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Abstract
It is commonly believed that energy-momentum conservation is the result of space-time sym-

metry. However, for classical particle-field systems, e.g., Klimontovich-Maxwell and Klimontovich-

Poisson systems, such a connection hasn’t been formally established. The difficulty is due to the

fact that particles and the electromagnetic fields reside on different manifolds. To establish the

connection, the standard Euler-Lagrange equation needs to be generalized to a weak form. Us-

ing this technique, energy-momentum conservation laws that are difficult to find otherwise can be

systematically derived.

PACS numbers: 52.25.Dg, 03.50.Kk
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The classical non-relativistic particle-field system in flat space is governed by the Newton-

Maxwell equations

Ẍsp =
(
q

m

)
s

(
E + 1

c
Ẋsp ×B

)
, (1)

∇ ·E = 4π
∑
s,p

qsδ(Xsp − x), ∇×B = 4π
c

∑
s,p

qsẊspδ(Xsp − x) + 1
c

∂E

∂t
, (2)

∇×E = −1
c

∂B

∂t
, ∇ ·B = 0, (3)

where Xsp is the trajectory of the p-th particle of the s-species, and qs and ms are the

particle charge and mass, respectively. Equations (1)-(2) can be expressed equivalently in

the form of Klimontovich-Maxwell (KM) equations [1]

∂Fs
∂t

+ v · ∂Fs
∂x

+
(
q

m

)
s

(
E + 1

c
v ×B

)
· ∂Fs
∂v

= 0, (4)

∇ ·E = 4π
∑
s

qs

ˆ
Fsd

3
sv, ∇×B = 4π

c

∑
s

qs

ˆ
Fsvd

3v + 1
c

∂E

∂t
, (5)

where Fs(x,v, t) = ∑
p δ(Xsp − x)δ(Ẋsp − v) is the Klimontovich distribution function in

the phase space (x,v).

Reduced models are often used in plasma physics. For example, the electrostatic

Klimontovich-Poisson (KP) system is given by

∂Fs
∂t

+ v · ∂Fs
∂x

+
(
q

m

)
s

(
−∇φ+ 1

c
v ×B0

)
· ∂Fs
∂v

= 0, (6)

∇2φ = −4π
∑
s

qs

ˆ
Fsd

3v, (7)

where B0(x) is a background magnetic field produced by steady external currents, and

E = −∇φ is the longitudinal electric field. Another well-known model is the Klimontovich-

Darwin (KD) system [2–5],

∂Fs
∂t

+ v · ∂Fs
∂x

+
(
q

m

)
s

(
E + 1

c
v ×B

)
· ∂Fs
∂v

= 0, (8)

∇2φ+∇ ·
(

1
c

∂A

∂t

)
= −4π

∑
s

qs

ˆ
Fsd

3v, ∇× (∇×A) + 1
c

∂∇φ
∂t

= 4π
c

∑
s

qs

ˆ
Fsvd

3v,

(9)

where E ≡ −(1/c)∂A/∂t−∇φ and B ≡ ∇×A are the electric and magnetic fields.

The local energy-momentum conservation laws for the Klimontovich-Maxwell system (4)-
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(5) is well-known [6],

∂

∂t

[
E2 +B2

8π +
∑
s,p

msẊ
2
sp

2 δ2

]
+∇ ·

[
cE ×B

4π +
∑
s,p

msẊ
2
sp

2 Ẋspδ2

]
= 0, (10)

∂

∂t

[
E ×B

4πc +
∑
s,p

msẊspδ2

]
+∇ ·

[
E2 +B2

8π I − EE +BB
4π +

∑
s,p

msẊspẊspδ2

]
= 0, (11)

where we have introduced δ2 ≡ δ(Xsp−x) to simplify the notation. These conservation laws

can be expressed equivalently in terms of the distribution function Fs through the following

identities,

∑
p

Ẋ2
sp

2 δ2 =
ˆ
d3vFs

v2

2 ,
∑
p

Ẋ2
sp

2 Ẋspδ2 =
ˆ
d3vFs

v2

2 v, (12)

∑
p

Ẋspδ2 =
ˆ
d3vFsv,

∑
p

ẊspẊspδ2 =
ˆ
d3vFsvv. (13)

For the reduced systems, e.g., the KP system and the KD system, it is also critical

to know the exact local energy-momentum conservation laws admitted by the models. In

practical applications, such as current drive with lower-hybrid waves, and electrostatic drift

wave turbulence, such local energy-momement conservation laws for the reduced system have

profound implications [7–10] . We emphasize that we are looking for the exact conservation

laws admitted by the KP and KD systems, which are not exact special cases of the KM

system, and should be viewed as independent systems in their own right. For example,

we cannot take the exact energy-momentum equations (10) and (11), and approximate E

by −∇φ and B by B0 to obtain the exact energy-momentum conservation law for the KP

system, even though the conservation law obtained this way could be an approximate one for

the KP system. The existence of exact local conservation laws is a necessary condition for

the models to be theoretically well-posed and for the validity of particle simulations based

on the KP or KD systems [4]. However, exact local energy-momentum conservation laws

for the reduced systems are not easy to find, and systematic methods to derive these local

conservation laws are not yet available.

On the other hand, conservation laws and symmetries are closely related. It is commonly

believed that, according to Noether’s theorem [11, 12], conservation laws can be derived

from the symmetries of the corresponding field theories. In standard field theories, this is

certainly true, and the symmetry in time for the action is related to energy conservation, and

the symmetry in space corresponds to momentum conservation. Therefore, it is reasonable
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to expect that by analyzing the symmetries of the actions and Lagrangian densities for our

reduced systems, we may be able to systematically derive the desired conservation laws.

However, it is surprising to find out that for particle-field systems considered here, the field

theory works differently. First, let’s recall the action and Lagrangian density for the KM

system given by Low [13],

A[φ,A,Xsp] =
ˆ
LKMd

3xdt, LKM = LKMF + LKMP , (14)

LKMF =
(

1
c

∂A

∂t
+∇φ

)2

/8π − (∇×A)2 /8π, (15)

LKMP =
∑
s,p

[
−qsφ+ qs

c
Ẋsp ·A+ ms

2 Ẋ
2
sp

]
δ2. (16)

It is straightforward to verify that Eqs. (1) -(3) follow from δA/δXsp = 0, δA/δφ = 0, and

δA/δA = 0. For the KP system, the action and Lagrangian density are given by

A[φ,Xsp] =
ˆ
LKPd

3xdt, LKP = LKPF + LKPP , (17)

LKPF = (∇φ)2/8π, LKPP =
∑
s,p

[
−qsφ+ qs

c
Ẋsp ·A0 + ms

2 Ẋ
2
sp

]
δ2, (18)

where A0 is the vector potential for a given external magnetic field B0 = ∇×A0. For the

KD system, the action and Lagrangian density for the KM system are

A[φ,A,Xsp] =
ˆ
LKDd

3xdt, LKD = LKDF + LKDP , (19)

LKDF =
[

2
c
∇φ · ∂A

∂t
+ (∇φ)2

]
/8π − (∇×A)2 /8π, (20)

LKDP =
N∑
p=1

[
−qsφ+ qs

c
Ẋsp ·A+ ms

2 Ẋ
2
sp

]
δ2. (21)

Based on the spirit of Noether’s theorem, we would like to determine whether the local

energy-momentum conservation laws can be derived from the symmetries of the correspond-

ing Lagrangian density. It turns out that the answer to this question is not as simple as

that in standard field theory. This is because the fields in the present field theory, i.e.,

Xsp(t), φ(x, t), and A(x, t) are defined on different domains. The potentials are defined

on the space-time domain (x, t), whereas the particle trajectory Xsp(t) is only defined on

the time-axis. This unique feature has not been discussed before, and it makes a significant

difference in the formulation of the field theory presented here.

In this Letter, we develop the field theory for classical particle-systems with this feature,

in particular, the KM system, the KP system, and the KD system. The most distinct
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characteristic of the field theory presented here is that the field equation for Xsp(t) assumes

a form we call the weak Euler-Lagrange (EL) equation, which is different from the standard

Euler-Lagrange equation. The necessity of using this weak EL equation is mandated by the

fact that Xsp(t), as a field, is not defined on the entire space-time domain, but only on the

time-axis. The weak EL equation with respect to Xsp(t) plays an indispensable role in the

symmetry analysis and derivation of local conservation laws. For the KP system and KD

system, the analysis developed here enables us to find the desired local conservation laws,

which have not been systematically discussed in the literature. For the KM system, where

the local energy-momentum conservation laws (10)-(11) are known, our analysis serves the

purpose of establishing a connection between the energy-momentum conservation laws and

symmetries of the Lagrangian density LKM . Interestingly, such a connection has only been

cautiously suggested [6] but not explicitly established previously. It is not surprising though,

because the weak EL equation developed here is needed to establish the connection. Due

to the space limitation, we will present the detailed derivation of the field theory and new

conservation laws only for the KP system of a magnetized plasma, and list the main results

for the KM system and KD system at the end of this paper.

In plasma physics, one often works with the Vlasov-Maxwell (VM) system, Equations (4)-

(5) recover the VM equations when two-particle correlations (collisions) become negligibly

small as the number of particles becomes increasingly large, while holding total charge and

and charge to mass ratio fixed. In the present study, we work with the Klimontovich-

Maxwell system (4)-(5) or (1)-(2) and pass to the limit of the Vlasov-Maxwell system when

necessary under the assumption of negligible collisions. Similarly, the Vlasov-Poisson (VP)

and Vlasov-Darwin (VD) systems are regarded as the collisionless limits of the KP and KD

systems, respectively. We also note that while our focus here is on the particle-field system,

Eulerian field theories for the VM and VP systems have been developed by Morrison et

al. [14–17] using a variety of theoretical constructions. In Eulerian theories, the particle

distribution in phase space replaces Xsp(t) as the field variable.

We begin with Eq. (17) for the KP system, and determine how the action and Lagrangian
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density vary in response to the field variation δXsp and δφ(x, t),

δA =
ˆ
d3xdt δφEφ(LKP ) +

N∑
s,p=1

ˆ
dt δXsp ·

ˆ
d3xEXsp(LKP ), (22)

Eφ(LKP ) ≡ ∂LKP
∂φ

− D

Dxi
∂LKP
∂φ,i

, EXsp(LKP ) ≡ ∂LKP
∂Xsp

− D

Dt

(
∂LKP

∂Ẋsp

)
. (23)

In Eq. (22), φ,i ≡ ∂φ/∂xi and integration by parts has been applied with respect to terms

containing ∂LKP/∂φ,i and ∂LKP/∂Ẋsp. Here, Eφ(LKP ) and EXsp(LKP ) are the Euler op-

erators with respect to φ and Xsp, respectively. For a variable h, Dh/Dxi and Dh/Dt

represent the space-time derivatives when h = h(x, t) is considered as a field on the space-

time domain. Because δφ(x, t) is arbitrary, δA/δφ = 0 requires the EL equation for φ to

hold, i.e., Eφ(LKP ) = 0, which is indeed the Poisson equation (7), as expected. The field

equation for Xsp is more interesting. Because δXsp is arbitrary only on the time-axis, the

condition δA/δXsp = 0 requires only that the integral of EXsp(LKP ) over space vanish, i.e.,ˆ
d3xEXsp(LKP ) = 0. (24)

Equation (24) will be called the submanifold Euler-Lagrangian equation because it is defined

only on the time-axis after the integrating over the spatial variable. If Xsp were a function

of the entire space-time domain, then EXsp(LKP ) would vanish everywhere, as in the case

for φ(x, t). In general, we expect that EXsp(LKP ) 6= 0.

We now derive an explicit expression for EXsp(LKP ) . For the first term in EXsp(LKP ),
∂LKP
∂Xsp

=
[
qs
c
A0 · Ẋsp − qsφ+ ms

2 Ẋ
2
sp

]
∂δ2

∂Xsp

= ∂

∂x

[(
qsφ−

ms

2 Ẋ
2
sp −

qs
c
A0 · Ẋsp

)
δ2

]
+
[
qs
c

∂A0

∂x
· Ẋsp − qs

∂φ

∂x

]
δ2. (25)

The second term in EXsp(LKP ) is given by
D

Dt

∂LKP

∂Ẋsp

= msẌspδ2 +
(
msẊsp + qs

c
A0

)
∂δ2

∂t

= msẌspδ2 −
∂

∂x
·
[
Ẋsp(msẊsp + qs

c
A0)δ2

]
+ qs

c
Ẋsp ·

∂A0

∂x
δ2. (26)

Therefore,

EXsp(LKP ) =
[
qs
c

(
∂A0

∂x
· Ẋsp − Ẋsp ·

∂A0

∂x

)
− qs

∂φ

∂x
−msẌsp

]
δ2

+ ∂

∂x

[(
−qs
c
A0 · Ẋsp + qsφ−

ms

2 Ẋ
2
sp

)
δ2

]
+ ∂

∂x
·
[
Ẋsp

(
msẊsp + qs

c
A0

)
δ2

]
.

(27)
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Substituting Eq. (27) into the submanifold EL equation (24), we immediately recover New-

ton’s equation for Xsp, i.e., msẌsp/qs = −∂φ/∂x + Ẋsp × B0/c, which reduces Eq. (27)

to

EXsp(LKP ) ≡ ∂LKP
∂Xsp

− D

Dt

(
∂LKP

∂Ẋsp

)

= ∂

∂x

[(
−qs
c
A0 · Ẋsp + qsφ−

ms

2 Ẋ
2
sp

)
δ2

]
+ ∂

∂x
·
[
Ẋsp

(
msẊsp + qs

c
A0

)
δ2

]
.

(28)

As expected, EXsp(LKP ) 6= 0. We will refer to Eq. (28) as the weak Euler-Lagrange equation,

which is the foundation for the subsequent analysis of the local conservation laws. The

qualifier “weak” is used to indicate the fact that only the spatial integral of the Euler

derivative EXsp(LKP ) is zero [see Eq. (24)], in comparison with the standard EL equation,

which demands that the Euler derivative vanishes everywhere.

We define a symmetry of the actionA[φ,Xsp] to be a group of transformation (x, t, φ,Xsp) 7→

(x̃, t̃, φ̃, X̃sp) such that
´
LKP [x, t, φ,Xsp]d3xdt =

´
LKP [x̃, t̃, φ̃, X̃sp]d3x̃dt̃. If the symme-

try is generated by a vector field on the space of (x, t, φ,Xsp), V = ξ · ∂/∂x + ξt∂/∂t +

ψ∂/∂φ+ Yp · ∂/∂Xsp, then the infinitesimal criteria of invariance is given by [12]

prV (L) + LDivξ = 0, (29)

where prV is the prolongation of the vector field V on (x, t, φ,Xsp), and Divξ is the di-

vergence of the vector field ξ = ξ · ∂/∂x + ξt∂/∂t on the space-time domain. Given the

symmetry vector field V , the infinitesimal criteria for invariance will generate the desired

conservation law corresponding to the symmetry vector field V, after use is made of the

EL equation as well as the weak EL equation for the systems in the present study. We

first look for the symmetry group that generates local energy conservation. The group of

transformation (x̃, t̃, φ̃, X̃sp) = (x, t + ε, φ,Xsp) for ε ∈ R is a symmetry of LKP , because

LKP does not depend on t explicitly, i.e., ∂LKP/∂t = 0, which can be written as

DLKP
Dt

− φ,t
∂LKP
∂φ

− φ,jt
∂LKP
∂φ,j

−
∑
s,p

(
Ẋsp ·

∂LKP
∂Xsp

+ Ẍsp ·
∂LKP

∂Ẋsp

)
= 0. (30)

Equation (30) is the special form of Eq. (29) for this symmetry group. From the EL equation

for φ, i.e., Eφ(LKP ) = 0, we obtain

φ,t
∂LKP
∂φ

+ φ,jt
∂LKP
∂φ,j

= D

Dxj

(
φ,t
∂LKP
∂φ,j

)
. (31)
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The weak EL equation for Xsp, i.e., Eq. (28), gives

Ẋsp
∂LKP
∂Xsp

+ Ẍsp
∂LKP

∂Ẋsp

= ∂

∂x
·
[
Ẋsp

(
qsφ+ ms

2 Ẋ
2
sp

)
δ2

]
+ ∂

∂t

(
Ẋsp

∂LKP

∂Ẋsp

δ2

)
(32)

Combining Eqs. (31) and (32), we obtain the first local energy conservation law,

∂

∂t

[
(∇φ)2

8π −
∑
s,p

(
qsφ+ ms

2 Ẋ
2
sp

)
δ2

]
+ ∂

∂x
·
[
−1
4π φ,t∇φ−

∑
s,p

Ẋsp

(
qsφ+ ms

2 Ẋ
2
sp

)
δ2

]
= 0.

(33)

We subtract the identify

∂

∂t

[
(∇φ)2

4π + φ∇2φ

]
+ 1

4π
∂

∂x
· (−φ,t∇φ− φ∇φ,t) = 0 (34)

from Eq. (33) to express the energy conservation law in another equivalent form

∂

∂t

[
(∇φ)2

8π +
∑
s,p

msẊ
2
sp

2 δ2

]
+ ∂

∂x
·
[∑
s,p

Ẋsp

(
qsφ+

msẊ
2
sp

2

)
δ2 −

1
4πφ∇φ,t

]
= 0. (35)

In terms of the distribution function Fs, we obtain

∂

∂t

[
(∇φ)2

8π +
∑
s

ˆ
Fs
msv

2

2 d3v

]
+

∂

∂x
·
(∑

s

ˆ
Fs
msv

2

2 vd3v +
∑
s

qsφ

ˆ
Fsvd

3v − 1
4πφ∇φ,t

)
= 0. (36)

We emphasize again that Eq. (36) is the exact energy conservation law admitted by the

KP system Eqs. (6) and (7), and it cannot be obtained by replacing E by −∇φ and B by B0

in the conservation law for the KM sytem (10) and (11). The sum of the last two terms in

Eq. (36) is the electrostatic Ponyting flux of the KP system, first discussed by Similon [18] for

an unmagnetized plasma by algebraic manipulation. Its importance for electrostatic particle

simulations was addressed by Decyk [19]. Here, it appears naturally as a consequence of the

symmetry analysis. We observe that the external B0 does not contribute to the energy flux

of the electromagnetic field.

Our next goal is to search for the symmetry that generates the momentum conservation

law. In standard field theories, if the Lagrangian density does not depend on x explicitly,

then it admits the symmetry of spatial translation, x̃ = x+ εu, for a constant vector u and

ε ∈ R. Then the usual form of Noether’s theorem leads to momentum conservation. This

strategy does not work here because LKP depends on x explicitly through δ2 ≡ δ(Xsp − x)
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and A0(x). However, if we simultaneously translate both x and Xsp by the same amount,

then δ2 is invariant. Thus, we consider the translational transformation

(x̃, t̃, φ̃, X̃sp) = (x+ εu, t, φ,Xsp + εu), (37)

under which φ̃(x̃) = φ(x) = φ(x̃− εu) and X̃sp(t̃) = Xsp(t) + εu. When A0(x) = 0, we can

verify that Eq. (29) is satisfied, and Eq. (37) is indeed a symmtry admitted by LKP . The

corresponding vector field is V = ∂/∂x+∑
sp ∂/∂Xsp, and PrV = V since V is a constant.

The notation ∂/∂x here represents ∂/∂xi for i = 1, 2, 3. In this case, the infinitesimal criteria

of invariance in (29) is
∂LKP
∂x

+
∑
p

∂L

∂Xsp

= 0. (38)

When A0(x) 6= 0, the right-hand side of Eq. (38) will have a source term, and instead we

obtain
∂LKP
∂x

+
∑
s,p

∂L

∂Xsp

=
∑
s,p

Ẋsp ·
∂A0

∂x
δ2. (39)

It will be clear shortly that this term represents part of the momentum input due to the

external magnetic field through the Lorentz force. For the first term in Eq. (39), we invoke

the EL equation Eφ(LKP ) = 0 to obtain

∂LKP
∂x

= DLKP
Dx

− D

Dxj

(
∂LKP
∂φ,j

∇φ
)
. (40)

For the second term in Eq. (39), the weak EL equation for Xsp (27) is applied, which gives

∂L

∂Xsp

= d

dt

[(
msẊsp + qs

c
A0

)
δ2

]
+ ∂

∂x

[(
qs
c
A0 · Ẋsp + qsφ−

msẊ
2
sp

2

)
δ2

]

+ ∂

∂x
·
[
Ẋsp

(
msẊsp + qs

c
A0

)
δ2

]
. (41)

Therefore, conservation law generated by Eq. (39) is

∂

∂t

(∑
s,p

msẊspδ2

)
+ ∂

∂x
·
[∑
s,p

msẊspẊspδ2 + I

8π (∇φ)2 − 1
4π∇φ∇φ

]
=
∑
s,p

ms
Ẋsp

c
×B0δ2.

(42)

Evidently, this is the local conservation law of momentum. In term of the distribution

function Fs, it can expressed as

∂

∂t

(∑
s

ms

ˆ
Fsvd

3v

)
+ ∂

∂x
·
[∑
s

ms

ˆ
Fsvvd

3v + I

8π (∇φ)2 − 1
4π∇φ∇φ

]

=
∑
s

qs

(ˆ
Fs
v

c
d3v

)
×B0. (43)
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The first term on the left-hand side of Eq. (42) or Eq. (43) is the rate of variation of the

momentum density, the second term is the divergence of the flux, and the term on the

right-hand side is the momentum input due to the background magnetic field. Note that

the momentum density is purely mechanical, and does not include the electromagnetic mo-

mentum density −∇φ×B0/4πc. This is not totally intuitive. This conservation law is the

result of the symmetry (37), which is different from the well-known translational symmetry

for standard field theory. Because LKP depends on x explicitly through δ2 ≡ δ(Xsp − x),

a translation in x alone is not a symmetry of LKP , even when A0(x) = 0. Instead, the

symmetry group (37) simultaneously translates the space x and the field Xsp by the same

amount.

For the KD system, the weak EL equation for Xsp is

EXsp(LKD) ≡ ∂LKD
∂Xsp

− D

Dt

∂LKD

∂Ẋsp

= ∂

∂x

[(
−A · Ẋsp + φ− 1

2Ẋ
2
sp

)
δ2

]
+ ∂

∂x
·
[
Ẋsp

(
Ẋsp +A

)
δ2
]
. (44)

Energy conservation follows from the infinitesimal criteria (29) for the symmetry transfor-

mation (x̃, t̃, φ̃, Ã, X̃p) = (x, t + ε, φ,A,Xsp) after the weak EL equation (44) for Xsp and

the EL equations for φ and A are applied, i.e.,

∂

∂t

[
(∇φ)2 +B2

8π +
∑
s

ˆ
Fs
msv

2

2 d3v

]
+ ∂

∂x
·
(∑

s

ˆ
Fs
msv

2

2 vd3v + φ,tA,t +E ×B
4π

)
= 0.

Similarly, the infinitesimal criteria for the symmetry group (x̃, t̃, φ̃, Ã, X̃sp) = (x+εu, t, φ,A,Xsp+

εu) gives the momentum conservation relation

∂

∂t

(∑
s

ms

ˆ
Fsvd

3v + E ×B
4π

)

+ ∂

∂x
·
[∑
s

ms

ˆ
Fsvvd

3v + (∇φ)2 +B2 + 2∇φ ·A,t

8π I − EE +BB −A,tA,t

4π

]
= 0.

(45)

For the KM system, the weak EL equation forXsp is the same as Eq. (44). The symmetry

groups (x̃, t̃, φ̃, Ã, X̃sp) = (x, t+ ε, φ,A,Xsp) and (x̃, t̃, φ̃, Ã, X̃sp) = (x+ εu, t, φ,A,Xsp +

εu) gives the energy and momentum conservation laws (10) and (11) after the weak EL

equation for Xsp and EL equations for φ and A are applied.

In summary, a closer examination of the field theory for classical particle-field systems

reveals that the particle fieldXsp and the electromagnetic field reside on different manifolds.
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This unique feature indicates that EXsp(L), the Euler derivative of the Lagrangian density L

with respect to particle’s trajectory Xsp, does not vanish on the space-time manifold, which

is surprisingly different from the standard field theory. In fact,

EXsp(L) ≡ ∂L

∂Xsp

− D

Dt

(
∂L

∂Ẋsp

)
= ∂

∂x
· T , (46)

for some non-vanishing tensor T . Equation (46) is what we call the weak Euler-Lagrange

equation, and it is the most essential component in establishing the connection between

energy-momentum conservation and space-time symmetry for classical particle-field systems.

In fact, the energy-momentum conservation law follows from the infinitesimal criteria of the

space-time system, after the weak Euler-Lagrange equation is applied. For the Klimontovich-

Maxwell (or Vlasov-Maxwell) system, this theoretical construction explicitly links the well-

known energy-momentum conservation law with the space-time symmetry, which was only

cautiously suggested previously. For the reduced systems, such as the Klimontovich-Poisson

(or Vlasov-Poisson) system and the Klimontovich-Darwin (Vlasov-Darwin) system, this the-

oretical construction enable us to start from fundamental symmetry properties in order to

systematically derive the energy-momentum conservation laws, which are difficult to find

otherwise.
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