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Dependence of recycling and edge profiles on lithium evaporation in 
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In this paper, the effects of a pre-discharge lithium evaporation scan on highly shaped 

discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium 

wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components 

between discharges in NSTX, partly to reduce recycling. Reduced Dα emission from the 

lower and upper divertor and center stack was observed, as well as reduced midplane 

neutral pressure; the magnitude of reduction increased with the pre-discharge lithium 

dose. Improved energy confinement, both raw τE and H-factor normalized to scalings, 

with increasing lithium dose was also observed. At the highest doses, we also observed 

elimination of edge-localized modes. The midplane edge plasma profiles were 

dramatically altered, comparable to lithium dose scans at lower shaping, where the strike 

point was farther from the lithium deposition centroid. This indicates that the benefits of 

lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.  
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I. Introduction and Background 

While many devices have reported performance improvements with lithium 

conditioning1-6, including e.g. recent long pulse advances in EAST7, the continuous 

improvement of plasma confinement and edge stability with increasing levels of lithium 

conditioning has been clearly documented in studies from the Natonal Spherical Torus 

Experiment (NSTX)8-11. Those first studies were conducted in discharges with a ‘weaker’ 

boundary shaping than typical in NSTX, namely an intermediate-level average 

triangularity (δ ~ 0.46), low elongation (κ ~ 1.8), and relatively low squareness shape. 

Numerous studies have shown that strongly shaped discharges exhibit good performance 

in NSTX12, and thus highly shaped discharges were chosen as the baseline configurations 

for NSTX-U13, 14. In this paper, we present trends from an experiment in NSTX in which 

pre-discharge lithium evaporation was systematically increased in highly shaped 

discharges (δ ~ 0.6-0.7, κ ~ 2.2, high squareness), as envisioned for NSTX-U.  

 

Lithium was introduced into NSTX prior to discharges with a pair of toroidally separated 

overhead lithium evaporator (“LiTER”)15. Previous experiments have shown substantial 

reductions of the recycling light, improvements in global confinement16-19, along with the 

appearance of ELM-free regimes20, due to changes in the far edge density and pressure 

profiles21. The deuterium retention leading to the recycling reduction22-24 has been 

correlated with possible segregation of oxygen impurities in the lithiated surface layers25, 

26. The highly shaped discharges from the present study represented the first set into 

which lithium was introduced in this particular run period. 
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The centroid of the lithium deposition onto the lower divertor plasmas facing components 

(PFCs) from the LiTERs was on the inner-horizontal set of tiles, as shown in Figure 1; 

there was a Gaussian distribution of the deposition, with a full width of 23o in the 

poloidal cross section. Figures 1a and 1b illustrate the geometry of the inner and outer 

strike points with the centroid of LiTER deposition for the strongly shaped and weakly 

shaped discharges respectively. It is clear that the centroid is very near the outer strike 

point in strongly shaped discharges, and in the private flux region in weakly shaped ones. 

Thus it can be expected that this geometric difference could lead to a different effect on 

plasma discharges.  

 

II. Trends as a function of pre-discharge lithium 

A number of reference ELMy discharges over a range of neutral beam heating were taken 

prior to the introduction of lithium during this experiment. The range of pre-discharge 

evaporation (‘dose’) was from 120 mg to 570 mg; these equate to nominal peak coating 

thicknesses of ~60-300 nm, i.e. well in excess of the < 10 nm typical ion implantation 

depth for typical divertor Te and Ti. Lithium dose in the first seven discharges averaged 

about 150 mg, and was increased to about 250 mg for the next eight discharges. Finally 

the dose was increased to about 450 mg for eleven discharges, and then increased to 

about 550 mg for the last nine discharges of the experiment. In a few instances the dose 

was lowered between otherwise comparable doses to inspect for signs of hysteresis. 

Additionally neutral beam power (PNBI) was often modestly reduced with increasing 

dose, because the increase in confinement would otherwise have resulted in exceeding of 

the global beta limit, and subsequent minor or major disruption. Note that the reference 
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non-lithiated discharges used standard inter-discharge Helium Glow Discharge Cleaning 

for reproducibility, which was not needed when the lithium dose scan was initiated. 

 

A comparison of discharges at two lithium doses (280 mg, 550 mg) and a reference 

ELMy discharge is shown in Figure 2. The steady PNBI was 6 MW for the reference 

discharge, compared with 5 MW for the intermediate lithium dose, and 4 MW for the 

high lithium dose (panel 2b). Note that the reference and intermediate lithium discharges 

were well optimized. However, the highest lithium dose discharge was not fully 

optimized (due to available run time), which is reflected by the shorter realized pulse 

length. The time rate of increase of line average density dn/dt (panel (c)) from Thomson 

scattering data was indeed reduced with increasing lithium dose, while the normalized 

stored energy βN (panel (d)) was comparable at ~ 6. Here βN=βtBtam/Ip, where βt is the 

average plasma pressure normalized to the on-axis vacuum toroidal field: 

βt=4µ0WMHD/(3VpBt
2). Also Bt is the toroidal field, am the minor radius, Ip the plasma 

current, WMHD the stored energy from equilibrium reconstructions, Vp the plasma 

volume, and µ0 the permittivity of free space. Both the raw energy confinement time τE 

and the value normalized to the ITERH97L global scaling law27 increased with lithium 

dose (H97L shown in panel (e)). As also observed in the weakly shaped discharges, 

radiated power Prad ramps during long ELM-free periods, which are triggered with the 

lithium, espcially at high doses (panels (f), (g)). Note also the substantial reduction in 

baseline Dα with lithium. In general, these observations are very similar to those at 

weaker shaping8-11.  
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The trends of lower and upper divertor Dα, confinement relative to H97L scaling, and 

midplane neutral pressure with increasing lithium dose, are shown in Figure 3. The plots 

are color coded: the orange stars are from the present high shaping study, while the black 

diamonds are from the previous study in weakly shaped discharges11. The trends are, 

overall, rather comparable. A few points are noted. First, both datasets show a sharp 

decrease in lower divertor Dα, followed by a flattening at higher lithium dose (panel (a)). 

We interpret this as the transition from the high recycling to sheath limited heat transport 

regimes. This transition occurs at lower lithium dose for the highly shaped discharges. 

This is qualitatively consistent with expectations, in that the strongly shaped discharges 

have the centroid of lithium deposition much closer to the outer strke point than the 

weakly shaped discharges. In other words, it takes less lithium dose to cause this 

transition. The final fractional reduction in lower divertor Dα is also larger in the highly 

shaped discharges (90% reduction, compared with ~ 70% in the weakly shaped 

discharges). There are other factors related to the X-point geometry, of course, but these 

differences seem qualitatively understandable. Second, the relative confinement 

improvement trend is similar, but the magnitude may be slightly lower in the highly 

shaped discharges (panel (c)). Additional data, including data at higher lithium dose, 

would be needed to determine if there were a real difference in the trends; for now, the 

plan is to conduct experiments over a wide range of lithium dose in NSTX-U. Finally the 

magnitude of the neutral pressure is markedly lower (by up to 50%) in the highly shaped 

discharges. The highly shaped discharges were closer to true double-null configuration, 

and thus may have had better isolation between the midplane and divertor than the lower 
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shaped discharges, which were biased more strongly toward the lower divertor. 

 

III. Edge density and temperature profile changes 

In addition to the global changes, the upstream plasma profiles change with increasing 

lithium dose in the highly shaped discharges. These changes are illustrated for three 

discharges with differing lithium dose in Figure 4, as a function of normalized poloidal 

flux ψN, where ψN = (ψ0 - ψ(r))/( ψ0 - ψsep) with ψ0  and- ψsep being the poloidal flux at the 

magnetic axis and separatrix respectively. The yellow arrows in the figure represent 

increasing lithium dose. Panel (a) shows that the ne profile shifts inward with increasing 

lithium dose, while panel (b) shows that the Ti increases with increasing dose. Panel (c) 

shows that the near-separatrix Te drops a little with increasing lithium dose, but that the 

Te value for ψN < 0.9 increases substantially. The kinetic profiles were fit with ‘standard’ 

modified hyperbolic tangent functions28, using a set of algorithms that allow selection of 

profiles as a function of the ELM cycle29. These fitted profiles for the total pressure are 

shown in panel (d): it can be seen that the far edge pressure decreases with increasing 

dose, whereas the pressure for ψN < 0.85 increases substantially. This is very similar to 

studies from the lower shaped discharges, which indicated improved edge stability with 

similar profile changes10, 21. In the previous studies, the individual density and 

temperature profiles changes appeared to be correlated to micro-tearing and electron 

temperature gradient mode stability30; it is likely that similar physics is present in the 

highly shaped discharges. 

 

The advantage of higher shaping over lower shaping is access to higher Ip at the same Bt, 
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because of higher safety factor; this allows input of higher PNBI before bumping up 

against global stability limits. The previous lower shaped discharges were limited to Ip < 

0.9 MA at 0.45 T; at the highest lithium dose ~ 700 mg, PNBI < 2.5-3 MW was required, 

as higher values resulted in βN > 5.5-6, i.e. above the global stability limit. For these 

strongly shaped discharges, Ip < 1.2 MA at 0.45 T (in this experiment, Ip = 1.0 MA), and 

PNBI < 4 MW was allowed, allowing access to βN ~ 6. The difference in absolute edge 

parameters is shown in Figure 5, comparing a 2 MW discharge at low shaping with a 4 

MW discharge at high shaping. Panel (a) shows very comparable ne profiles; however the 

highly shaped discharge with higher PNBI was able to access higher stable, Te and Ti, and 

total pressure Pe+i. As NSTX-U is designed13 to achieve a ~ 100% increase in Ip and Bt 

over NSTX, use of lithium conditioning bodes well for achieving good performance H-

modes at the higher absolute plasma parameters. 

 

IV. Summary and Conclusions 

Discharge performance increased nearly continuously with increasing lithium dose in 

highly shaped discharges, as observed in previous NSTX studies in lower shaped 

discharges. The modest differences in the observed trends can be qualitatively understood 

by the more efficient deposition of lithium near the outer strike point in the highly shaped 

discharges. These results bode well for the use of lithium conditioning onto graphite 

PFCs in NSTX-U, which will be equipped with four lithium evaporators, to coat both the 

lower and upper divertors, extending the lower divertor coating capability in NSTX.  
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Figure 1:  
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Fig. 1: comparison of high and low 
δ shapes (a and b) with centroid of 
lithium evaporator deposition.  
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Figure 2:  

Fig. 2: comparison of impact of low 
(280 mg) and high (550 mg) pre-
discharge li deposition with reference 
non-lithiated discharge. 
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Figure 3:  

(a)  (c) 
 
 
 
 
 
 
(b)   (d)  

Fig. 3: dependence of various quanities 
on pre-discharge lithium evaporation: 
(a) lower divertor Dα, (b) upper divertor 
Dα, (c) H97L confinement quality factor, 
and (d) midplane neutral pressure. High 
and low δ discharges are color coded. 
Panels (a), (b), and (c) are taken near 
300msec, while panel (c) is evaluated at 
the peak of the stored energy during the 
discharge. 
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Figure 4:  

Fig. 4: comparison of edge profiles for 
three discharges with different levels of 
pre-discharge lithium evaporation. 
Arrows indicate the direction of 
increasing pre-discharge lithium. Note 
that there is a difference in NBI heating 
power also. 

(a)    
 

(c) 
 
 
 
 
 (b)   (d)  
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Figure 5:  

Fig. 5: comparison of edge profiles for 
high and low δ discharges at high pre-
discharge evaporation. Note that there is 
a difference in the NBI heating power. 
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