
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL-

gczechow
Typewritten Text

phampton

phampton
Typewritten Text
5046

phampton
Typewritten Text
PPPL-5046

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Text Box
NSTX-U Advances in
Real-time C++11 on Linux

phampton
Text Box
Keith G. Erickson

phampton
Typewritten Text
MAY 2014

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

phampton
Typewritten Text

Princeton Plasma Physics Laboratory
Report Disclaimers

	

	

Full Legal Disclaimer

	

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.
	

Trademark Disclaimer
	

Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof or its
contractors or subcontractors.

	

	

	

PPPL Report Availability
	

	

Princeton Plasma Physics Laboratory:
	

http://www.pppl.gov/techreports.cfm
	

Office of Scientific and Technical Information (OSTI):

	

http://www.osti.gov/scitech/
	

	

	

Related Links:

 U.S. Department of Energy

 Office of Scientific and Technical Information

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Programming languages like C and Ada combined

with proprietary embedded operating systems have dominated
the real-time application space for decades. The new C++11
standard includes native, language-level support for concurrency,
a required feature for any nontrivial event-oriented real-time
software. Threads, Locks, and Atomics now exist to provide the
necessary tools to build the structures that make up the
foundation of a complex real-time system. The National
Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton
Plasma Physics Laboratory (PPPL) is breaking new ground with
the language as applied to the needs of fusion devices. A new
Digital Coil Protection System (DCPS) will serve as the main
protection mechanism for the magnetic coils, and it is written
entirely in C++11 running on Concurrent Computer
Corporation’s real-time operating system, RedHawk Linux. It
runs over 600 algorithms in a 5 kHz control loop that determine
whether or not to shut down operations before physical damage
occurs. To accomplish this, NSTX-U engineers developed
software tools that do not currently exist elsewhere, including
real-time atomic synchronization, real-time containers, and a
real-time logging framework. Together with a recent (and
carefully configured) version of the GCC compiler, these tools
enable data acquisition, processing, and output using a
conventional operating system to meet a hard real-time deadline
(that is, missing one periodic is a failure) of 200 microseconds.

Index Terms—Computer languages, Real-time systems,
Software design

I. INTRODUCTION
++11 introduced new paradigms to the language [1] that
will benefit the real-time (RT) software world given

careful usage. Previous versions of the language relied on
third party libraries often written in C (e.g. pthreads) or non-
portable operating system specific routines to provide features
like threading, synchronization, and communication. The new
version moves those requirements into the language itself,
requiring that compliant compilers provide the necessary
features. Thus, concurrent code can now become portable,
reusable code.

This manuscript has been authored by Princeton University under Contract

Number DE-AC02-09CH11466 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes.

K. G. Erickson is with the Princeton Univeristy Plasma Physics Lab,
Princeton, NJ 08540 (e-mail: kerickso@pppl.gov).

But concurrent code is not the same as RT code.
Concurrency refers to situations where multiple threads
execute in parallel, possibly with shared data structures. Real-
time instead describes the timing requirements and,
specifically, the determinism of the code, regardless of how
many threads are running. For instance, the new National
Spherical Torus Experiment Upgrade (NSTX-U) system will
operate at 5 kHz, one cycle every 200 µs [4]. Since missing
one cycle is a failure, the system is hard real-time.

Making the new C++ concurrency features also support
hard real-time is, ironically, hard. By design, most of the
language components trade latency for throughput. The
NSTX-U system, like most RT systems, instead prefers the
lowest reachable latency to reduce the risk of failing to meet
hard deadlines. The total work possible is therefore less than
that achievable on a non-real-time system [7]. The
implication here then is that facilities that would otherwise
work well in a non-RT application may become harmful.

A. Reference Platform
Because the NSTX-U Digital Coil Protection System

(DCPS) is the primary customer for the ideas described in
later sections, its platform and associated characteristics will
provide the backdrop for any implementation specific details
such as timing metrics or compiler feature availability. It is a
32-core AMD Opteron 6386SE 64-bit system with 64 GB of
registered ECC memory running on SuperMicro hardware
with a Concurrent RedHawk GNU/Linux operating system. It
runs custom software written entirely in C++11 whose
purpose is to protect the NSTX-U coil system. It executes 600
algorithms [5] every 200 µs, computing various stresses,
forces, and combinations thereof on the machine. Should any
algorithm trip any of the predetermined upper or lower limit
values, the entire machine will instantly shut down. [6][7]

B. GNU/Linux, RedHawk Kernel
The NSTX-U DCPS test platform uses Concurrent

RedHawk as the real-time version of Linux [8]. It is based on
RedHat Enterprise Linux (RHEL) version 6, amplified with a
modified, recent kernel and a comprehensive tool suite
specifically engineered for real-time development and
deployment. The tools include a debugger with code injection
support, simulator, system tuner, kernel tracer, and more. The
advanced kernel delivers superior performance with respect to
scheduling and latency vs. a stock kernel. RedHawk provides
a simple method of shielding CPU cores from any
combination of interrupts, other processes, and the kernel

NSTX-U Advances in
Real-time C++11 on Linux

Keith G. Erickson, Princeton University

C

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

timer. This gives user applications exclusive use of a given
set of cores, guaranteeing that core contention stays within the
application itself. Later sections will continually describe
ways to exploit this feature with the gratuitous use of
spinwaits.

C. GNU Compiler Collection (GCC) [9]
C++11 is a recent language. Unfortunately, the base

operating system, RHEL6, uses an old version of the compiler
(4.4) that does not support anything past C++03. DCPS
instead uses a manually built version of a stock GCC v4.8.3
[10] upstream release. It is configured with only one
important option described later, whose purpose is to
streamline certain timing system calls. With the recent release
of GCC v4.9.0 [11], plans are in place to upgrade to the new
version, which should allow the usage of two features missing
in 4.8: regular expressions, and generic lambda functions. The
latter feature should simplify some of the proposed
implementations below.

D. Scheduling and Priority
Typical Linux scheduling involves modifying a process

“nice” value. A low value reduces the allotted share of the
CPU time, while a high value increases the share. Any user
can reduce the share, while only the super user can increase it.
This is know as the Time Share scheduling policy, and is the
de facto standard to manage CPU time.

However, Linux actually supports three scheduling policies
for user processes: Time Share (TS), First In First Out (FIFO,
though the kernel uses the designation “FF”), and Round
Robin (RR). The first one as stated runs virtually every
process. The latter two are the RT policies. They are both
preemptive, in that they will force a context switch with a
lower priority thread. They differ with respect to threads
within the same priority level. The FIFO scheduling policy
will cause the scheduler to block all other threads at the same
priority until the running thread yields (either manually or via
a system call). The RR policy will do the same, up to a
maximum time slice determined by the thread’s “nice” level.
If a thread exceeds its time slice, the scheduler will place it at
the back of the run queue for that priority level. Since the
time slice sizes range from 10 ms to 780 ms on the reference
platform, the RR scheduler is not an option for the remainder
of this discussion; it is here only for completeness.
Consequently, every thread in DCPS uses the FIFO scheduling
policy.

Priorities are rather simple in the Linux system. They range
from 0 to 99. 0 is reserved for the TS policy, and 1 through 99
are for the RR and FF policies. Arbitration between threads at
different levels is simple: for any threads on a CPU that are
currently runnable, the thread with the highest priority runs.

II. KEY C++ CONCEPTS
Object oriented programming techniques apply to virtually

all object oriented languages. However, there are certain
nuances specific to writing C++ code that affect the
implementation or even practical application of generic

concepts and approaches.

A. Resource Acquisition Is Initialization (RAII)
In C++, the constructor and destructor approach to class

design allows for clear distinction of object and resource
lifetime. In general, an object should acquire all resources in
the constructor, and release all resources in the destructor.
This is a very safe design idiom, since the language guarantees
that the destructor always executes, even in the face of
exceptions. This is markedly different from other languages
that instead encourage the use of explicit “getters” and
“setters” to tell the object instance when to conduct acquire
and release operations.

In the world of C or C-like C++ code, the typical approach
is to acquire resources, test for some error condition, and free
the resources after handling the error. C++ makes this much
easier. Consider these two scenarios:

// Manual management
int a = new int[10];
try {
 f(a);
} catch (...) {
 std::cout << “Error” << std::endl;
}
delete[] a;

vs:

// Automatic management
std::vector<int> a(10);
f(a);

In the first example, the user must take care of handling all

possible errors to avoid leaking memory. In the second, the
object allocates memory in its constructor and deletes the
memory in its destructor, all transparently to the user. Good
class design follows this paradigm or variations thereof
whenever possible. Sections that follow will use this
extensively to show simple ways to lock and unlock protected
regions.

B. Memory Allocation In Real Time
As shown in the previous section, RAII provides a powerful

way to ensure safe resource management. The drawback is
that sometimes the objects in use may unexpectedly do things
that affect real-time applications. In the example above, the
vector started with enough space pre-allocated for ten
elements large enough to hold an integer. This will have no
impact on a real-time scenario, until the vector runs out of
space.

The vector implementation that comes with GCC has a
greedy allocator. When it runs out of space, it doubles the
allocated size. That means that if a user pushes an eleventh
element into the vector above, it will grab ten additional
elements from the free store. That allocation can be very time
consuming, especially in the case of large vectors. Consider a
vector holding one million 8-byte double precision floating-
point numbers. Adding one more element to that vector will
cause a memory allocation of 8 MB. With 4 KB default page

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

sizes, that will entail substantial page faulting.
Page faults introduce another potential for real-time

disaster. The obvious solution to the above problem is to
always overcommit allocated memory. In the case of DCPS,
each real-time event (called a “test shot”) cycles at 5,000 times
per second for 11 seconds total, yielding 55,000 cycles. Any
buffer used during the test shot therefore requires a minimum
of 55,000 elements. DCPS overcommits this to 100,000
elements because, frankly, memory is inexpensive.

Obvious solutions sometimes have unobvious problems.
The Linux memory allocator is a lazy allocator, and it will not
actually fault in the allocated pages. Page faults occur on first
use instead of on first allocation. Since each page fault takes a
minimum of 2 ms to complete, the result is catastrophic. A
single page fault blocking the RT execution path will cause
immediate shutdown of the NSTX-U system.

Fortunately, there is an easy solution. Borrowing from the
C world, DCPS makes use of memory locking [12] to instruct
the operating system to lock all current and future pages of
allocated memory. This not only prevents swapping to disk,
but forces page faults at first allocation instead of on first use.

The one thing to keep in mind with all of the solutions
posed in this section is that each one increases determinism by
reducing efficient memory usage. Said inversely, each
solution wastes memory. DCPS accounts for this with a very
large memory footprint at surprisingly little cost. [6]

III. NEW C++ VERSION: 2011
In September of 2011, the International Organization for

Standardization (ISO) released a new version of the C++
programming language standard as ISO/IEC 14882:2011, or
colloquially as C++11 [1]. This replaced the previous C++03
(ISO/IEC 14882:2003) [2] and C++98 (ISO/IEC 14882:1998)
[3] versions. The next language versions are tentatively
named C++14 and C++17, and these will decouple the
language standard from upcoming experimental technical
specifications to encourage shorter timespans between
released versions.

The 2011 version of the language added several new
capabilities that are critical for the advancements present in
DCPS. These include both library changes as well as base
language changes.

A. Atomics
#include <atomic>

The most important concurrency tool present in the new
language is support for native atomic operations. Previous
versions of C and C++ required non-portable inline assembly
(possibly via a third party library) or special compiler
“builtins” to work with atomic types. The new version
contains a complete set of atomic tools, including base types,
generic overrides, and an entire memory model with many
options for clarifying the desired read/write semantics.

The atomic type that can serve as the basis for any other
atomic structure is std::atomic_flag [13]. Beyond that,
all of the language defined simple data types have
corresponding overrides: std::atomic_bool,

std::atomic_int, std::atomic_size_t, etc. Even
pointers work atomically, using generics:

template<class T> struct std::atomic<T*>

Without knowing anything else about memory models,

atomicity, or concurrency principles, a user can take an atomic
type, share it between threads, and use conventional
operations as if it were a normal type (add, subtract,
compare/exchange, etc.) The language will guarantee that the
memory backing the object will maintain integrity. For
example, the object will not encounter a situation where one
thread writes to two bytes of a four-byte integer, while a
second thread thread reads the partially written type. Instead,
the first write will complete entirely before the second read
starts.

B. Threading
#include <thread>

 By definition, concurrency requires running multiple
execution paths in parallel. While these parallel operations
could be entirely separate processes, the use of threads instead
tends to increase performance gains. Thread creation is faster
than process creation, and communication between threads is
significantly easier. Each thread in a process shares the entire
memory space, so there is no need to use external interprocess
communication (IPC) methods such as shared memory, pipes,
message queues, etc. Should a thread need a given object to
stay local to the thread instead of global to the process, C++11
introduces the thread_local keyword. This keyword
makes the most sense when applied to a member variable that
should remain static within the lifetime of the thread. [13]

The reference platform is highly multithreaded. All tools
described in later sections use the threading facilities provided
by the language. Native tools provide only what the language
cannot, e.g. setting the processor affinity, scheduler priority,
and scheduler type. Note that an important feature, thread
pools, is unavailable in C++11. DCPS implemented custom
thread pools instead, in a replaceable way should the language
adopt official thread pools in the future.

C. Move Semantics and RValue References
Copying data between objects is a potentially slow and

invasive operation. Sometimes, depending on the actual
characteristics of a constructor, it can have unacceptable
impact on real-time determinism. Recall that no real-time
system should ever allocate memory during a real-time event.
Recall also that the most common container, the vector, will
allocate memory during construction. This leads to a
challenging situation when trying to return a vector from a
function. Without careful considerations, a seemingly
innocuous function call could, in the absence of return value
optimization (RVO), lead to several vector copies through the
use of temporaries.

Move semantics are a new tool in C++11 that elide some of
these inefficiencies entirely. Consider a function that returns a
vector by value. The compiler must generate code that copies
that vector using the copy constructor. It most likely allocates

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

memory for a temporary in the process, only to deallocate the
memory moments later. The new move operation instead
allows using a move constructor to invalidate the internal meta
data of the source vector and populate the meta data of the
target vector without ever allocating temporary storage. The
“rvalue reference” naming in this case refers to the common
situation where the temporary mentioned above sits on the
right hand side of an equals sign, though this is not a required
prerequisite. [13]

The real-time queue described later uses this new feature to
optimize moving data into a queue virtually instantly.

IV. AUTOMATIC REAL-TIME ATOMIC LOCK
The easiest concurrency mechanism is a mutex lock. These

are unfortunately inherently slow, requiring up to 65 µs to
release a contended lock on an otherwise idle CPU. With the
NSTX-U 5 kHz system, spending a third of each cycle
unlocking just one mutex is a nonstarter. The solution
involves careful process yielding with an RAII atomic lock.

C++11 introduces the std::atomic_flag object that has
only two members: test_and_set(), and clear(). This is
enough, however, to serve as the foundation for atomic
devices at any level of complexity. It will also become a vital
tool for subsequent constructs in later sections.

The design is simple, and uses several important features of
C++:

struct AtomicLock {
 std::atomic_flag & flag;
 AtomicLock(std::atomic_flag & f): flag(f) {
 while (flag.test_and_set())
 std::this_thread::yield();
 }

 ~AtomicLock() {
 flag.clear();
 }
};

 First, the constructor takes in a reference, and initializes
the local member reference with it, putting the onus on the
caller to ensure that all instances share the same flag. The
constructor then tries to repeatedly set the flag, and only exits
when the old state is zero, indicating that no other thread owns
the lock. RAII kicks in with the destructor, to guarantee that
the lock is exception safe. If an exception ever occurs, the
destructor will always unlock the flag. Therefore, a simple
usage of this lock follows:

void reentrantFunction() {
 static std::atomic_flag f(ATOMIC_FLAG_INIT);
 AtomicLock lock(f);
 // Do work
}

Every call to the function above will share the same flag

instance, and will block waiting for the atomic lock to
instantiate. The first call to the function will initialize the flag
(so-called “lazy initialization”) with a safe value. When the
function exits, either normally or because of an exception, the
destructor will clear the flag so that the next waiting function

can proceed.
There are several caveats with this simplistic approach.

Multiple waiters will fight with the scheduler and each other
to win the next slot. Starvation is possible, but easily
mitigated in practical scenarios where the amount of
contention is low with respect to the time required for each
thread to finish work. Waiters in this example use a spinwait,
which will tie up the CPU, blocking any process with a lower
priority. This is a tradeoff, avoiding the context switches at
the expense of one less processing core. Customization is
possible at the expense of complexity, tailored to the needs of
the user application. As an example, it would be feasible to
pass in a lambda function to the constructor that it would call
inside the while loop, with a reasonable default set to either a
no-op, or the existing yield. This way, each thread could take
a possibly different action when the lock is unavailable.

V. REAL-TIME QUEUE
Adding items to a std::queue on most implementations

requires allocating memory from the heap. This is dangerous
in a real-time loop, and introduces unallowable system calls.
This particular queue design is also not thread safe, so users
must graft concurrency mechanisms on top of the underlying
data structure. The example that follows combines a
modification to the lock described in Section 3 with
preallocated storage and ring buffer iterators:

template<class T, std::size_t size = 1000>
struct RealtimeQ {
 RealtimeQ():
 flag(ATOMIC_FLAG_INIT),
 q(size), front(q.begin()), back(q.end())
 {}

 void enqueue(T && x) {
 AtomicLock lock(flag);
 *front++ = std::move(x);
 if (front == q.end())
 front = q.begin();
 }

 T dequeue() {
 AtomicLock lock(flag);
 T & x = *back++;
 if (back == q.end())
 back = q.begin();
 return x;
 }

 std::atomic_flag flag
 std::vector<T> q;
 std::vector<T>::iterator front, back;
};

This queue uses the atomic lock from Section 3, modified in

a way to block the thread calling enqueue() if the queue is
empty. The size defaults to 1000 elements, configured at
instantiation. There is no safety in overflow; it is the caller’s
responsibility to choose an appropriate size. This is a tradeoff
between safety and real-time determinism. It would be
possible, however, to add checks to test for overflow and
throw an exception should it occur.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

VI. REAL-TIME LOGGING
Writing log information is an important tool for any

reasonably complex piece of software. It gives immediate
feedback when problems arise, and provides a timeline of
events for later reconstruction. Typical characteristics include
timestamps to show when events occur, and logging
thresholds or severities to filter important events.

A. Reference Platform Characteristics
The DCPS system uses timestamps with microsecond

resolution, and the following 5 log levels: Fatal, Warning,
Informational, Debug, and Trace.
1) Fatal

Fatal entries trigger immediate programmatic shutdown, as
something catastrophic has occurred. Typically this involves
some situation from which the software cannot recover.
2) Warning

Warning entries report that something bad transpired, but do
not result in shutdown actions. This is useful if for instance
some internal limit such as a buffer size reaches a given
percentage of capacity.
3) Informational

Informational entries represent the typical default level of
logging, and provide a high level sequence of the real-time
event as it progresses through various stages, from startup to
configuration to execution to post-event recording. No
informational messages occur during the actual RT execution
to avoid unnecessary system perturbation.
4) Debug and Trace

The last two levels provide an increasing level of detail into
the inner workings of important operations. These tend to
increase intrusiveness with detail, and so only serve any
purpose when troubleshooting a problem.

B. Real-time Constraints
To maintain determinism, a real-time application must

refrain from triggering non-essential interrupts in the
underlying system. The most common activity causing
intrusive interrupts outside of memory management is writing
to the filesystem, either to the underlying disk storage or to a
file based device such as /dev/console or /dev/pty. Writing to
a log file directly or writing log information to stdout can lead
to devastating effects depending on the timing constraints of
the application. Therefore, an ideal real-time logger will not
obstruct the main real-time threads should any interrupt occur.

Further, the act of preparing the log entry may introduce
overhead while constructing the information string. There are
two sources of this overhead: processing logger function
arguments, and converting arguments to a character
representation from some other data type. The first can be
problematic if an argument is not a Plain Old Data (POD)
type, or if it requires a nontrivial function call. The second
becomes an issue when the argument is not already a character
type, and conversion to a character type involves potentially
long operations. Therefore, the logger must delay handling
arguments until required, which may imply never depending
on the current allowable log level threshold.

C. Class Design
Writing a log message requires calling through an external

interface using a preprocessor macro. While macros are
generally bad form in the C++ world [14], they are
unavoidable in this use case. There is no other way to short
circuit log entry processing. The macro loosely expands to the
following:

#define LOG(log, level, ...) \
 if (level > log.minLevel) \
 log.append(level, __VA_ARGS__);

This makes use of variadic preprocessor arguments to

forward along the entire log statement, however the user
intends. The if-statement prevents ever touching any of the
arguments if the stated level is too low (for instance, if a log
entry contains detailed trace data useful only in certain
situations.) Forcing the user to write the same if-statement for
every call defeats the purpose of abstraction and object
oriented design, but the language has no support for delayed
evaluation or partial evaluation of function call arguments.
Using the preprocessor is typically a last resort; in this case, it
is the only choice.

There are three phases that must happen for any log entry
not disabled by the logging threshold level: 1) argument
evaluation, 2) timestamp injection, and 3) string conversion
and storage.

If the log threshold is low enough, the variadic argument list
propagates to the internal logging methods. If this were a
traditional C program or a C++ program using the C
interfaces, the function would invoke the variadic methods of
<stdarg.h> or <cstdarg> respectively. Instead, C++11
provides new variadic templates that allow processing the
arguments recursively using variadic template arguments.
Each level of recursion pulls off another argument in the list,
until a final call with no arguments. The following code
illustrates this technique as it applies to handling a log entry:

template<class T, typename... Args>
void append(T x, Args... msg) {
 // append x to the log;
 append(msg...);
}

void append() {
 // msg... is empty, so append a newline
}

The compiler creates an instance of the first function for

every type in every call used throughout the program not
explicitly overridden (such as the final one), making use of the
C++ idiom, Substitution Failure Is Not An Error (SFINAE).
Using this pattern, it is also possible to inject intermediary
handlers that move the data along without knowing the exact
contents. This last technique provides a way to move the data
off of the real-time execution path and onto different threads
scheduled elsewhere.

The Logger class as implemented contains two
RealTimeQueue members to handle moving the data, one

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

running at an elevated FIFO priority and the other running at a
normal TS priority. The queues themselves use a
std::function template type, allowing any function call
signature as the queue contents through tools such as
std::bind. The high priority queue serves only one
purpose. It injects a timestamp at the front of the log entry
before forwarding everything to the low priority queue, which
performs the remainder of the work. When writing a log
entry, for the log to be of any practical use, the timing
information contained therein must be accurate and reliable.
Therefore, the call to determine the current time must happen
as close as possible to the point in the real-time execution path
where the diagnostic exists. Moreover, concurrent log entries
must be sequenced in the logical order they occurred. The
logger implementation presented sacrifices negligible timing
accuracy for guaranteed ordering correctness.

To actually acquire the time stamp requires careful use of
the new <chrono> library. Despite the implementation
agnostic nature of the standard libraries, calls to
std::chrono::high_resolution_clock::now() can
have wildly different results. The solution chosen on NSTX-
U was to configure GCC v4.8.2 with the --enable-

libstdcxx-time=rt option, which uses a Linux Virtual
Dynamically Linked Shared Object (vDSO) to get time in
roughly 200 ns instead of 2000 ns, an order of magnitude
difference.

Therefore, the sequence described above follows the
following timeline:
1. Determine if logging is enabled. Short-circuit all

remaining processing if not.
2. Collect all arguments into a std::bind object (including

hitting all side effects, if any), and pass to the high
priority queue.

3. Inject a timestamp to the front of the argument list, and
pass to the low priority queue.

4. Recursively peel off arguments using a variadic template
with SFINAE, appending each to the log.

5. Write a new line to the log.

VII. (BI-DIRECTIONAL) ATOMIC SYNCHRONIZATION
As mentioned earlier, mutexes provide an easy yet invasive

way to coordinate multiple threads of execution. Since the
timing constraints of the DCPS reference platform preclude
using mutexes during the real-time event execution path, the
only remaining choice for any thread coordination mechanism
is the use of atomic types to signal readiness between threads.
Unfortunately, atomics do not support complex
communication mechanisms out of the box like mutexes do.

A. Motivating Use Case: Algorithm Pools
As with the other design patterns shown thus far, the

NSTX-U DCPS wastes resources in exchange for virtually
zero latency. The same is true when implementing algorithm
thread pools. Section 3 mentions briefly that pools are not
present in C++11, but they are a common tool used to group
similar execution threads together. In fact, Linux supports

grouping threads and processes together natively.
To meet the 5 kHz timing deadline while executing all of

the algorithms, DCPS divides the work into discreet tasks
assigned to one of 18 threads each occupying a dedicate CPU
core. Therefore, each thread contains a fixed but unequal
chunk of work. The threads need to coordinate the beginning
and end of each cycle. Since each thread will finish at a
different time, they all must rendezvous at a barrier released
only when the last thread is ready.

B. Atomic Barriers and Signaling
There is no predefined way to use atomics as signals

between threads. Therefore, the point of this design is to
create a signaling mechanism that is extensible beyond the
specific requirements of DCPS.
1) Initial Starting Barrier

Bootstrapping the algorithm threads occurs outside of the
real-time event, so no specific requirements block the usage of
conventional signaling means. DCPS uses a std::mutex
coupled with a std::condition_variable, with each
thread waiting after thread creation and a notification sent
until all threads have checked in.
2) Atomic Counters

In early designs, the worker threads communicated with a
master control thread using atomic booleans. However, this
proved ineffective, as a simple boolean cannot convey enough
information to signify bidirectional information. A counter
works better, but the final product requires two counters: one
for each thread to signal that it is ready to start work, and
another to signal that it has finished the work. The master
thread then waits for the ready counter to indicate that all
threads are ready before opening the gate on all threads at
once. It then waits for the finished counter to indicate that all
threads have reached their own finish lines. At that point, it
can make the next dataset ready for consumption, and repeat
the process.

Each thread, be it a worker thread or the master thread, can
increment or decrement a counter using atomic operations
without fear of corrupting another thread. They can also spin
waiting for another thread to change a particular value. For
instance, if the master thread knows that there are 18 worker
threads, the following is a reasonable communication idiom:

// Master
ready = 19;
while (ready > 1)
 std::this_thread::yield();
--ready;

// Worker
--ready;
while (ready > 0)
 std::this_thread::yield();
doWork();

The worker threads decrement the counter and wait for the

final decrement from the master thread. The master thread
waits until all worker threads have decremented the counter,
then it decrements the counter itself. This is the bi-directional
nature of the synchronization mechanism. At first glance,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

there may appear to be a race condition if the final worker
decrements the counter to 1 and the master thread decrements
it to zero before the worker can check that it is still greater
than zero. That is why the contents of the while loop – by
design – must be optional. In this example, a yield is surely
optional. Variations on this approach must take care to
maintain the optional nature of the while loop contents.

There is a similar barrier at the end of each periodic cycle to
allow each worker to signal to the master that processing is
complete. This creates a zone between two atomic barriers
during which the master can easily check that processing
completes in a timely fashion. Individual workers are free to
finish at any time before the expiration period. The only
guarantee on timing is that by the end of the cycle period,
either every worker has finished, or the system has triggered a
fatal abort.
3) Final Cleanup

Once the real-time event has ended, the worker threads
must exit gracefully. Doing so requires testing for an exit
condition at particular interruption points, and setting that exit
condition externally. In this case, there is an atomic boolean
shared between the worker threads and the master thread that
the workers check twice near the beginning of the cycle. The
design borrows from the popular Double Checked Locking
Optimization design pattern [15]. In the example shown
earlier, the worker would check the shutdown flag both before
decrementing the ready counter as well as after exiting the
while loop. Once the worker enters a cycle, it is impossible to
stop until the cycle completes. In practice, other checks
through the system ensure that this poses no threat to system
integrity, and in any unforeseen case, at most one cycle will
run. This keeps the design metrics within the specification
tolerance.

VIII. CONCLUSION AND FUTURE WORK
The NSTX-U DCPS successfully uses C++11 in a hard

real-time machine protection environment. Doing so requires
careful use of language features and customized devices that
exploit the concurrency mechanisms in a real-time safe way.
Atomic types provide the basic building block for all objects
presented here, such as the bi-directional atomic
synchronization and the RAII atomic lock. The latter lock
enables a real-time safe queue, which further serves as the
groundwork for a complete logging framework. All of these
tools and processes operate without affecting the determinism
of the overall system, such that it can still make very tight
microsecond deadlines on standard commercial off the shelf
hardware.

Version 2 of the DCPS will see improvements in all real-
time devices. Modifications to the Real-time Queue will
allow greater control over the actions taken while waiting for
lock acquisition through the use of lambda functions and
function objects. The Logger class will make use of new
features in GCC 4.9 to allow generic lambda functions, greatly
simplifying the framework required to push a
std::function onto the high and low priority delayed
execution queues. The Atomic Lock will in the future no

longer require repeated local implementations, instead
benefitting from physical reusable code instead of the current
situation of a reusable idiom. This allows for instance the
easy adaptation and implementation of a mixture of both
global and local atomic flags, which can allow locks to
function in more complex capacities without sacrificing run-
time determinism. Finally, the atomic synchronization class
could use an overall polishing to better handle more generic
situations, though this is more of an evolutionary rather than
revolutionary change.

REFERENCES
[1] Information Technology – Programming Languages – C++, ISO/IEC

14882:2011, 2011
[2] Programming Languages – C++, ISO/IEC 14882:2003, 2003
[3] Programming Languages – C++, ISO/IEC 14882:1998, 1998
[4] Menard, J.; Caniky, J.; Chrzanowski, J.; Denault, M.; Dudek, L.;

Gerhardt, S.; et al., "Overview of the physics and engineering design of
NSTX upgrade," Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th
Symposium on, pp.1,8, 26-30 June 2011 doi:
10.1109/SOFE.2011.6052355

[5] Woolley, R.D.; Titus, P.H.; Neumeyer, C.L.; Hatcher, R.E., "Digital
Coil Protection System (DCPS) algorithms for the NSTX centerstack
upgrade," Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th
Symposium on , vol., no., pp.1,6, 26-30 June 2011

[6] Erickson, K.G.; Tchilinguirian, G.J.; Hatcher, R.E.; Davis, W.M.,
"NSTX-U Digital Coil Protection System software design," Fusion
Engineering (SOFE), 2013 IEEE 25th Symposium on, vol., no., pp.1,6,
10-14 June 2013 doi: 10.1109/SOFE.2013.6635500

[7] Erickson, K.G.; Tchilinguirian, G.J.; Hatcher, R.E.; Davis, W.M.,
"NSTX-U Digital Coil Protection System Software Detailed
Design," Plasma Science, IEEE Transactions on, vol.42, no.6,
pp.1811,1818, June 2014 doi: 10.1109/TPS.2014.2321106

[8] Brosky, S.; Rotolo, S., "Shielded processors: guaranteeing sub-
millisecond response in standard Linux," Parallel and Distributed
Processing Symposium, 2003. Proceedings. International, pp.9 22-26
April 2003 doi: 10.1109/IPDPS.2003.1213237

[9] GCC, the GNU Compiler Collection, Available at http://gcc.gnu.org/
[10] GCC 4.8 Release Series, Available at https://gcc.gnu.org/gcc-4.8/
[11] GCC 4.9 Release Series, Available at https://gcc.gnu.org/gcc-4.9/
[12] The Single UNIX ® Specification, Version 2 (1997) by The Open

Group
[13] Williams, A., C++ Concurrency in Action, 1st ed. Shelter Island:

Manning, 2012.
[14] Kumar, A.; Sutton, A.; Stroustrup, B., "Rejuvenating C++ programs

through demacrofication," Software Maintenance (ICSM), 2012 28th
IEEE International Conference on, pp.98,107, 23-28 Sept. 2012 doi:
10.1109/ICSM.2012.6405259

[15] Schmidt, D., Stal, M., Rohnert, H., Buschmann, F., “Synchronization
Patters,” Pattern-Oriented Software Architecture Vol. 2: Patterns for
Concurrent and Networked Objects, vol. 2, New York: Wiley, 2000. pp.
353-363

	

	

Princeton Plasma Physics Laboratory
Office of Reports and Publications

Managed by
Princeton University

under contract with the

U.S. Department of Energy
(DE-AC02-09CH11466)

P.O. Box 451, Princeton, NJ 08543 E-mail: publications@pppl.gov
Phone: 609-243-2245
Fax: 609-243-2751 Website: http://www.pppl.gov

