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Abstract

Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these

positrons encodes valuable information about the runaway dynamics. The phase space dynamics

of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry,

loop voltage, radiation and collisional e�ects. It is found numerically that runaway positrons will

drift out of the plasma to annihilate on the �rst wall, with an in-plasma annihilation possibility

less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as

diagnostic tools.
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Positron, the anti-particle of electron, is a rare species in the part of universe where we

reside. Since last century, man-made positrons have been generated in accelerators for sci-

enti�c research, in nuclear reactors as the byproducts, and applied in di�erent �elds, such as

medicine and material detection [1�3]. Recent researches indicate that tokamak, a magnetic

con�nement fusion energy device, may be the largest arti�cial positron factory in the world

[4, 5]. In large tokamaks like JET and JT-60U, above 1014 positrons are generated in a

post-disruption plasma by runaway electrons [6�22]. The dynamics of these positrons after

birth in tokamaks is a noteworthy question that may yield valuable information about the

runaway dynamics and disruption process in tokamaks. What is the fate of these positrons?

Will they annihilate inside the plasma or on the �rst wall of the vacuum chamber? Be-

cause the annihilation probability dependents on the path and velocity, the fate of runaway

positrons is determined by their phase space trajectories, which are strongly a�ected by

the loop electric �eld, the helical magnetic �eld, and the collisional and radiation e�ects.

Incorporating all these factors, we study the phase space dynamics of runaway positrons in

tokamaks and predict their �nal fate.

When relativistic runaway electrons interact with the thermal electrons and ions,

positrons are produced in the pair production process. In tokamaks, because the energy

of runaway electrons is typically above 10 MeV, most of their �children� positrons are born

relativistic and can be accelerated to runaway velocity by the loop voltage. In the toroidal

direction, the runaway positrons are accelerated along the toroidal electric �eld and slowed

down by radiation loss and collisions. As the energy increase, strong synchrotron radiation

and bremsstrahlung radiation begin to dominate in the drag force, which �nally balances

the loop electric �eld force. The collisional drag from the background plasma becomes small

after runaway positrons gain high velocities. Nevertheless, the collisional e�ect o�ers a mo-

mentum transfer mechanism between the parallel and the perpendicular momentum through

the pitch-angle scattering. On the other hand, the projection of the positron gyrocenter tra-

jectory onto the poloidal plane is not exactly located on a �ux surface due to the geometric

e�ect of the tokamak magnetic �eld. Numerical results reveal that the circular orbits of

runway positrons in the poloidal plane drift toward or against the major radius direction

êR (see Fig.1), under the in�uence of the loop electric �eld along the toroidal direction ξ̂

and the helical background magnetic �eld. Due to the drift e�ect, the runaway positrons hit

the �rst wall of the tokamak within about one hundred milliseconds with energy as large as
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the toroidal direction

the poloidal plane

Figure 1: The circular concentric magnetic �ux surfaces and the coordinate systems.

150 MeV. After the phase space trajectories are known, the annihilation probabilities along

the trajectories can be calculated. For a typical positron, it is found that the probability of

annihilation inside the plasma is only about 0.1%. Essentially all positrons generated in the

tokamak will annihilate on the �rst wall of the vacuum chamber. This fact suggests that the

annihilation spectrum from the wall can be analyzed to infer the dynamics and distribution

of the runaway positions. Admittedly, there are many other loss mechanisms for the posi-

tions. For example, stochastic �eld lines [23, 24] induced by MHD modes and ripple �eld

[25] can result in transport or orbit loss for energetic positrons. The orbit loss considered

in the present study is a neoclassical e�ect due to the toroidal geometry, and is probably

the slowest loss mechanism among all possible mechanisms. The in-plasma annihilation

probability of 0.1% obtained in our calculation is thus its upper bound.

We now present in detail the study of phase space dynamics of runaway positrons. For

theoretical analysis and numerical simulation, the gyrocenter of runaway positrons is de-

scribed by a Lagrangian, which incorporates the tokamak geometry, loop voltage, radiation

and collisional e�ects. Parallel momentum, perpendicular momentum, annihilation rate,

and the drift orbit in the poloidal plane are numerically calculated as functions of time. The

potential of runaway positrons as a diagnostic tool is discussed at the end.

As the anti-particle, the positron has the same rest mass as the electron, denoted as me,

but opposite electric charge, denoted as e. So the dynamics of runaway positrons are similar

to that of runaway electrons. The Lorentz factor for a positron with momentum p is

γ =

√
1 +

p2

m2
ec

2
=

√
1 +

p2‖
m2
ec

2
+

p2⊥
m2
ec

2
, (1)
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where c is the light speed in vacuum, p‖ is the momentum component parallel to the back-

ground magnetic �eld, and p⊥ is the perpendicular momentum. Its synchrotron radiation

drag force takes the form

Fs =
2

3
remec

2γ(γ2 − 1)3/2
(

1

R2
0

+
sin4 θ

r2g

)
, (2)

where re = e2/4πε0mec
2 is the classical positron radius, rg = p⊥/eB is the positron gyro-

radius, θ is the pitch angle de�ned by sin θ = p⊥/p, and R0 is the major radius of the

tokamak. The bremsstrahlung drag force is

FB =
4

137
nemeγc

2r2e (Zeff + 1)

(
ln 2γ − 1

3

)
, (3)

where ne is the number density of the background plasma, Zeff is the e�ective ion charge

factor. The collisional friction force is

Fc =
nee

4me ln Λ

4πε20

γ2

p2
, (4)

where ln Λ is the Coulomb logarithm, which varies slowly with the plasma parameters. To

theoretically investigate the dynamics of runaway positrons in tokamaks, we describe the

dynamics of positrons by the following Lagrangian [26],

L = (eA0 + eAl + eAeff‖ + p‖b) · ẋ− γmc2 . (5)

Here, A0 is the vector potential of the background magnetic �eld satisfying B = ∇ ×A0,

Al is the vector potential of the loop electric �eld satisfying

−∂Al

∂t
= Eloop , (6)

Aeff‖ is the parallel component of the e�ective vector potential corresponding to the drag

force,

Aeff‖ =
p‖
p

t

e

(
Fs + FB +

Zeff + γ + 1

γ
Fc

)
b , (7)

and b is the unit vector along the magnetic �eld. The magnitude of the e�ective vector

potential in the perpendicular direction is

Aeff⊥ =
p⊥
p

t

e

[
Fs + FB +

(
1−

p2‖
p2⊥

Zeff + 1

γ

)
Fc

]
. (8)
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Without loss of generality, we consider a tokamak magnetic �eld with circular concentric

�ux surfaces,

B =
B0R0

R
êξ +

B0r

qR
êθ . (9)

Accordingly we choose its vector potential to be

A0 =
B0R0z

2R
êR +

B0r
2

2Rq
êξ +

R0B0

2
ln

(
R

R0

)
êz . (10)

The loop voltage is set to be

Eloop = El
R0

R
êξ . (11)

In the right-handed coordinate system (R, ξ, z) (see Fig.1), the Lagrangian takes the form

L = pRṘ + pξ ξ̇ + pz ż − γmec
2 , (12)

where

pR =
eB0R0z

2R
− B0z

BqR

(
p‖ + eAeff‖

)
, (13)

pξ =
eB0r

2

2q
+ eAlR0 +

B0R0

B

(
p‖ + eAeff‖

)
, (14)

pz = −eR0B0

2
ln

(
R

R0

)
+
B0x

BqR

(
p‖ + eAeff‖

)
. (15)

Because of the toroidal symmetry, i.e. ∂L/∂ξ = 0, the e�ective toroidal momentum is

conserved, i.e.,

pξ =
∂L

∂ξ̇
= const . (16)

This invariance determines the evolution of p‖ as

p‖ =
B

B0R0

(
pξ −

eB0r
2

2q
− eAlR0

)
− eAeff‖ . (17)

Meanwhile, there exits another conserved quantity, the e�ective magnetic moment µ, de�ned

by

µ =
(p⊥ + Aeff⊥)2

2meB
, (18)

which determines the evolution of p⊥. If neglecting the higher-order terms caused by the

toroidal e�ect and the poloidal �eld, Eqs.(17) and (18) give

5



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0

50

100

150

200

250

300

t �s
p þ
�m

ec

H-20, 4L

H50, 20L

H50, 10L

H5, 1L

Initial Hpþ,p¦L

(a)

(b)

0.0 0.1 0.2 0.3 0.4
0

5

10

15

20

t �s

p ¦
�m

ec

(c)

0.0 0.1 0.2 0.3 0.4
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

t �s

R
an

Figure 2: The evolution of the parallel momentum (a), the perpendicular momentum (b), and

the annihilation rate (c) of runaway positrons in tokamaks with di�erent initial values of (p‖,p⊥)

(normalized by mec). The loop electric �eld is El = 3V/m.

dp‖
dt

= eEloop −
p‖
p

(
Fs + FB +

Zeff + γ + 1

γ
Fc

)
,

dp⊥
dt

= −p⊥
p

[
Fs + FB +

(
1−

p2‖
p2⊥

Zeff + 1

γ

)
Fc

]
,

which are consistent with the momentum evolution equations in [12, 27�29]. After substi-

tuting Eqs.(17) and (18) into Eq.(12) and dropping the term pξ ξ̇, the toroidal symmetry
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Counterclockwise

Figure 3: Snapshots, taken for every 0.03s, of the circular orbit of a runaway positron in the poloidal

plane, with initial position R−R0 = 0.1m, z = 0m and initial momenta p‖ = 5mec and p⊥ = mec.

The loop electric �eld is El = 5V/m. The position of the �rst wall is indicated by the dashed

vertical line.

leads to the reduced Lagrangian in the (R, z) 2D space

L = pR(R, z)Ṙ + pz(R, z)ż −H(R, z) . (19)

This is the procedure of Routh reduction. Then the runaway positron dynamics in the 2D

con�guration space, i.e., the projection poloidal plane, is given by the Euler-Lagrangian

equation,

Ṙ =
∂H/∂z

∂pR/∂z − ∂pz/∂R
, (20)

ż =
∂H/∂R

∂pz/∂R− ∂pR/∂z
. (21)

Equations (17), (18), (20) and (21) determines the dynamics of runway positrons in phase

space. Given the dynamics in the momentum space, the in-plasma annihilation probability

of a runaway positron can be calculated according to

Ran =

tˆ

0

neσanvdτ , (22)

where the annihilation cross-section for the positron-electron reaction is [5]
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σan =
πr2e

1 + γ

[
γ2 + 4γ + 1

γ2 − 1
ln(γ +

√
γ2 − 1)− γ + 3√

γ2 − 1

]
2π

137p(1− e−2π/137p)
. (23)

To guarantee the long term numerical accuracy and �delity, we have adopted a varia-

tional symplectic integrator [30, 31], which discretizes the Lagrangian directly, to carry out

the numerical simulation. For conventional integration algorithms, such the Runge-Kutta

method, numerical errors from di�erent time-steps accumulate coherently and the error

grows without bound for long-term simulations. In comparison, the variational symplectic

integrator can globally bound the numerical error for all time-steps, and thus are superior

for simulating the runaway dynamics, which often involves many hundreds of thousands of

turns in the poloidal plane.

For the present study, we use the parameters from EAST as a speci�c example [32]. We set

B0 = 3.5T , R0 = 1.7m, ne = 1019m−3, and ln Λ = 10. The loop electrical �eld is El = 3V/m,

and the minor radius is a = 0.4m. In typical EAST operations, the safety factor q varies in

the range of 1 to 3, while the pro�le of q is rather �at in the core region. Thus we choose q = 2

in the calculation. For runaway positrons with di�erent initial parallel and perpendicular

momentum, their momentum evolution are plotted in Fig.2. After 0.3s, all the parallel

momenta reach a steady value around 300mec, as a result of the balance between the loop

electric �eld acceleration and the drag force resistance. The perpendicular momenta also

evolve towards a steady value, though a little slower, due to the balance between the radiation

loss and the momentum transfer from parallel direction through the pitch angle scattering.

The green curves show the dynamics of what might be called a "backward runaway" positron

[33, 34], whose initial parallel momentum is opposite to the loop electric �eld. It undergoes

a deceleration under in the toroidal direction at �rst. However, its parallel momentum

reverses sign after 0.01s and then increases like forward runaway positrons with positive

parallel momenta. Its perpendicular momentum has a drop in the deceleration phase and

passes a point of in�exion at 0.01s. It can be seen that runaway positrons of widely di�erent

initial momentum nonetheless approach attractor curves in momentum space. The existence

of attractor curves is made possible because of the dissipation introduced by radiation e�ects.

The possibility of annihilation for runaway positrons with di�erent initial momenta is

depicted in Fig.2(c). Because the annihilation cross-section becomes very large when the

positron moves slowly relative to the background electrons, the annihilation rate of the
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positron with negative parallel momentum grows rapidly during its turning around pro-

cess. Nevertheless, it escaped from the doom of annihilation for a non-relativistic positron.

Though its parallel momentum goes through zero, its perpendicular momentum is still rel-

ativistic, which ensures that it is not annihilated in the slowing-down process and can be

accelerated to runaway in the backward direction. Overall, the annihilation probability is

very low for runaway positrons. The probability is only about 0.1% after 0.4s, which is long

enough for runaway positrons to escape the tokamak plasmas through the drift motion or

other transport/loss mechanisms in the poloidal plane.

The motion of a runaway positron in the poloidal plane with loop electric �eld El = 5V/m

is depicted in Fig.3. The loop electric �eld and the toroidal magnetic �eld are in the

êξ direction, and the poloidal magnetic �eld is in the êθ direction. The counterclockwise

circular orbits are snapshotted for every 0.03s. The outward drift of the circular orbit to

the êR direction is evident. The drift velocity slows down with the radiation resistance

in the toroidal direction increases. The drift velocity can be roughly estimated as vdr =

q(El + Eeff‖)/B0 [13]. The runaway positron �nally hits the wall before t = 0.15s, with

an in-plasma annihilation probability less than 0.1%. This example illustrates the fact that

most of the runaway positrons in tokamaks can drift out of the plasma to hit the wall before

annihilation within the plasma. If the safety factor q = q(R, z) is a function of the spatial

coordinates like in real tokamaks, the drift velocity will explicitly depend on the spatial

location. However, the space-dependent safety factor also leads to similar runaway positron

dynamics and the same main conclusions as the constant-q assumption. For situations with

larger loop electric �eld, the runaway positrons will drift faster. If changing the helical

direction of the magnetic �eld or the direction of the loop electric �eld, the positron will

drift inwards, i.e., towards the negative êR direction, to hit the inner wall. It is observed

that the radius of circular orbit varies as the positron drifts along the êR direction, especially

in the later stage. As mentioned previously, the neoclassical orbit loss is just one of many

loss mechanisms for positrons. Since other loss mechanisms [23�25, 28, 35�37] are in general

faster, the in-plasma annihilation probability observed in experiments should be even less.

Finally, because the orbit drift does not depend on the electric charge, note that runaway

electrons, which will have their own signature (like visible damage to the wall), will strike

exactly on the same side of the vacuum vessel.

Early in 1986, Surko et al. proposed to diagnose the transport process by injecting
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positrons into tokamaks [38]. The annihilation spectrum of positrons in thermal plasmas

was also studied [39]. Now it is clear that the large amounts of positrons produced by toka-

maks themselves can be used as a diagnostic tool as well. Since most of the positrons are

annihilated outside the plasma, the positron diagnostic in tokamaks cannot detect plasma

properties directly as in PET (Positron Emission Tomography) [1]. However, positron diag-

nostic is still possible using our knowledge of the dynamics of the runaway positrons. The

annihilation spectrum, which can be recorded by the gamma spectrometer, is very charac-

teristic and easily identi�able. The intensity, breadth, and shift of the annihilation peak

in the spectrum re�ect the properties of the plasma that determines the runaway dynam-

ics. Moreover, the time history of the positron annihilation is also an important indication

to some events in tokamaks, such as a disruption or rf heating, which produce a burst of

positron runaways at a speci�c time. The annihilation locations on the �rst wall and the

emission directions of the gamma ray provide information about the phase space coordi-

nates of the runaway positrons at the end of their journey, from which we can also infer the

trajectories of runaway electrons in the phase space. Theoretical and experimental studies

on these topics will be reported in future publications.
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