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Two-stream instability with time-dependent drift velocity
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The classical two-stream instability driven by a constant relative drift velocity be-

tween two plasma components is extended to the case with time-dependent drift

velocity. A solution method is developed to rigorously define and calculate the insta-

bility growth rate for linear perturbations relative to the time-dependent unperturbed

two-stream motions. Stability diagrams for the oscillating two-stream instability are

presented over a large region of parameter space. It is shown that the growth rate

for the classical two-stream instability can be significantly reduced by adding an

oscillatory component to the relative drift velocity.
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The electrostatic two-stream instability is a classical plasma physics problem that has

been extensively studied. It is also of practical importance in many application areas. For

example, it has been discovered that in high intensity proton accelerators, as the proton

beam passes through the electron background resulting from residual gas ionization or sec-

ondary emission, the two-stream instability driven by the relative velocity between electrons

and protons can significantly limit the intensity of the proton beams1–5. In astrophysics, the

electron-positron two-stream instability of pair plasmas in a pulsar magnetosphere6,7 has

been identified as an important physical process, which has been experimentally simulated

in the laboratory8,9. As a potential stabilization scheme, it has been suggested that a time-

dependent relative drift velocity between the plasma components may reduce the growth rate

of the instability4,10,11. This type of dynamical stabilization scheme for the two-stream in-

stability has been experimentally studied10. In general, dynamic stabilization is a technique

that can be applied to a variety of instabilities. Another example is the dynamic stabiliza-

tion of the Rayleigh-Taylor instability for inertial confinement fusion experiments12–19. On

the other hand, a purely oscillatory relative drift velocity may be unstable as well. This

is the so-called oscillating two-stream instability20–23, which is an interesting problem in its

own right. It has been studied for laboratory plasmas24–26 as well as for ionospheric heat-

ing experiments27. In the literature, the oscillating two-stream instability has been treated

mostly as a parametric instability process.

The question to address for the two-stream instability with time-dependent drift velocity

is whether the time-dependent relative drift motion or oscillation between the two compo-

nents of the plasma is stable. From a mathematical perspective, we are studying the stability

of a time-dependent solution of the differential equations describing the collective dynam-

ics of the plasma. Since the unperturbed solution under investigation is time-dependent,

different temporal Fourier harmonics of the perturbation are coupled, and the stability prop-

erties of the system cannot be described by a simple dispersion relation as in the case of

time-independent equilibrium solutions. Because of this challenging feature, most of the

theoretical studies in the past are based on asymptotic analyses for a special set of parame-

ters, and a thorough understanding of the general properties of the instability has not been

developed. For example, a stability diagram for the oscillating two-stream instability in

general parameter space has not been charted.

In the present study, we have developed a method to calculate the linear stability proper-
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ties of the two-stream dynamics for arbitrary system parameters and time-dependent relative

velocity. For periodic oscillating relative velocity, the linear dynamics can be characterized

by a one-period map, from which the growth rate of the perturbation can be rigorously

defined and calculated. Using this tool, we are able to obtain a comprehensive picture of the

linear two-stream stability driven by a general time-dependent drift velocity. As a theoret-

ical study, our analysis is based on a fluid model, and the time-dependent relative velocity

is induced by a time-dependent applied electrical field. For simplicity, the unperturbed

solution is assumed to be spatially homogeneous.

For the purely oscillatory two-stream solution, the stability diagrams are presented over

the entire parameter space. It is found that the growth rate and stability regions depend

on the oscillation frequency ω0 and the strength of the relative velocity Vd in a complex

manner. However, over a large range of parameter space, there exist band structures in the

stability diagram. For dynamic stabilization of the two-stream instability with a constant

relative velocity achieved by adding an oscillatory relative velocity, it is found that dynamic

stabilization does exist in certain parameter regimes. It is especially prominent for two-

stream interactions with small mass-ratio, as in the case of a positron beam streaming

through a background electron population. As the mass-ratio increases towards that of a

hydrogen plasma, the stabilizing effect becomes less effective.

The paper is organized as follows. The fluid equations governing the electrostatic two-

stream interaction with time-dependent relative velocity are first introduced, followed by a

description of the analytical and numerical methods used to solved the system of equations.

The main numerical results are then displayed with a discussion of the physics revealed by

these numerical calculations.

We consider a two-component plasma whose 1D electrostatic dynamics in the z-direction

is governed by the fluid-Poisson equations,

∂nj
∂t

+ ∂

∂z
(njvj) = 0, (1)

∂vj
∂t

+ vj
∂vj
∂z

+ 1
njmj

∂pj
∂z

= ej
mj

E, (2)

∂E

∂z
=
∑
j

4πejnj. (3)

Here, j = 1, 2 is the index labeling plasma species. Thermal effects are modeled by a simple
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adiabatic law with

pj = pj0
n̂
γj

j

n
γj

j , (4)

where pj0 = n̂jT̂j = const, n̂j = const, T̂j = const, and γj is the poly-tropic index for

the adiabatic dependence of pj on nj. The unperturbed dynamics is the time-dependent

homogenous solution specified by

n0
j = n̂j, (5)

v0
j (t) = vj0 + ej

mj

ˆ t

0
dt′E0(t′). (6)

The unperturbed velocity v0
j (t) is driven by the time-dependent externally applied electrical

field E0(t). The unperturbed density is assumed to be constant with overall charge neutrality∑
j ejn

0
j = 0.

We consider small perturbations ρ̃j = ejñj, ṽj, and Ẽ relative to the time-dependent

unperturbed solutions. The linearized fluid equations can be easily reduced to two coupled

equations in terms of ρ̃j,(
∂

∂t
+ v0

1

)(
∂

∂t
+ v0

1

)
ρ̃1 − v2

T1
∂2

∂z2 ρ̃1 = −ω2
p1(ρ̃1 + ρ̃2), (7)(

∂

∂t
+ v0

2

)(
∂

∂t
+ v0

2

)
ρ̃2 − v2

T2
∂2

∂z2 ρ̃2 = −ω2
p2(ρ̃1 + ρ̃2), (8)

where ω2
pj = 4πn̂je2

j/mj and v2
Tj = γjTj/mj. Because v0

j (t) depends on time, but not on

the spatial coordinate, we can Fourier-decompose the spatial dependence of ρ̃j, and assume

ρ̃j ∼ exp[ikz], where k is the wavenumber of the perturbation. Equations (7) and (8) then

reduce to the coupled ordinary differential equtions with time-dependent coefficients
(
d

dt
+ kv0

1

)2

ρ̃1 + k2v2
T1ρ̃1 = −ω2

p1(ρ̃1 + ρ̃2), (9)(
d

dt
+ kv0

2

)2

ρ̃2 + k2v2
T2ρ̃2 = −ω2

p2(ρ̃1 + ρ̃2). (10)

When the drift velocity v0
j does not depend on time, corresponding to E0(t) = 0, we can

assume ρ̃j ∼ exp[−iωt], and Eqs. (9) and (10) recover the expected dispersion relation

ω2
p1

(ω − kv0
1)2 − k2v2

T1
+

ω2
p2

(ω − kv0
2)2 − k2v2

T2
= 1. (11)
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For the general case of time-dependent v0
j , the solutions of Eqs. (9) and (10) can be given

by a time-dependent map from the initial conditions as

ρ̃1

ρ̃2

˙̃ρ1

˙̃ρ2


t

= M(t)



ρ̃1

ρ̃2

˙̃ρ1

˙̃ρ2


t=0

.

Here, the map is specified by a time-dependent 4× 4 matrix M(t), which is independent of

the initial conditions. It is completely determined by the unperturbed solutions and system

parameters, and can be easily calculated numerically by selecting four independent solutions

of Eqs. (9) and (10). In particular, if v0
j (t) is a periodic function with periodicity T , then

the solution is completely determined by the one-period map M(T ). The properties of long-

time solutions are given by Mn(T ), n→∞. If M(T ) has an eigenvalue whose magnitude is

larger than one, then the system is unstable. Otherwise, the system is stable. With these

considerations, the appropriate definition of the growth rate of the dynamical system is19

γ ≡ lnMax[|λi|]
T

, (12)

where λi (i = 1, 2, 3, 4) are the eigenvalues of the one-period map M(T ).

We now present the numerical study of the stability properties of the two-stream inter-

action with time-dependent relative drift velocity. In the present study, we focus mainly on

the effects of time-dependent drift velocity, and thus consider the most unstable case where

thermal effects are neglected in Eqs. (9) and (10). It is convenient to normalize time by

1/ωp1 and drift velocity by ωp1/k. A straightforward analysis shows that the stability of the

system depends on the drift velocity only through the relative velocity vd(t) ≡ v0
1(t)− v0

2(t)

between the two components. Therefore, the dimensionless parameters for the system are

the mass ratio m2/m1, charge ratio e2/e1, the normalized relative velocity kvd(t)/ωp1, and

the normalized ω0/ωp1.

The first case of our numerical study is the purely oscillating two-stream instability for

m2/m1 = 1, such as occurs in the two-stream interactions between positrons and electrons6,7

or between protons and anti-protons.. The relative drift velocity is assumed be a periodic

function with frequency ω0 = 2π/T and amplitude v̂d, i.e.,

vd(t) ≡ v0
1(t)− v0

2(t) = v̂d sin(ω0t).
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Figure 1. Stability diagram for the oscillating two-stream instability. Contours of the normalized

growth rate γ/ωp1 are plotted as functions of ωp/ω0 and kv̂d/ωp1 for vd(t) ≡ v0
1(t) − v0

2(t) =

v̂d sin(ω0t), e2/e1 = −1, m2/m1 = 1, ωp2/ωp1 = 1, and ωp =
√
ω2
p1 + ω2

p2. The darkest region is the

region corresponding to stable oscillations.

Shown in Fig. 1 is the contour plot of the normalized growth rate γ/ωp1 as a function of

ωp/ω0 and kv̂d/ωp1. The horizontal axis is chosen to be the inverse of the drive frequency

normalized to the plasma frequency ωp =
√
ω2
p1 + ω2

p2 = ωp1/
√

2 so that the figure has more

resolution at frequencies smaller than the plasma frequency. The darkest region is the region

for stable oscillations, and the lighter regions are more unstable. It is evident that the growth

rate depends on ωp/ω0 and kv̂d/ωp1 in a complex manner. However, over a wide range of

parameter space, the stability/instability regions form a band structure. The vertical line

ω0 = ωp =
√

2ωp1 is stable, which corresponds to stable plasma oscillations. However, there

exist unstable regions nearby, especially when kv̂d/ωp1 is small. If the drive frequency is

above or below the plasma frequency by a small amount, then the oscillations are unstable.

This is a statement about the structural stability properties of plasma oscillations.

The band structure and proximity of unstable regions near the plasma frequency become

more prominent as the mass-ratio increases, as displayed in Fig. 2, which is a similar contour
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Figure 2. Stability diagram of the oscillating two-stream instability. Contours of the normalized

growth rate γ/ωp1 are plotted as functions of ωp/ω0 and kv̂d/ωp1 for vd(t) ≡ v0
1(t) − v0

2(t) =

v̂d sin(ω0t) and m2/m1 = 1836. Here, ωp =
√
ω2
p1 + ω2

p2, and the darkest region is the region

corresponding to stable oscillations. The stability/instability bands congregate at the subharmonics

of the plasma frequency.

plot of the growth rate for a hydrogen plasma with m2/m1 = 1836. The stability/instability

bands becomes more structured, congregating at the subharmonics of the plasma frequency

ωp =
√
ω2
p1 + ω2

p2 ≈ ωp1.

The next numerical study carried out is the dynamic stabilization of the two-stream

instability with a component of oscillatory relative drift velocity. First we look at the case

where m2/m1 = 1 corresponding to positron and electron beams or proton and anti-proton

beams. Figure 3 shows the normalized growth rate plotted as a function of kv̂d/ωp1 for

three different time-dependent relative velocities. The first curve is for a DC drift velocity

vd(t) = v̂d, corresponding to the classical two-stream instability, whose growth rate γ/ωp1

can be solved for as a function of kv̂d from the dispersion relation (11) with vTj = 0. The

numerically calculated growth rate using the method according to Eq. (12) agrees exactly

with that given by the dispersion relation (11). The second curve is for a purely oscillatory

velocity of the form vd(t) = 1.6v̂d sin(ω0t) at ω0 = 2.1ωp1. For this set of parameters, the
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Figure 3. Normalized growth rate γ/ωp1 plotted as a function of kv̂d/ωp1 for three choices of time-

dependent velocity vd(t) for the case where m2/m1 = 1. The ratio between the amplitudes of the

oscillatory and DC components of the drift velocity is 1.6.
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Figure 4. Normalized growth rate γ/ωp1 plotted as a function of kv̂d/ωp1 for three choices of time-

dependent velocity vd(t) for the case where m2/m1 = 1836. The ratio between the amplitudes of

the oscillatory and DC components of the drift velocity is 1.6.

oscillating two-stream system is unstable. The third curve is for the combined velocity of the

above two cases, i.e., vd(t) = v̂d[1+1.6 sin(2.1ωp1t)].We observe that even though the systems

with the DC velocity or oscillatory velocity are unstable, the combination can reduce the

maximum growth rate by about 75%. This effect can be explored for the purpose of designing
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possible stabilization schemes in practical applications. As the mass-ratio increases, this

stabilization effect persists, but becomes less prominent. This is demonstrated in Fig. 4,

where m2/m1 = 1836. For this set of parameters, the reduction of the maximum growth

rate is about 45%.

In conclusion, we have developed an effective theoretical method to investigate the two-

stream instability with time-dependent drift velocity over a wide range of system parameters.

The growth rate of the instability has been rigorously defined and calculated. The stability

behavior of the system has a complex dependence on system parameters and exhibits a

band structure over a large region of parameter space. The detailed information obtained

regarding the dynamic stabilization of the two-stream instability can be used for the design

of practical stabilization schemes. The fluid model in Eqs. (1)-(3) includes thermal effects.

However, in this paper we have chosen vTj = 0 and focused on the effects of time-dependent

drift velocity in the numerical studies presented here. The influence of thermal effect as well

as other physical factors, such as spatial inhomogeneities, is currently being investigated and

will be reported in future publications.
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