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Abstract—Programming languages like C and Ada combined 

with proprietary embedded operating systems have dominated 
the real-time application space for decades.  The new C++11 
standard includes native, language-level support for concurrency, 
a required feature for any nontrivial event-oriented real-time 
software.  Threads, Locks, and Atomics now exist to provide the 
necessary tools to build the structures that make up the 
foundation of a complex real-time system.  The National 
Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton 
Plasma Physics Laboratory (PPPL) is breaking new ground with 
the language as applied to the needs of fusion devices.  A new 
Digital Coil Protection System (DCPS) will serve as the main 
protection mechanism for the magnetic coils, and it is written 
entirely in C++11 running on Concurrent Computer 
Corporation’s real-time operating system, RedHawk Linux.  It 
runs over 600 algorithms in a 5 kHz control loop that determine 
whether or not to shut down operations before physical damage 
occurs.  To accomplish this, NSTX-U engineers developed 
software tools that do not currently exist elsewhere, including 
real-time atomic synchronization, real-time containers, and a 
real-time logging framework.  Together with a recent (and 
carefully configured) version of the GCC compiler, these tools 
enable data acquisition, processing, and output using a 
conventional operating system to meet a hard real-time deadline 
(that is, missing one periodic is a failure) of 200 microseconds.  
 
Index Terms—Computer languages, Real-time systems, 
Software design 
 

I. INTRODUCTION 
++11 introduced new paradigms to the language [1] that 
will benefit the real-time (RT) software world given 

careful usage.  Previous versions of the language relied on 
third party libraries often written in C (e.g. pthreads) or non-
portable operating system specific routines to provide features 
like threading, synchronization, and communication.  The new 
version moves those requirements into the language itself, 
requiring that compliant compilers provide the necessary 
features.  Thus, concurrent code can now become portable, 
reusable code. 
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But concurrent code is not the same as RT code.  
Concurrency refers to situations where multiple threads 
execute in parallel, possibly with shared data structures.  Real-
time instead describes the timing requirements and, 
specifically, the determinism of the code, regardless of how 
many threads are running.  For instance, the new National 
Spherical Torus Experiment Upgrade (NSTX-U) system will 
operate at 5 kHz, one cycle every 200 µs [4].  Since missing 
one cycle is a failure, the system is hard real-time. 

Making the new C++ concurrency features also support 
hard real-time is, ironically, hard.  By design, most of the 
language components trade latency for throughput.  The 
NSTX-U system, like most RT systems, instead prefers the 
lowest reachable latency to reduce the risk of failing to meet 
hard deadlines.   The total work possible is therefore less than 
that achievable on a non-real-time system [7].  The 
implication here then is that facilities that would otherwise 
work well in a non-RT application may become harmful. 

A. Reference Platform 
Because the NSTX-U Digital Coil Protection System 

(DCPS) is the primary customer for the ideas described in 
later sections, its platform and associated characteristics will 
provide the backdrop for any implementation specific details 
such as timing metrics or compiler feature availability.  It is a 
32-core AMD Opteron 6386SE 64-bit system with 64 GB of 
registered ECC memory running on SuperMicro hardware 
with a Concurrent RedHawk GNU/Linux operating system.  It 
runs custom software written entirely in C++11 whose 
purpose is to protect the NSTX-U coil system.  It executes 600 
algorithms [5] every 200 µs, computing various stresses, 
forces, and combinations thereof on the machine.  Should any 
algorithm trip any of the predetermined upper or lower limit 
values, the entire machine will instantly shut down. [6][7] 

B. GNU/Linux, RedHawk Kernel 
The NSTX-U DCPS test platform uses Concurrent 

RedHawk as the real-time version of Linux [8].  It is based on 
RedHat Enterprise Linux (RHEL) version 6, amplified with a 
modified, recent kernel and a comprehensive tool suite 
specifically engineered for real-time development and 
deployment.  The tools include a debugger with code injection 
support, simulator, system tuner, kernel tracer, and more.  The 
advanced kernel delivers superior performance with respect to 
scheduling and latency vs. a stock kernel.  RedHawk provides 
a simple method of shielding CPU cores from any 
combination of interrupts, other processes, and the kernel 
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timer.  This gives user applications exclusive use of a given 
set of cores, guaranteeing that core contention stays within the 
application itself.  Later sections will continually describe 
ways to exploit this feature with the gratuitous use of 
spinwaits. 

C. GNU Compiler Collection (GCC) [9] 
C++11 is a recent language.  Unfortunately, the base 

operating system, RHEL6, uses an old version of the compiler 
(4.4) that does not support anything past C++03.  DCPS 
instead uses a manually built version of a stock GCC v4.8.3 
[10] upstream release.  It is configured with only one 
important option described later, whose purpose is to 
streamline certain timing system calls.  With the recent release 
of GCC v4.9.0 [11], plans are in place to upgrade to the new 
version, which should allow the usage of two features missing 
in 4.8: regular expressions, and generic lambda functions.  The 
latter feature should simplify some of the proposed 
implementations below. 

D. Scheduling and Priority 
Typical Linux scheduling involves modifying a process 

“nice” value.  A low value reduces the allotted share of the 
CPU time, while a high value increases the share.  Any user 
can reduce the share, while only the super user can increase it. 
This is know as the Time Share scheduling policy, and is the 
de facto standard to manage CPU time.   

However, Linux actually supports three scheduling policies 
for user processes: Time Share (TS), First In First Out (FIFO, 
though the kernel uses the designation “FF”), and Round 
Robin (RR).  The first one as stated runs virtually every 
process.  The latter two are the RT policies.  They are both 
preemptive, in that they will force a context switch with a 
lower priority thread.  They differ with respect to threads 
within the same priority level.  The FIFO scheduling policy 
will cause the scheduler to block all other threads at the same 
priority until the running thread yields (either manually or via 
a system call).  The RR policy will do the same, up to a 
maximum time slice determined by the thread’s “nice” level.  
If a thread exceeds its time slice, the scheduler will place it at 
the back of the run queue for that priority level.  Since the 
time slice sizes range from 10 ms to 780 ms on the reference 
platform, the RR scheduler is not an option for the remainder 
of this discussion; it is here only for completeness.  
Consequently, every thread in DCPS uses the FIFO scheduling 
policy. 

Priorities are rather simple in the Linux system.  They range 
from 0 to 99.  0 is reserved for the TS policy, and 1 through 99 
are for the RR and FF policies.  Arbitration between threads at 
different levels is simple: for any threads on a CPU that are 
currently runnable, the thread with the highest priority runs. 

II. KEY C++ CONCEPTS 
Object oriented programming techniques apply to virtually 

all object oriented languages.  However, there are certain 
nuances specific to writing C++ code that affect the 
implementation or even practical application of generic 

concepts and approaches.   

A. Resource Acquisition Is Initialization (RAII) 
In C++, the constructor and destructor approach to class 

design allows for clear distinction of object and resource 
lifetime.  In general, an object should acquire all resources in 
the constructor, and release all resources in the destructor.  
This is a very safe design idiom, since the language guarantees 
that the destructor always executes, even in the face of 
exceptions.  This is markedly different from other languages 
that instead encourage the use of explicit “getters” and 
“setters” to tell the object instance when to conduct acquire 
and release operations. 

In the world of C or C-like C++ code, the typical approach 
is to acquire resources, test for some error condition, and free 
the resources after handling the error.  C++ makes this much 
easier.  Consider these two scenarios: 
 
// Manual management 
int a = new int[10]; 
try { 
  f(a); 
} catch (...) { 
  std::cout << “Error” << std::endl; 
} 
delete[] a; 

 
vs: 
 
// Automatic management 
std::vector<int> a(10); 
f(a); 

 
In the first example, the user must take care of handling all 

possible errors to avoid leaking memory.  In the second, the 
object allocates memory in its constructor and deletes the 
memory in its destructor, all transparently to the user.  Good 
class design follows this paradigm or variations thereof 
whenever possible.  Sections that follow will use this 
extensively to show simple ways to lock and unlock protected 
regions. 

B. Memory Allocation In Real Time 
As shown in the previous section, RAII provides a powerful 

way to ensure safe resource management.  The drawback is 
that sometimes the objects in use may unexpectedly do things 
that affect real-time applications.  In the example above, the 
vector started with enough space pre-allocated for ten 
elements large enough to hold an integer.  This will have no 
impact on a real-time scenario, until the vector runs out of 
space. 

The vector implementation that comes with GCC has a 
greedy allocator.  When it runs out of space, it doubles the 
allocated size.  That means that if a user pushes an eleventh 
element into the vector above, it will grab ten additional 
elements from the free store.  That allocation can be very time 
consuming, especially in the case of large vectors.  Consider a 
vector holding one million 8-byte double precision floating-
point numbers.  Adding one more element to that vector will 
cause a memory allocation of 8 MB.  With 4 KB default page 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

sizes, that will entail substantial page faulting. 
Page faults introduce another potential for real-time 

disaster.  The obvious solution to the above problem is to 
always overcommit allocated memory.  In the case of DCPS, 
each real-time event (called a “test shot”) cycles at 5,000 times 
per second for 11 seconds total, yielding 55,000 cycles.  Any 
buffer used during the test shot therefore requires a minimum 
of 55,000 elements.  DCPS overcommits this to 100,000 
elements because, frankly, memory is inexpensive. 

Obvious solutions sometimes have unobvious problems.  
The Linux memory allocator is a lazy allocator, and it will not 
actually fault in the allocated pages.  Page faults occur on first 
use instead of on first allocation.  Since each page fault takes a 
minimum of 2 ms to complete, the result is catastrophic.  A 
single page fault blocking the RT execution path will cause 
immediate shutdown of the NSTX-U system. 

Fortunately, there is an easy solution.  Borrowing from the 
C world, DCPS makes use of memory locking [12] to instruct 
the operating system to lock all current and future pages of 
allocated memory.  This not only prevents swapping to disk, 
but forces page faults at first allocation instead of on first use. 

The one thing to keep in mind with all of the solutions 
posed in this section is that each one increases determinism by 
reducing efficient memory usage.  Said inversely, each 
solution wastes memory.  DCPS accounts for this with a very 
large memory footprint at surprisingly little cost. [6] 

III. NEW C++ VERSION: 2011 
In September of 2011, the International Organization for 

Standardization (ISO) released a new version of the C++ 
programming language standard as ISO/IEC 14882:2011, or 
colloquially as C++11 [1].  This replaced the previous C++03 
(ISO/IEC 14882:2003) [2] and C++98  (ISO/IEC 14882:1998) 
[3] versions.  The next language versions are tentatively 
named C++14 and C++17, and these will decouple the 
language standard from upcoming experimental technical 
specifications to encourage shorter timespans between 
released versions. 

The 2011 version of the language added several new 
capabilities that are critical for the advancements present in 
DCPS.  These include both library changes as well as base 
language changes. 

A. Atomics 
#include <atomic> 

The most important concurrency tool present in the new 
language is support for native atomic operations.  Previous 
versions of C and C++ required non-portable inline assembly 
(possibly via a third party library) or special compiler 
“builtins” to work with atomic types.  The new version 
contains a complete set of atomic tools, including base types, 
generic overrides, and an entire memory model with many 
options for clarifying the desired read/write semantics. 

The atomic type that can serve as the basis for any other 
atomic structure is std::atomic_flag [13].  Beyond that, 
all of the language defined simple data types have 
corresponding overrides: std::atomic_bool, 

std::atomic_int, std::atomic_size_t, etc.  Even 
pointers work atomically, using generics: 

 
template<class T> struct std::atomic<T*> 
 
Without knowing anything else about memory models, 

atomicity, or concurrency principles, a user can take an atomic 
type, share it between threads, and use conventional 
operations as if it were a normal type (add, subtract, 
compare/exchange, etc.)  The language will guarantee that the 
memory backing the object will maintain integrity.  For 
example, the object will not encounter a situation where one 
thread writes to two bytes of a four-byte integer, while a 
second thread thread reads the partially written type.  Instead, 
the first write will complete entirely before the second read 
starts. 

B. Threading 
#include <thread> 

 By definition, concurrency requires running multiple 
execution paths in parallel.  While these parallel operations 
could be entirely separate processes, the use of threads instead 
tends to increase performance gains.  Thread creation is faster 
than process creation, and communication between threads is 
significantly easier.  Each thread in a process shares the entire 
memory space, so there is no need to use external interprocess 
communication (IPC) methods such as shared memory, pipes, 
message queues, etc.  Should a thread need a given object to 
stay local to the thread instead of global to the process, C++11 
introduces the thread_local keyword.  This keyword 
makes the most sense when applied to a member variable that 
should remain static within the lifetime of the thread. [13] 

The reference platform is highly multithreaded.  All tools 
described in later sections use the threading facilities provided 
by the language.  Native tools provide only what the language 
cannot, e.g. setting the processor affinity, scheduler priority, 
and scheduler type.  Note that an important feature, thread 
pools, is unavailable in C++11.  DCPS implemented custom 
thread pools instead, in a replaceable way should the language 
adopt official thread pools in the future. 

C. Move Semantics and RValue References 
Copying data between objects is a potentially slow and 

invasive operation.  Sometimes, depending on the actual 
characteristics of a constructor, it can have unacceptable 
impact on real-time determinism.  Recall that no real-time 
system should ever allocate memory during a real-time event.  
Recall also that the most common container, the vector, will 
allocate memory during construction.  This leads to a 
challenging situation when trying to return a vector from a 
function.  Without careful considerations, a seemingly 
innocuous function call could, in the absence of return value 
optimization (RVO), lead to several vector copies through the 
use of temporaries. 

Move semantics are a new tool in C++11 that elide some of 
these inefficiencies entirely.  Consider a function that returns a 
vector by value.  The compiler must generate code that copies 
that vector using the copy constructor.  It most likely allocates 
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memory for a temporary in the process, only to deallocate the 
memory moments later.  The new move operation instead 
allows using a move constructor to invalidate the internal meta 
data of the source vector and populate the meta data of the 
target vector without ever allocating temporary storage.  The 
“rvalue reference” naming in this case refers to the common 
situation where the temporary mentioned above sits on the 
right hand side of an equals sign, though this is not a required 
prerequisite. [13] 

The real-time queue described later uses this new feature to 
optimize moving data into a queue virtually instantly. 

IV. AUTOMATIC REAL-TIME ATOMIC LOCK 
The easiest concurrency mechanism is a mutex lock.  These 

are unfortunately inherently slow, requiring up to 65 µs to 
release a contended lock on an otherwise idle CPU.  With the 
NSTX-U 5 kHz system, spending a third of each cycle 
unlocking just one mutex is a nonstarter.  The solution 
involves careful process yielding with an RAII atomic lock. 

C++11 introduces the std::atomic_flag object that has 
only two members: test_and_set(), and clear().  This is 
enough, however, to serve as the foundation for atomic 
devices at any level of complexity.  It will also become a vital 
tool for subsequent constructs in later sections. 

The design is simple, and uses several important features of 
C++: 
 
struct AtomicLock { 
  std::atomic_flag & flag; 
  AtomicLock(std::atomic_flag & f): flag(f) {  
    while (flag.test_and_set()) 
      std::this_thread::yield(); 
  } 
 
  ~AtomicLock() { 
    flag.clear(); 
  } 
}; 
 

 First, the constructor takes in a reference, and initializes 
the local member reference with it, putting the onus on the 
caller to ensure that all instances share the same flag.  The 
constructor then tries to repeatedly set the flag, and only exits 
when the old state is zero, indicating that no other thread owns 
the lock.  RAII kicks in with the destructor, to guarantee that 
the lock is exception safe.  If an exception ever occurs, the 
destructor will always unlock the flag.  Therefore, a simple 
usage of this lock follows: 
 
void reentrantFunction() { 
  static std::atomic_flag f(ATOMIC_FLAG_INIT); 
  AtomicLock lock(f); 
  // Do work 
} 

 
Every call to the function above will share the same flag 

instance, and will block waiting for the atomic lock to 
instantiate.  The first call to the function will initialize the flag 
(so-called “lazy initialization”) with a safe value.  When the 
function exits, either normally or because of an exception, the 
destructor will clear the flag so that the next waiting function 

can proceed. 
There are several caveats with this simplistic approach.  

Multiple waiters will fight with the scheduler and each other 
to win the next slot.  Starvation is possible, but easily 
mitigated in practical scenarios where the amount of 
contention is low with respect to the time required for each 
thread to finish work.  Waiters in this example use a spinwait, 
which will tie up the CPU, blocking any process with a lower 
priority.  This is a tradeoff, avoiding the context switches at 
the expense of one less processing core.  Customization is 
possible at the expense of complexity, tailored to the needs of 
the user application.  As an example, it would be feasible to 
pass in a lambda function to the constructor that it would call 
inside the while loop, with a reasonable default set to either a 
no-op, or the existing yield.  This way, each thread could take 
a possibly different action when the lock is unavailable. 

V. REAL-TIME QUEUE 
Adding items to a std::queue on most implementations 

requires allocating memory from the heap.  This is dangerous 
in a real-time loop, and introduces unallowable system calls.  
This particular queue design is also not thread safe, so users 
must graft concurrency mechanisms on top of the underlying 
data structure.  The example that follows combines a 
modification to the lock described in Section 3 with 
preallocated storage and ring buffer iterators: 
 
template<class T, std::size_t size = 1000> 
struct RealtimeQ { 
  RealtimeQ(): 
    flag(ATOMIC_FLAG_INIT), 
    q(size), front(q.begin()), back(q.end()) 
  {} 
 
  void enqueue(T && x) { 
    AtomicLock lock(flag); 
    *front++ = std::move(x); 
      if (front == q.end()) 
        front = q.begin(); 
  } 
 
  T dequeue() { 
    AtomicLock lock(flag); 
    T & x = *back++; 
    if (back == q.end()) 
      back = q.begin(); 
    return x; 
  } 
 
  std::atomic_flag flag 
  std::vector<T> q; 
  std::vector<T>::iterator front, back; 
}; 

 
This queue uses the atomic lock from Section 3, modified in 

a way to block the thread calling enqueue() if the queue is 
empty.  The size defaults to 1000 elements, configured at 
instantiation.  There is no safety in overflow; it is the caller’s 
responsibility to choose an appropriate size.  This is a tradeoff 
between safety and real-time determinism.  It would be 
possible, however, to add checks to test for overflow and 
throw an exception should it occur. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5 

VI. REAL-TIME LOGGING 
Writing log information is an important tool for any 

reasonably complex piece of software.  It gives immediate 
feedback when problems arise, and provides a timeline of 
events for later reconstruction.  Typical characteristics include 
timestamps to show when events occur, and logging 
thresholds or severities to filter important events. 

A. Reference Platform Characteristics 
The DCPS system uses timestamps with microsecond 

resolution, and the following 5 log levels: Fatal, Warning, 
Informational, Debug, and Trace. 
1) Fatal 

Fatal entries trigger immediate programmatic shutdown, as 
something catastrophic has occurred.  Typically this involves 
some situation from which the software cannot recover. 
2) Warning 

Warning entries report that something bad transpired, but do 
not result in shutdown actions.  This is useful if for instance 
some internal limit such as a buffer size reaches a given 
percentage of capacity. 
3) Informational 

Informational entries represent the typical default level of 
logging, and provide a high level sequence of the real-time 
event as it progresses through various stages, from startup to 
configuration to execution to post-event recording.  No 
informational messages occur during the actual RT execution 
to avoid unnecessary system perturbation. 
4) Debug and Trace 

The last two levels provide an increasing level of detail into 
the inner workings of important operations.  These tend to 
increase intrusiveness with detail, and so only serve any 
purpose when troubleshooting a problem. 

B. Real-time Constraints 
To maintain determinism, a real-time application must 

refrain from triggering non-essential interrupts in the 
underlying system.  The most common activity causing 
intrusive interrupts outside of memory management is writing 
to the filesystem, either to the underlying disk storage or to a 
file based device such as /dev/console or /dev/pty.  Writing to 
a log file directly or writing log information to stdout can lead 
to devastating effects depending on the timing constraints of 
the application.  Therefore, an ideal real-time logger will not 
obstruct the main real-time threads should any interrupt occur. 

Further, the act of preparing the log entry may introduce 
overhead while constructing the information string.  There are 
two sources of this overhead: processing logger function 
arguments, and converting arguments to a character 
representation from some other data type.  The first can be 
problematic if an argument is not a Plain Old Data (POD) 
type, or if it requires a nontrivial function call.  The second 
becomes an issue when the argument is not already a character 
type, and conversion to a character type involves potentially 
long operations.  Therefore, the logger must delay handling 
arguments until required, which may imply never depending 
on the current allowable log level threshold. 

C. Class Design 
Writing a log message requires calling through an external 

interface using a preprocessor macro.  While macros are 
generally bad form in the C++ world [14], they are 
unavoidable in this use case.  There is no other way to short 
circuit log entry processing.  The macro loosely expands to the 
following: 

 
#define LOG(log, level, ...) \ 
  if (level > log.minLevel) \ 
    log.append(level, __VA_ARGS__); 

 
This makes use of variadic preprocessor arguments to 

forward along the entire log statement, however the user 
intends.  The if-statement prevents ever touching any of the 
arguments if the stated level is too low (for instance, if a log 
entry contains detailed trace data useful only in certain 
situations.)  Forcing the user to write the same if-statement for 
every call defeats the purpose of abstraction and object 
oriented design, but the language has no support for delayed 
evaluation or partial evaluation of function call arguments.  
Using the preprocessor is typically a last resort; in this case, it 
is the only choice. 

There are three phases that must happen for any log entry 
not disabled by the logging threshold level: 1) argument 
evaluation, 2) timestamp injection, and 3) string conversion 
and storage.   

If the log threshold is low enough, the variadic argument list 
propagates to the internal logging methods.  If this were a 
traditional C program or a C++ program using the C 
interfaces, the function would invoke the variadic methods of 
<stdarg.h> or <cstdarg> respectively.  Instead, C++11 
provides new variadic templates that allow processing the 
arguments recursively using variadic template arguments.  
Each level of recursion pulls off another argument in the list, 
until a final call with no arguments.  The following code 
illustrates this technique as it applies to handling a log entry: 

 
template<class T, typename... Args> 
void append(T x, Args... msg) { 
  // append x to the log; 
  append(msg...); 
} 
 
void append() { 
  // msg... is empty, so append a newline 
} 

 
The compiler creates an instance of the first function for 

every type in every call used throughout the program not 
explicitly overridden (such as the final one), making use of the 
C++ idiom, Substitution Failure Is Not An Error (SFINAE).  
Using this pattern, it is also possible to inject intermediary 
handlers that move the data along without knowing the exact 
contents.  This last technique provides a way to move the data 
off of the real-time execution path and onto different threads 
scheduled elsewhere. 

The Logger class as implemented contains two 
RealTimeQueue members to handle moving the data, one 
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running at an elevated FIFO priority and the other running at a 
normal TS priority.  The queues themselves use a 
std::function template type, allowing any function call 
signature as the queue contents through tools such as 
std::bind.  The high priority queue serves only one 
purpose.  It injects a timestamp at the front of the log entry 
before forwarding everything to the low priority queue, which 
performs the remainder of the work.  When writing a log 
entry, for the log to be of any practical use, the timing 
information contained therein must be accurate and reliable.  
Therefore, the call to determine the current time must happen 
as close as possible to the point in the real-time execution path 
where the diagnostic exists.  Moreover, concurrent log entries 
must be sequenced in the logical order they occurred.  The 
logger implementation presented sacrifices negligible timing 
accuracy for guaranteed ordering correctness. 

To actually acquire the time stamp requires careful use of 
the new <chrono> library.  Despite the implementation 
agnostic nature of the standard libraries, calls to 
std::chrono::high_resolution_clock::now() can 
have wildly different results.  The solution chosen on NSTX-
U was to configure GCC v4.8.2 with the --enable-

libstdcxx-time=rt option, which uses a Linux Virtual 
Dynamically Linked Shared Object (vDSO) to get time in 
roughly 200 ns instead of 2000 ns, an order of magnitude 
difference. 

Therefore, the sequence described above follows the 
following timeline: 
1. Determine if logging is enabled.  Short-circuit all 

remaining processing if not. 
2. Collect all arguments into a std::bind object (including 

hitting all side effects, if any), and pass to the high 
priority queue. 

3. Inject a timestamp to the front of the argument list, and 
pass to the low priority queue. 

4. Recursively peel off arguments using a variadic template 
with SFINAE, appending each to the log. 

5. Write a new line to the log. 
 

VII. (BI-DIRECTIONAL) ATOMIC SYNCHRONIZATION 
As mentioned earlier, mutexes provide an easy yet invasive 

way to coordinate multiple threads of execution.  Since the 
timing constraints of the DCPS reference platform preclude 
using mutexes during the real-time event execution path, the 
only remaining choice for any thread coordination mechanism 
is the use of atomic types to signal readiness between threads.  
Unfortunately, atomics do not support complex 
communication mechanisms out of the box like mutexes do. 

A. Motivating Use Case: Algorithm Pools 
As with the other design patterns shown thus far, the 

NSTX-U DCPS wastes resources in exchange for virtually 
zero latency.  The same is true when implementing algorithm 
thread pools.  Section 3 mentions briefly that pools are not 
present in C++11, but they are a common tool used to group 
similar execution threads together.  In fact, Linux supports 

grouping threads and processes together natively. 
To meet the 5 kHz timing deadline while executing all of 

the algorithms, DCPS divides the work into discreet tasks 
assigned to one of 18 threads each occupying a dedicate CPU 
core.  Therefore, each thread contains a fixed but unequal 
chunk of work.  The threads need to coordinate the beginning 
and end of each cycle.  Since each thread will finish at a 
different time, they all must rendezvous at a barrier released 
only when the last thread is ready. 

B. Atomic Barriers and Signaling 
There is no predefined way to use atomics as signals 

between threads.  Therefore, the point of this design is to 
create a signaling mechanism that is extensible beyond the 
specific requirements of DCPS. 
1) Initial Starting Barrier 

Bootstrapping the algorithm threads occurs outside of the 
real-time event, so no specific requirements block the usage of 
conventional signaling means.  DCPS uses a std::mutex 
coupled with a std::condition_variable, with each 
thread waiting after thread creation and a notification sent 
until all threads have checked in. 
2) Atomic Counters 

In early designs, the worker threads communicated with a 
master control thread using atomic booleans.  However, this 
proved ineffective, as a simple boolean cannot convey enough 
information to signify bidirectional information.  A counter 
works better, but the final product requires two counters: one 
for each thread to signal that it is ready to start work, and 
another to signal that it has finished the work.  The master 
thread then waits for the ready counter to indicate that all 
threads are ready before opening the gate on all threads at 
once.  It then waits for the finished counter to indicate that all 
threads have reached their own finish lines.  At that point, it 
can make the next dataset ready for consumption, and repeat 
the process. 

Each thread, be it a worker thread or the master thread, can 
increment or decrement a counter using atomic operations 
without fear of corrupting another thread.  They can also spin 
waiting for another thread to change a particular value.  For 
instance, if the master thread knows that there are 18 worker 
threads, the following is a reasonable communication idiom: 
 
// Master 
ready = 19; 
while (ready > 1) 
  std::this_thread::yield(); 
--ready; 
 
// Worker 
--ready; 
while (ready > 0) 
  std::this_thread::yield(); 
doWork(); 

 
The worker threads decrement the counter and wait for the 

final decrement from the master thread.  The master thread 
waits until all worker threads have decremented the counter, 
then it decrements the counter itself.  This is the bi-directional 
nature of the synchronization mechanism.  At first glance, 
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there may appear to be a race condition if the final worker 
decrements the counter to 1 and the master thread decrements 
it to zero before the worker can check that it is still greater 
than zero.  That is why the contents of the while loop – by 
design – must be optional.  In this example, a yield is surely 
optional.  Variations on this approach must take care to 
maintain the optional nature of the while loop contents. 

There is a similar barrier at the end of each periodic cycle to 
allow each worker to signal to the master that processing is 
complete.  This creates a zone between two atomic barriers 
during which the master can easily check that processing 
completes in a timely fashion.  Individual workers are free to 
finish at any time before the expiration period.  The only 
guarantee on timing is that by the end of the cycle period, 
either every worker has finished, or the system has triggered a 
fatal abort. 
3) Final Cleanup 

Once the real-time event has ended, the worker threads 
must exit gracefully.  Doing so requires testing for an exit 
condition at particular interruption points, and setting that exit 
condition externally.  In this case, there is an atomic boolean 
shared between the worker threads and the master thread that 
the workers check twice near the beginning of the cycle.  The 
design borrows from the popular Double Checked Locking 
Optimization design pattern [15].  In the example shown 
earlier, the worker would check the shutdown flag both before 
decrementing the ready counter as well as after exiting the 
while loop.  Once the worker enters a cycle, it is impossible to 
stop until the cycle completes.  In practice, other checks 
through the system ensure that this poses no threat to system 
integrity, and in any unforeseen case, at most one cycle will 
run.  This keeps the design metrics within the specification 
tolerance. 

VIII. CONCLUSION AND FUTURE WORK 
The NSTX-U DCPS successfully uses C++11 in a hard 

real-time machine protection environment.  Doing so requires 
careful use of language features and customized devices that 
exploit the concurrency mechanisms in a real-time safe way.  
Atomic types provide the basic building block for all objects 
presented here, such as the bi-directional atomic 
synchronization and the RAII atomic lock.  The latter lock 
enables a real-time safe queue, which further serves as the 
groundwork for a complete logging framework.  All of these 
tools and processes operate without affecting the determinism 
of the overall system, such that it can still make very tight 
microsecond deadlines on standard commercial off the shelf 
hardware. 

Version 2 of the DCPS will see improvements in all real-
time devices.  Modifications to the Real-time Queue will 
allow greater control over the actions taken while waiting for 
lock acquisition through the use of lambda functions and 
function objects.  The Logger class will make use of new 
features in GCC 4.9 to allow generic lambda functions, greatly 
simplifying the framework required to push a 
std::function onto the high and low priority delayed 
execution queues.  The Atomic Lock will in the future no 

longer require repeated local implementations, instead 
benefitting from physical reusable code instead of the current 
situation of a reusable idiom.  This allows for instance the 
easy adaptation and implementation of a mixture of both 
global and local atomic flags, which can allow locks to 
function in more complex capacities without sacrificing run-
time determinism.  Finally, the atomic synchronization class 
could use an overall polishing to better handle more generic 
situations, though this is more of an evolutionary rather than 
revolutionary change. 
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