
z

) (
|u|2 + |B|2

)
+ |∂xu|2 + |∂xB|2

]
(18)

and in the global variables [Eq. (5)]

E =2π2
ˆ

dr
[
|ur |

2 + |Br |
2

+
1

m2 + k2
z r2

(
|∂r (r ur)|2 + |∂r (r Br)|2 + |r ζ |2 + |r η|2

)]
.

(19)

Note that for the shearing wave equations [Eq. (11)], the in-
ner product is time dependent due to ∂xu and ∂xB. For ease of
presentation we denote the linear solution that maximizes the
energy at time t0, evaluated at time t as Γ (t, t0) and call this
the pseudo-mode. We will represent the norm of the pseudo-
mode, ‖Γ (t, t0)‖2E , as GΓ(t, t0). Thus G(t), the maximum pos-
sible growth of any initial conditions by time t [see Eq. (13)],
is given by G(t) = GΓ(t, t), and GΓ(t, t0) < G(t)∀ t , t0.

4. GENERAL PROPERTIES
In this section we outline some basic properties of MRI

pseudo-modes through examples in both the local and global
cases. We see that non-axisymmetric modes invariably resem-
ble shearing waves and in general look very different from the
most unstable eigenmodes. For the global case in particular,
the pseudo-modes are often localized in a completely differ-
ent region of space than the most unstable eigenmodes. In
the final subsection we give an example of initializing using
random initial conditions, illustrating the much greater rele-
vance of pseudo-mode growth compared to that of the unsta-
ble eigenmodes.
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Figure 1. GΓ (t, 10) (solid), G(t) (dashed) and the most unstable eigenmode
growth (dotted) for the local model with hard wall boundary conditions and
ky = 1, kz = 4, B0z = 1/10, B0y = 0, ν̄ = η̄ = 10−4. The dots on the solid
curve correspond to the spatial structures illustrated in Figure 2.

4.1. Local computations
We start by considering the simplest possible background

field configuration in the local box, a constant magnetic field
in the z direction. However, in contrast to standard local
stability approaches we solve the full local differential equa-
tions [Eqs. (9)] with hard wall (perfectly conducting) bound-
ary conditions. The reason for this choice is to illustrate the
general irrelevance of the eigenmodes at intermediate times;
shearing wave structures are strongly apparent in the pseudo-
mode, despite their incompatibility with the boundary condi-
tions.

The transient and eigenmode growths for a weakly non-
axisymmetric mode (ky = 1) are illustrated in Figure 1 at
B0z = 1/10. With these parameters the maximum eigenmode
growth rate of q/2 = 0.75 is obtained at kz = 10

√
15/16, ky =

0. To demonstrate the importance of the shearing wave, we
also illustrate the time evolution of the pseudo-mode spatial
structure (for t0 = 10) in Figure 2. There are several impor-
tant insights that can be gained from Figs. 1 and 2:

1. The maximum linear growth rate achievable (G(t) and
GΓ (t, 10) in Fig. 1) is approximately twice as large as
that of the eigenmode. In addition, this fast growth rate
continues until the perturbation has been amplified by a
factor of nearly 105, presumably enough amplification
for nonlinear effects to become important in most situa-
tions. Thus, we surmise that the eigenvalue growth rate
is largely irrelevant at these parameters. This important
conclusion carries over to the global case (Fig. 3).

2. The pseudo-mode is a shearing wave, despite the pres-
ence of the hard wall boundary conditions. Considering
that the most unstable eigenmodes are localized near
the boundaries of the domain, it is perhaps initially sur-
prising that the pseudo-mode is localized in the middle
of the domain, at least until the transient growth sub-
sides (around t = 20). Note that a very similar effect is
seen in the hydrodynamic case, see e.g, Mukhopadhyay
et al. (2005). The general dominance of the shearing
wave is nicely justified by our recent proof that shear-
ing wave growth rates are always larger over short time-
scales than those of static structures (SB14).

3. Unlike the (spectrally stable) hydrodynamic case, the
time at which kx ≈ 0 (i.e., the shearing wave is hori-
zontal) does not correspond to any obvious change in
the growth [in the hydrodynamic case kx ≈ 0 when

Figure 2. Time evolution of the spatial structure of the magnetic field com-
ponent of pseudo-mode Γ (t, 10) for the same parameters as Figure 1. White
and black shaded regions show positive and negative values respectively.

G(t) is maximum, (Mukhopadhyay et al. 2005)]. In
addition, we see little change in the initial shearing
wave orientation (kx(0)) with changes in dissipation, ν̄
and η̄, in stark contrast to the hydrodynamic case. In
fact, in all pseudo-mode calculations we have done for
non-axisymmetric modes, the initial conditions satisfy
kx(0) ≈ ky. This is partially explained by the calcula-
tions in SB14, where it is seen that the strongest growth
over very short time-scales (t = 0+) is for a shear wave
with kx(0) = ±ky.

4. At intermediate time-scales the boundaries of the do-
main seem largely irrelevant. Indeed, it is a general
feature of nonmodal stability that the transient growth
is much less sensitive to modifications of the system
than the eigenmode growth (Trefethen et al. 1993; Tre-
fethen & Embree 2005). In this case, the modification is
the change of boundary conditions from those that nat-
urally accept shearing waves (e.g., shearing box bound-
ary conditions) to those that do not (hard wall condi-
tions).

5. At late times the pseudo-mode starts to more closely re-
semble the most unstable eigenmodes (as might be ex-
pected) becoming more localized near the wall. As an
interesting corollary of this, we note that the eventual
decay of shearing waves due to the increasing kx (Bal-
bus & Hawley 1992; Brandenburg & Dintrans 2006)
is not necessarily physically important, even discount-
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ing nonlinear effects. The reason is that the eigenmode
growth can "take over" at large times, with the shear-
ing structure transitioning into a non-shearing struc-
ture. Although we have not done the calculation, we
conjecture that this could also be true when shearing
box boundary conditions are utilized, with the very late
time structure starting to resemble some type of time-
periodic Floquet eigenmode (the shearing box system
is periodic in time). Of course, such an (time-periodic)
eigenmode could be stable and decay, though perhaps
more slowly than a shearing wave.

6. As the dissipation parameters (ν̄ and η̄) are decreased
the period over which the pseudo-mode resembles the
shearing wave increases in time, thus leading to a larger
total amplification of the disturbance. This is in spite of
the fact that the non-axisymmetric spectral instability
can disappear as the dissipation is decreased (Kitchati-
nov & Rudiger 2010). This is essentially implying that
nonmodal effects become more important as ν̄, η̄ → 0.
Note that the shearing wave growth will not continue
forever even if ν̄ = η̄ = 0, as can be seen by solving the
shearing wave equations [Eqs. (11)] in the dissipation-
less limit (e.g., Brandenburg & Dintrans 2006).

The structure of the pseudo-mode in time does depend on
the choice of when to maximize the growth, t0. For instance,
for large t0 the structure is more localized near the bound-
aries at all times, but is still strongly shearing with the back-
ground flow. Note that the other variables (u, ζ, η) have very
similar time-evolution (not shown). We have also run cal-
culations with different boundary conditions in x, including
standard periodic conditions and the local equivalent of those
advocated in Kersalé et al. (2004). We see that the structures
observed in the pseudo-modes are always shearing waves in
support of Item 4 above, so long as there are no strongly un-
physical energy sources or sinks in the chosen boundary con-
ditions.

Finally, we note that transient growth is not limited to non-
axisymmetric modes, but can also be significant for the ax-
isymmetric channel mode (ky = kx = 0) in the chosen en-
ergy norm. To be precise, some transient growth is possible
even with periodic boundary conditions, whenever the verti-
cal wavenumber is different from the wavenumber that gives
maximum eigenmode growth, kz = 1/B0z

√
15/16. In the lo-

cal case, there is no substantial difference in spatial structure
between the eigenmodes and pseudo-modes with hard-wall
boundary conditions, but the ratios of components (u, ζ, B, η)
is different. Note that one can straightforwardly choose a sim-
ple energy-like norm that removes the transient growth of ax-
isymmetric modes, at least in the 2-D hydrodynamic case4

(Zhuravlev & Razdoburdin 2014). However, as illustrated by
the introductory example (Sec. 1.1), transient growth of the
axisymmetric instability is a very real physical effect. We give
an example of global axisymmetric pseudo-mode growth in
Sec. 5.

4.2. Global computations

4 Note that one can choose a norm for which there is no transient growth for
any chosen mode (ky, kz) in the time-independent system, simply by choosing
the norm matrix F to be the inverse of the matrix of eigenvectors. Of course,
such a norm will be physically meaningless in the majority of cases, and
the notion of using a norm with physical significance is central to nonmodal
stability theory.
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Figure 3. GΓ (t, 10) (solid), G(t) (dashed) and the most unstable eigenmode
growth (dotted) for the global model with hard wall boundary conditions and
m = 2, kz = 15, B0z = 1/30, B0θ = 0, ν̄ = η̄ = 10−4. The dots on the solid
curve correspond to the spatial structures illustrated in Figure 4.

To illustrate that the prevalence of shearing wave struc-
tures is by no means unique to the local model, in Figures
3 and 4 we display the pseudo-mode growth and structure for
a weakly non-axisymmetric mode in a weak purely vertical
field. Note that the chosen kz is around the lower limit of what
might be physically relevant in a thin accretion disk (Kersalé
et al. 2004). We see that all of the same conclusions that held
in the local computation carry over to the global case. In fact,
generally we have observed a greater prominence of transient
effects in the global equations than the local equations, prob-
ably due to a greater propensity for pseudo-modes and eigen-
modes to be localized in very different regions. This is cer-
tainly the case here, as evidenced by comparison of Figures 4
and 5 (the most unstable eigenmode); while the eigenmode
is strongly localized near the outer boundary, the pseudo-
mode is far removed from this. Of course, at very large times
(not shown) the pseudo-mode moves out in radius and starts
to more closely resemble the eigenmode. Terquem & Pa-
paloizou (1996) noted a similar difference between the local-
ization of eigenmodes and that of structures emerging from
random noise (in a toroidal field with no nonlinear effects).
They explain these findings in terms of the local growth rates,
a connection that we make in Sec. 5. Finally, we note the ex-
treme difference in growth rate between the nonmodal struc-
tures and eigenmodes (Fig. 3). The pseudo-mode grows ap-
proximately six times faster than the least stable eigenmodes
and reaches an amplification of 105 before this fast growth
shows any sign of slowing.

4.3. Evolution from random initial conditions
As a final example to illustrate the greater relevance of

pseudo-modes over eigenmodes we initialize with random re-
alizations of Gaussian noise and examine growth rates and
prominent structures. This calculation can mitigate fears that
the pseudo-mode structures might be less likely to be excited
for some reason, and that total growth may not always be a
good indicator of dynamical importance in a physical situa-
tion. We present an example of this calculation in Figure 6, for
local parameters very similar to those of Fig. 1. After an ini-
tial dip due to damped modes in the initial conditions5, we see
the growth curve follow that of G(t) very closely. In fact, for
these parameters we see that even the minimum growth seen
out of 100 realizations has overtaken that of the most unstable
eigenmode by late times, i.e., the most unstable eigenmode

5 Note that this dip and subsequent offset of the mean from the maximum
growth curve (in Fig. 5 a factor of approximately 10) is also seen in normal
systems and is nothing to do with the transient nature of the growth.
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Figure 4. Time evolution of the spatial structure of the magnetic field com-
ponent of the global pseudo-mode Γ (t, 10) for the same parameters as Figure
3. White and black shaded regions show positive and negative values re-
spectively. The small scale oscillations in the outer regions at small times is
caused by numerical errors in the Chebyshev method of calculating eigen-
modes (these are then added to create the pseudo-mode), but these only effect
regions of low amplitude.

Figure 5. The structure of the most unstable eigenmode for the same param-
eters as Figure 3. Comparison with the structures in Figure 4 demonstrates
the completely different spatial localization of the pseudo-mode.

is statistically a particularly bad choice of initial condition
for the total amplification of the disturbance. Observing the
structure of random realizations (not shown) we see a strong
dominance of shearing waves at later times.

5. COMPARISON OF TRANSIENT GLOBAL
STRUCTURES TO THE SHEARING WAVE

EQUATIONS
The appearance of shearing structures in the global pseudo-

modes leads naturally to the question: How well do the shear-
ing wave equations approximate global linear behavior? As
far as we know, this question has not been previously ex-
plored for general non-axisymmetric modes, with most au-
thors focusing on eigenmodes in global studies and shearing
waves in local studies. In this section we directly compare
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Figure 6. Linear evolution of the energy from 100 random initial conditions
for ky = 1, kz = 4, B0z = 1/10, B0y = 0, ν̄ = η̄ = 2 × 10−4. The solid line
is the the mean of 100 random (Gaussian noise) initial conditions, the darker
and lighter shaded regions show the standard deviation and total range of all
data respectively. The dashed line shows G (t) and the dotted line the most
unstable eigenmode growth.

the global pseudo-mode evolution with the shearing wave
equations [Eq. (11)] finding excellent agreement in a vari-
ety of parameter regimes. This seems to be the first ex-
plicit demonstration of the connection between global eigen-
modes (through their connection to the pseudo-modes) and lo-
cal shearing wave approximations for both axisymmetric and
non-axisymmetric modes.

Our method to compare global pseudo-modes with the local
equations uses the following sequence of steps:

1. Calculate the global pseudo-mode that maximizes the
energy amplification at t0, Γ (t, t0), for some chosen
global parameters.

2. Choose a radial point in the global domain, r0, at which
to compare the global and local solutions. This should
be chosen where the global pseudo-mode is relatively
large to mitigate numerical errors in the pseudo-mode.

3. Calculate the local parameters that correspond to the
global parameters at r0. This procedure is outlined in
App. B.

4. From the pseudo-mode structure at r0, determine the
initial kx value for the shearing wave. This is most eas-
ily carried out by observing when kx ≈ 0 in the pseudo-
mode evolution to obtain tS W [Eq. (10)].

5. Determine the shearing wave initial conditions
(u(0), ζ(0), B(0), η(0)) that maximize the energy
amplification at the chosen t0 using the nonmodal
stability method, Eq. 15. Stated in another way, we are
comparing the global pseudo-mode with the shearing
wave pseudo-mode.

6. Solve the shearing wave equations in time.

7. Calculate the shearing wave energy growth and com-
pare this to the energy growth of the global solution at
r0.

Once the global parameters and r0 have been chosen, the only
free parameter is the initial shearing wave orientation kx(0).
Since this is set by the global structure, we wish to emphasize
that we are not adjusting any free parameters to improve the
energy growth agreement. In the axisymmetric case (Fig. 8)
there are no free parameters.
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Figure 7. Comparison of the energy growth of the global pseudo-mode
(thick, dashed) and local shearing wave (solid) at a) r0 = 1, tS W = 4.7 and
b) r0 = 0.75, tS W = 4.5. The dotted line illustrates the most unstable eigen-
mode growth for comparison. The parameters are m = 2, kz = 15, B0z =
1/30, B0θ = 0, ν̄ = η̄ = 10−4, the same as Fig. 4. Both the global and
shearing wave amplification are maximized at t0 = 10 as in Fig. 4.

5.1. Non-axisymmetric modes
In Figure 7 we illustrate the comparison of shearing waves

with global pseudo-mode energy growth using the procedure
outlined above. The parameters chosen are those for a weakly
non-axisymmetric mode in a vertical field (the same as Fig. 4),
with two values of r0 chosen for comparison. We see excellent
agreement, although unsurprisingly the growth is most simi-
lar where it is strongest, around the maximum of the pseudo-
mode (r0 = 1). Moving very far from the maximum (e.g.,
r0 = 2, not shown) we see rather poor agreement, presumably
due to noise and errors in the numerical result. We have run
many other similar computations and see excellent agreement
across a wide range of parameters.

As an interesting corollary of such results, one can approx-
imately predict the structure of the global pseudo-mode us-
ing the shearing wave equations. The basic idea is to solve
the shearing wave equations at each point in the global do-
main, maximizing the growth at a chosen t0 using the non-
modal technique. Examining the amplification as a function
of radius gives an approximation of the structure of the global
pseudo-mode. While an exact comparison is tricky due to the
choice of t0 in the shearing wave equations, we have consid-
ered a range of parameters (not shown here) and the agree-
ment generally appears rather good. In particular, the predic-
tion of the spatial location of the pseudo-mode maximum is
quite accurate. Such computations present further evidence
that the local shear wave approximation is accurate in many
cases (Papaloizou & Terquem 1997), and will be more mean-
ingful than global eigenmodes over moderate time-scales.

5.2. Axisymmetric modes
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Figure 8. Comparison of the energy growth of the global pseudo-mode
(thick, dashed) and local shearing wave (solid) for a kz = 10 axisymmet-
ric mode in a purely azimuthal field (B0y = 0.2, B0z = 0, ν̄ = η̄ = 10−4).
The dotted line illustrates the eigenmode least stable growth for comparison.
The growth of the global and local pseudo-modes are maximized at t0 = 10
and the local shearing wave parameters are taken from r0 = 0.5. Inset: radial
structure of the radial magnetic field component of the pseudo-mode (solid)
at t = 5 (the structure is nearly time-independent) and the least stable eigen-
mode (dotted). (Values are normalized for illustrative purposes.)

Figure 8 presents a similar comparison for the seldom stud-
ied case of an axisymmetric mode in a purely azimuthal field.
While such a case could be argued to be somewhat patho-
logical due to the importance of even a wisp of vertical field
(at least without dissipation, we discuss this point more in
Sec. 6.1, see also Balbus & Hawley 1998), it provides an in-
teresting example. Despite the eigenmode being stable, there
is rather strong growth, with the pseudo-mode amplified by
∼ 103 by t = 7. The agreement with the shearing wave – in
this case a simple channel mode with ky = kx = 0 – is remark-
ably good. Of course, as discussed in Sec. 1.1, we are seeing
simple advection of an initial field by the flow; nonetheless, it
is comforting to see that the global pseudo-mode is locally be-
having in the same way with very similar optimal initial con-
ditions. For comparison, the inset to Fig. 8 illustrates the ra-
dial structure of the pseudo-mode and least-stable eigenmode
for the radial magnetic field. In this case, with a purely az-
imuthal field, the two are rather different; however, in the case
of axisymmetric modes in a pure vertical field (not shown) the
pseudo-mode generally closely resembles the eigenmode and
the nonmodal growth is less significant due to the strong ex-
ponential growth of the standard MRI.

5.3. Shearing wave WKB approximations
As presented in Sec. 2.2, the shearing wave equations are

derived through first applying a local expansion about the
global equilibrium (App. B, also Umurhan & Regev 2004),
then inserting the shearing wave ansatz. However, a more
general way to obtain such equations is by directly inserting
a shearing wave ansatz into the global equations, and only
then applying the local expansion. For axisymmetric modes,
the first step (insertion of a shear wave ansatz) is essentially
a standard WKB expansion and has been used in many pre-
vious works. For example, in Blokland et al. (2005) the full
WKB expansion (without a local approximation) is compared
directly to r dependent eigenmode solutions, showing excel-
lent agreement. Noting that the standard WKB expansion
has severe problems for non-axisymmetric modes (Knobloch
1992), we have shown how to extend such expansions to non-
axisymmetry in SB14, by simply inserting the time-dependent
ansatz

f (r, t) ∼ f (t) exp
(
−i

m
r

U0r−q+1(t − t0)
)

(20)
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for each variable and making the ordering assumptions
(krr, kzr, m) ∼ 1/ε, (ν̄, η̄) ∼ ε2 (see also Shtemler et al. 2012
for a different approach). Such an approximation is the natu-
ral extension of WKB to the case with global shear. Applying
the local approximation to the resulting system of ODEs leads
to the standard shearing wave equations [Eq. (11)]. Thought
of in this way, we can consider the excellent agreement be-
tween global pseudo-modes and shearing waves to be a ver-
ification of the applicability of such WKB-like methods. To
continue the analogy, in the same way that one might compare
full eigenmodes to a WKB dispersion relations (i.e., WKB
eigenmodes), the correct way to analyze such shearing wave
equations is using nonmodal stability techniques (as carried
out above).

This more global way of considering the problem may have
several advantages. Firstly, it is straightforward to extend the
shearing wave equations to much more complicated domains
and physical models. For example, strong magnetic fields,
compressibility, stratification, or more complex diffusion op-
erators (e.g., Pessah & Psaltis 2005; Heinemann & Papaloizou
2009; Salhi et al. 2012; Rosin & Mestel 2012) could easily
be accounted for in the shearing wave equations6. Secondly,
the approach elucidates the connection between previous re-
sults that illustrate the quality of WKB methods for axisym-
metric modes, and our results, which show the accuracy of
the shearing wave equations over moderate time-scales. Of
course, we have primarily explored global models in which
the local approximation (App. B) is accurate. In future work it
would be interesting to study global models that include more
complex physical effects, comparing global pseudo-modes to
nonmodal solutions of the extended shearing wave equations
derived directly from the chosen global equations.

Finally we clarify here that shearing wave equations can
only ever give a good approximation to the global pseudo-
mode behavior over moderate time-scales. The reason is that
eventually the eigenmode will take over, since the structures
in a shearing wave necessarily move to smaller scales in time.
This causes dissipative effects to dominate and the shearing
wave to damp, even when the global system has one or more
unstable eigenmodes. This effect is clearly seen in the last
pane of Fig. 2, where the pseudo-mode eventually starts to
resemble the least stable eigenmodes. From a practical stand-
point, we have noted that the shearing wave equations accu-
rately represent the global pseudo-mode up until their solution
starts to decrease in time.

6. NONMODAL GROWTH OF THE SHEARING WAVE
EQUATIONS

As discussed in the previous section, since the shearing
wave equations themselves are motivated by nonmodal ideas,
it is most natural to consider their solutions from the non-
modal standpoint, solving for those initial conditions that give
the maximum amplification for some chosen time. An impor-
tant notion here is that the non-modality does not arise purely
from the time-dependence of the equations (i.e., the original
ansatz for the spatial form of the solution), but is a conse-
quence of the original time-independent system. Indeed, non-
modal effects can be important even in the axisymmetric case,
when the shear wave equations are time-independent.

In this section we focus on how nonmodal techniques can

6 Of course, such effects can also be accounted for in local equations us-
ing other methods, a potential advantage of the shearing wave method is its
conceptual simplicity

be useful in studying the local MRI, in particular the relative
importance of different mode-numbers as external parameters
are changed. In addition, we present a rather unconventional
view of the MRI as a general nonmodal instability brought
about by the addition of MHD effects, but rather separate from
the presence of a background magnetic field.

6.1. The dependence of the MRI on azimuthal field
Our study here focuses on how the local MRI changes with

imposed vertical field while in a strong background azimuthal
field. There a two primary motivations behind this choice of
problem:

1. Using analyses based on eigenmodes (or similar ideas
for time-dependent shear waves e.g., Balbus & Hawley
1992; Johnson 2007) the MRI behaves a little unusu-
ally in an azimuthal field in the limit B0z → 0 (Bal-
bus & Hawley 1998). In particular, the growth rate is
very sensitive to even a minute vertical field and enor-
mous changes in the mode structure are seen for tiny
changes in vertical field. Here we show that this prob-
lem is, unsurprisingly, very strongly dependent on the
time-scale considered: over shorter time-scales the be-
havior is quite smooth as B0z → 0.

2. This system is really the simplest one could study that
may have some relevance to unstratified shearing box
turbulence simulations. In particular, the strong az-
imuthal field could be generated by an MRI dynamo
(e.g., Käpylä & Korpi 2011; Lesur & Ogilvie 2008a),
while the vertical field comes from a net-flux thread-
ing the domain7. Of particular relevance may be the
work of Longaretti & Lesur (2010), where the authors
study how various characteristics shearing box turbu-
lence with net magnetic flux (i.e., mean B0z) change
with parameters. Here we illustrate that trends in their
turbulent simulations seem to be well matched by the
linear physics, so long as nonmodal analysis techniques
are used.

We illustrate these ideas in Figures 9 (short time growth)
and 10 (long time growth). These each show the maximum
amplification of a disturbance as a function of (ky, kz), at fixed
azimuthal magnetic field, as the vertical field is decreased
from left to right. At each point (ky, kz) we additionally max-
imize the growth over the initial orientation of the shearing
wave, kx(0); thus, the contours represent the maximum growth
possible at the chosen (ky, kz). This is really for ease of pre-
sentation and there could certainly be interesting information
in the kx(0) structure that could be the studied in future work.
(Such plots are similar in spirit to hydrodynamic results given
in Yecko 2004; Mukhopadhyay et al. 2005). We use a rather
large dissipation (ν̄ = η̄ = 1/3000) to have some relevance
to nonlinear simulations. Of course, in a shearing box the
(kx(0), ky, kz) is necessarily discretized based on the box size;
nonetheless, the continuous k results presented here can either
be considered as pertaining to a continuous range of box sizes
or, more usefully, to different dissipation values and magnetic

7 Note that the character, or even existence, of the unstratified MRI dynamo
is not particularly well understood. In zero net-flux shearing boxes there is
good evidence that a strong, self-generated azimuthal magnetic field plays an
important role in the turbulence (e.g., Lesur & Ogilvie 2008b); however, we
know of no work that explores this dynamo explicitly for the case with net
vertical flux.
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Figure 9. Maximum amplification by t = π as a function of ky, kz for B0y = 1/5, ν̄ = η̄ = 1/3000 and (a) B0z = 1/10, (b) B0z = 1/30, (c) B0z = 1/100, (d)
B0z = 0. At each (ky, kz) the data shows the maximum growth obtained over all choices of initial conditions and initial shearing wave orientation (i.e., each point
is maximized over kx(0)). All plots use the color scale shown on the right hand side. For reference, the maximum possible growth of the ideal MRI corresponds
to an amplification of exp

( qΩ
2 π

)2
≈ 111 in these units.
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Figure 10. Same as Fig. 9 but showing maximum amplification by t = 10π. Due to the large time and relatively high dissipation, these plots are much closer
to the eigenmode structure and thus are entirely dominated by axisymmetric modes. A separate color-scale is used for each plot since the amplification changes
substantially as B0z is altered. For reference, the maximum possible growth of the ideal MRI corresponds to an amplification of exp

( qΩ
2 10π

)2
≈ 2.9 × 1020 in

these units.

fields through a rescaling of the shearing box equations as
outlined in App. B.

The enormous difference between Figs. 9 and 10 is a stark
illustration of the importance of correctly choosing the rele-
vant time-scale for a given situation. Over the long timescales
illustrated in Fig. 10 we are essentially seeing eigenmode be-
havior, with very little contribution from non-axisymmetric
modes (this is more severe than it would be at lower dis-
sipation). In addition, the change in behavior with B0z is
extreme; a change in amplification by 14 orders of magni-
tude with a 1 order of magnitude change in B0z. In contrast,
over moderate time-scales t = 0 → π (Fig. 9) the change
with B0z is rather smooth, even as it vanishes completely
[Fig. 9(d)]. The growth in the case of B0z = 0 is still sub-
stantial, with non-axisymmetric modes being amplified by a
factor of 40, around a third of the amplification of the fastest
growing channel mode. Note that the general trend of increas-
ing non-axisymmetry with decreasing vertical field8 matches
the characteristics of nonlinear turbulence (e.g., Fig. 9 from
Longaretti & Lesur 2010) rather well. We have also consid-
ered the change in the mode structure with dissipation param-
eters (not shown) and do not see the contradictions between
linear and nonlinear results that are discussed in Longaretti
& Lesur (2010). Also of interest are the results of Lesur &
Longaretti (2011), where it is shown numerically that the en-

8 This trend has of course been discussed by other authors previously
(Terquem & Papaloizou 1996; Ogilvie & Pringle 1996), especially for the
ideal MRI at zero resistivity

ergy injection spectrum in net-flux MRI turbulence is broadly
distributed across a wide range of wave-numbers. With these
results in mind, it seems likely that nonmodal analyses could
be useful in studying aspects of MRI turbulence from a linear
standpoint, since growth over short time-scales is almost cer-
tainly more relevant to turbulent situations than the t → ∞
limit explored by eigenmode analyses (Friedman & Carter
2014). Taking this to the extreme, we have proved in SB14
that the energy growth in t = 0+ limit is as fast as the fastest
growing channel mode for all (ky, kz); that is, as t → 0 am-
plification plots such as Figs. 9 and 10 become completely
homogenous, with no preference for any wave-number over
any other.

6.2. The MRI with zero background field
Another interesting case that is simple to analyze using non-

modal techniques is the MRI with no background magnetic
field at all. Of course, in this case the system is spectrally sta-
ble; nevertheless, there can be significant growth over a wide
range of wave-numbers, which can be sufficient to cause a
transition to turbulence given large enough initial conditions
(Rempel et al. 2010; Riols et al. 2013). In Figure 11 we il-
lustrate the maximum amplification of perturbations with no
background field in (a) the magnetohydrodynamic case and
(b) the well-studied hydrodynamic (HD) case with Keplerian
shear. It is interesting to note the enormous change afforded
by adding in magnetic perturbations, not in the magnitude of
the maximum amplification, but in the range of wave num-
bers that can be strongly amplified. In particular, while verti-
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Figure 11. (a) Maximum amplification by t = π as a function of ky, kz at
ν = η = 1/3000 but with no background magnetic field, B0y = B0z = 0.
(b) Same as (a) but without allowing magnetic perturbations, i.e., for the
hydrodynamic shearing box. The addition of magnetic perturbations allows
reasonable growth over a much larger range of wave-numbers.

cal perturbations (non-zero kz) are strongly suppressed in the
HD case, these can grow rather strongly in the MHD system.
How such modes feed back in the nonlinear system and allow
the transition to a fully turbulent state (in MHD but not in HD
Lesur & Longaretti 2005) is beyond the scope of the current
article.

7. SUMMARY AND DISCUSSION
In this work, we have explored aspects of the magnetoro-

tational instability using nonmodal stability techniques. In
fluids, these techniques have primarily been applied to sys-
tems that are spectrally stable, presumably due to the dramatic
failure of eigenmode predictions when a subcritical transition
is possible. However, despite the fact many configurations
of the axisymmetric and non-axisymmetric MRI have unsta-
ble eigenmodes, we have found nonmodal methods to be very
fruitful. In particular, nonmodal structures will be more phys-
ically meaningful than eigenmodes in many cases, leading to
an intuitive connection between global results and the local
shearing wave picture, as well as being far more robust with
respect to slight changes to the system (e.g., boundary condi-
tions).

We consider the main conclusions of this work – used to
motivate the examples and discussions in the text – to be as
follows:

• For non-axisymmetric modes, eigenmodes will usually
be irrelevant to the linear dynamics of the system in
both local and global domains. We have seen that
the fastest growing structures (pseudo-modes) invari-
ably resemble shearing waves, even when the bound-
ary conditions of the model are incompatible with the
shear wave’s time-dependent structure. Similar behav-
ior is seen for the hydrodynamic case (e.g., Yecko 2004;
Ioannou & Kakouris 2001). In addition, the growth of
the pseudo-mode is generally much faster than that of
the eigenmode and this fast growth can persist until the
disturbance has grown by many orders of magnitude
(see Figs. 1 and 3).

• In global domains, the fact that the pseudo-mode struc-
ture resembles shearing waves provides a very natu-
ral connection between the global (radially stratified)
MRI and the local shearing box picture, which (to our
knowledge) has not been previously discussed. A direct
comparison of global pseudo-mode growth to the lo-
cal shearing wave equations [Eqs. (11)] in Sec. 5 shows

very good agreement, for both axisymmetric and non-
axisymmetric modes.

• The possibility of algebraic (transient) growth of the
MRI has often been framed as being a consequence
of the time-dependence of the shearing wave ansatz
(e.g., Tevzadze et al. 2008; Johnson 2007). In fact,
the shearing wave ansatz and resulting equations are
useful for predicting MRI growth because shear wave
disturbances are strongly amplified by the underlying
spatially dependent equations; the time-dependence of
the equations is really of subsidiary importance. Thus,
it is most natural to analyze the local shearing wave
ODE system using nonmodal techniques also. In addi-
tion, the axisymmetric case, though time-independent,
can be analyzed using exactly the same framework
and transient growth is also important for such modes.
This growth is simply advection of the initial pertur-
bation by the flow, which continues indefinitely in the
dissipation-less limit even when no unstable eigen-
modes are present.

• Nonmodal ideas are particularly important if one
wishes to consider linear or quasi-linear explanations
for MRI turbulence and dynamo. The reason for this is
straightforward; any perturbation that grows in a turbu-
lent system will necessarily be quickly destroyed by the
underlying randomness. Thus, short time growth rates
will be much more relevant and correspondingly, non-
modal analysis techniques must be utilized (Friedman
& Carter 2014). As an example, a quick comparison
of Figs. 9 and 10 illustrates the enormous difference in
mode structure that arises from considering the insta-
bility over a longer time-scale. Evidently, one must be
very careful in applying eigenmode ideas to an analysis
of MRI turbulence.

Given the large number of works studying hydrodynamic non-
modal growth, as well as previous studies of transient growth
in the MRI shearing wave equations, it is curious that these
ideas have not been formally explored previously. Neverthe-
less, like its hydrodynamic cousin, the MRI system is strongly
non-normal and an over-reliance on eigenmode analyses can
lead to seemingly contradictory and confusing results.

The presentation in this work has necessarily been rather
perfunctory due to our desire to include a variety of nonmodal
MRI analyses, from both global and local perspectives. Of
course, there is much room for future work. We have entirely
left out the effects of compressibility and density stratifica-
tion in our global model for simplicity, which certainly limits
its relevance to a real accretion disk. Examination of the ef-
fects of vertical stratification in a fully 2-D model (Latter et al.
2010) could also be interesting, although the non-modality
would not be nearly so extreme as that arising from radial
stratification. Along these lines, it would also be prudent to
consider more general shearing wave expansions as discussed
in Sec. 5.3, examining the agreement between global pseudo-
modes and various local approximations.

Finally, and perhaps most interestingly, what conclusions
can we draw about the character of MRI turbulence using
nonmodal ideas? As an example, the existence of strong
linear growth at all scales seems to support the notion that
MRI turbulence does not exhibit a well-defined inertial range
(Bratanov et al. 2013; Fromang & Papaloizou 2007). Methods
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such as that used to create Fig. 9 may be helpful in quantify-
ing such ideas; for instance, an examination of mode structure
as a function of dissipation parameters (in particular magnetic
Prantl number) may be helpful in understanding some aspects
of shearing box turbulence. Another possibly is to consider
inhomogenous background fields (such as might be created
by a dynamo process, Lesur & Ogilvie 2008b,a) or shear-
ing waves with density stratification, where there appears to
be a different dynamo mechanism in the coronal region (Si-
mon et al. 2012; Gressel 2010). Of course, linear ideas alone
can never hope to fully explain the enormous complexity of a
self-sustaining turbulent system; however, it is also imprudent
to discount the importance of linear physics without using
a method of analysis that appropriately handles the relevant
time-scales of the problem.

We would like to thank Dr. Jeremy Goodman for
valuable discussion. This work was supported by Max
Planck/Princeton Center for Plasma Physics and U.S. DOE
(DE-AC02-09CH11466).
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APPENDIX

A. GLOBAL LINEAR MHD EQUATIONS

For reference, here we give the global linear MHD equations in the Orr-Sommerfeld variables [Eq. (5)], using the global
equilibrium described in Sec. 2.1 (a Keplerian velocity profile has already been assumed). For simplicity, we have not included
dissipation terms (i.e., set ν̄ = η̄ = 0); these terms become very complex (especially with the ν̄ appearing in the background
velocity profile) and the equilibrium is of mostly academic interest since compressibility is generally important in global domains.
Note that when ν̄ and η̄ are non-zero, derivatives up to fourth order in space appear in the equation for u. In practice, we derive
these equations directly from the global nonlinear MHD equations [Eqs. (3)] in Mathematica and insert them directly into the
Chebyshev eigenspectrum solver. We have found empirically that the global MHD equations in this form lead to a much cleaner
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numerical spectrum than in the original variables. This is very important for pseudo-mode calculations since a large number of
eigenmodes are often needed to form an accurate pseudo-mode.

With F ≡ mB0θ + kzB0z, the equations are

∂3
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im
r3/2 η(r, t). (A1)

B. CONVERSION BETWEEN GLOBAL AND SHEARING BOX EQUATIONS

Here we outline the method used to obtain the shearing box parameters from global parameters at a chosen radius. The method
is essentially that of Umurhan & Regev (2004) and involves non-dimensionalizing all variables and considering a small box
centered at r0. Specifically, insert

r = r0 (1 + δx) (B1)

into the global equations (Eqs. (A1) including dissipation), where δ represents the size of the box compared to r0 and x is the radial
co-ordinate of the shearing box. Then, non-dimensionalize each variable according to the length scale δr0 and the time-scale r3/2

0 ;

ur = ũr
δ

r0
, Br = B̃r

δ

r0
, ζ = ζ̃

1

r3/2
0

, η = η̃
1

r3/2
0

, kz = k̃z
1

r0δ
, m = m̃

1
δ
, (B2)

B0z = B̃0z
δ

r0
, B0θ = B̃0θ

δ

r3/2
0

, ν̄ = ˜̄ν δ2 √r0, η̄ = ˜̄η δ2 √r0, (B3)

where the ·̃ indicates a non-dimensionalized quantity. Removing the background flow using
∂

∂t
→

∂

∂t
− i

u0(r0)
r0

m
δ

(B4)

and performing a series expansion in δ to first order, gives – after a substantial amount of algebra – the shearing box equations
Eqs. (9).

This link between the global and local equations leads to a straightforward method to obtain the relevant shearing box parame-
ters at r0. With δ a necessary choice (representing the size of the shearing box in comparison to the radius), the local parameters
are given by,

ky = (m)G δ, kz = (kz)G δr0, B0z = (B0z)G

√
r0

δ
, B0y = (B0θ)G

r3/2
0

δ
, ν̄ = (ν̄)G

1
δ2 √r0

, η̄ = (η̄)G
1

δ2 √r0
, (B5)

where (·)G represents a global quantity. It is also necessary to rescale time by a factor of 1/r3/2
0 . As it transpires, the shearing wave

equations are invariant under a rescaling by δ in exactly the way it appears in Eqs. (B5), meaning the choice of δ is irrelevant and
we can set it to 1 for simplicity.
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