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Equilibrium Spline Interface (ESI) for magnetic confinement codes

Xujing Li', Leonid E. Zakharov?
I Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China
2 Princeton Plasma Physics Laboratory Princeton, P.O. Box 451, Princeton NJ, 08548, USA

A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium
codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its ir-
reducible set of equilibrium data consists of three (in 2-D case with occasionally one extra in 3-D
case) functions of coordinates and four 1-D radial profiles together with their first and mixed deriva-
tives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis
functions and their first derivatives at amny position inside the plasma and in its vicinity. After this
all vector fields and geometric coefficients, required for the above mentioned types of codes, can be
calculated using only algebraic operations with no further interpolation or differentiation.

PACS numbers: 02.60.Lj, 52.30.Bt, 52.55.Fa, 52.55.Hc

I. INTRODUCTION

In plasma simulations, which deal with highly anisotropic equations, the equilibrium codes play a fundamental role in
supplying the information about magnetic configuration. For different more sophisticated plasma problems: stability,
transport, particle orbit or gyro-kinetics, this information is needed in flux coordinates related to the geometry of the
magnetic field.

Initially, the “equilibrium solvers” worked as a set of subroutines inside other codes. We do not consider this
practical anymore. The requirements to equilibrium codes has grown considerably from primitive calculations of
“fix-boundary” cases for theory purposes to the real time control of plasma equilibrium in operational devices and
real time magnetic reconstruction [1]. These tasks require sophisticated interaction with numerous control systems
and diagnostics. Recently, the possibility of performing the real time sensitivity analysis has emerge for generation of
the best possible equilibrium reconstruction data [2]. It became almost impossible to maintain an equilibrium code
updated as a subroutine inside another code which are designed for other objectives.

The practical approach is to run the codes as separate processes interacting with each other using the inter-process
communications. This approach makes the maintenance of different codes independent and focused on their own
specific objectives. The interface between the equilibrium and “client” codes can be provided by an intermediate
layer, which requires standard information on equilibrium code and conveys it to the client code. This paper describes
a universal format and a set of routines, called ESI, as a buffer between equilibrium and other codes. EST makes the
user side independent of the specific code, which generates the equilibrium data.

While the equilibrium configurations depend essentially only on two radial profiles and the shape of the plasma
boundary, the request of other codes may contain numerous 2- or 3-dimensional functions representing components of
the metric tensor, magnetic fields, current density, curvature of the field lines, or the magnitude of the magnetic field
and its derivatives. All these functions are inter-related and many can be calculated in a different manner, potentially
generating inconsistencies due to finite accuracy of the equilibrium codes. Because of this, it is important to determine
what should be taken as the output data from the equilibrium codes and what can be calculated inside the “client”
codes in a self-consistent manner.

At present, there are two extreme approaches to make a choice of output data from numerical equilibria. One of
them requires all functions, necessary for the client code, at all necessary positions to be supplied by the equilibrium
codes. An example was the initial interface of ASTRA code [3] and ESC (Equilibrium and Stability Code) [4],
when the data on equilibrium configuration were supplied from ESC for both transport simulations and for modeling
radio-frequency wave propagation in ASTRA. This approach works only for closely related pairs of codes, making
them highly dependent on each other. It requires excessive storage capacities because the required data (e.g., some
combinations of metric coefficients) may not be very smooth. This approach is not-suitable also for the situation
when the client codes (like particle motion codes) need physics variables at unpredictable positions inside the plasma.

The other extreme approach uses only primitive information from the equilibrium codes, such as coordinates of
grid points and a few radial profiles in the form of so-called “g-, a-files” of EFIT [5-7] or “eqdsk” of JSOLVER
[8-10]. Then, the client codes, e.g., the PEST [11, 12] stability code, or ORBITS [13] for particle orbits, or transport
simulation codes [14, 15] use their own mappers to generate all the necessary functions from equilibrium data.

The problem here is in interpolation and, especially, in calculation of space derivatives, entering into many physics
variables. With no universal mathematical rules of doing numerical differentiation, this approach unavoidably intro-



duces its own inaccuracies and causes potential convergence problems in interaction with equilibrium codes.

The idea of Equilibrium Spline Interface (ESI), implemented in ASTRA-ESC code system in 2005, is to have a
universal buffer between an equilibrium code and the user codes, as it is shown in Fig. 1. ESI possesses comprehensive
information about magnetic configuration and is able to provide it to magnetic confinement codes in a ready to use
form. In fact, the design of ESI includes the possibility of representing confinement magnetic fields with ergodic
magnetic structures and only approximate magneto-hydrodynamical force balance.

Technically, the proposed ESI consists of (a) a data set (file, or a segment of the shared memory, or interprocess
communication channel), which should be provided by an equilibrium code, and (b) of a C-source file (esiXZ.c),
which contains with C- or FORTRAN- callable initialization and reconstruction routines (see Fig. 1). This paper and
other documentation on the current state of EST can be found in esiXZ.c.d documentation file.
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FIG. 1: Data generating equilibrium code, ESI, and the user’s code

The source code esiXZ.c is self-contained and can be compiled by a simple command
cc -¢ -o esiXZ.o esiXZ.c

From the equilibrium codes the interface requires a standard and easy to generate set of data, specified and explained
in this paper, together with the ID (defined later) of coordinates and representations. In its turn, the user side may
optionally provide its own ID information during initiation of the interface. After this the interface routines can
generate all necessary data for magnetic confinement codes at any point in the calculation area.

The interface is compact and comprehensive. For equilibrium configurations it includes a set of basis functions, i.e.,
four radial profiles and three 2-D functions of space coordinates for axisymmetric configurations (e.g., tokamaks) or
3-D functions (for stellarators). ESI data provide a Hermit polynomial representation of these well behaved functions
in terms of their values, first and mixed derivatives on a mesh.

The reconstruction routines can calculate basis functions and their first derivatives at any point inside the plasma.
Then, the client code can calculate the necessary vector or scalar field variables by algebraic operations without
numerical differentiation, as it is described in this paper.

Sect. 2 introduces notations and basis of ESI functions and their relations with the physics variables and plasma
profiles. Sec. 3 describes initialization of ESI and a call of main reconstruction routine at the user side. Sec. 4 contains
basic geometrical relationships, while Sec. b provides the self consistent recipes for calculating parameters of magnetic
configurations.

Sect. 6 outlines the use of ESI for tracing field lines and particle orbits. The Hamiltonian canonical coordinates are
introduced for guiding center motion in 3-D nested configurations. Boozer coordinates are not canonical, as is often
mistakenly believed. Sect. 7 shows sufficiency of ESI for MHD stability codes.

Finally, Sect. 8 and Sect. 9 describes the data storage structure, file formats and a set of ESI routines.

II. THE BASIS FUNCTIONS OF ESI, REFERENCE MAGNETIC COORDINATES

The curvilinear coordinates a, 6, ( for describing magnetic configurations for plasma confinement (see, e.g., [16])
can be represented parametrically by equations

r=r(a0,0), z=2(a0,0), @v=uv(ab0), 1)
where 7,, z are laboratory cylindrical coordinates. The typical choice of { = ¢ eliminates the need of the third
equation. The curvilinear coordinates are assumed to be nested and their Jacobian J
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is not vanishing.
In the ideal situation, the magnetic surfaces are also nested and it is possible to consider the so-called “fux”
coordinates, when

B.-Va=0. )
The vector potential A of the magnetic field B= (V x f_f) has the following general covariant representation
A=—-89Va+ 8V +TIV(. (4)

In nested coordinates the dependencies on angles 6, ¢ in function ® can be eliminated by adding Vu to the vector
potential, thus, making it a function of (a,¢): & = Bgp(a) + ®(a, ¢), where é(a, ¢) is an oscillatory function. Then, by
massaging the radial coordinate a = a + £(a, ¢), using, e.g., an iterative procedure "1 = —3n /@5, the dependence
on ( can be eliminated as well, leaving

<i) = ’i)og ((1,) = @(a) (5)

After this, ®(a) = 27r®(a) becomes a flux of the magnetic field through the contour ¢ = const,{ = const. (Only in
the case of Field Reversed Pinches, where ®), = 0 at the field reverse radius, this elimination may not be possible).

In the function ¥ = T(a, §, ¢), it is not possible to eliminate the dependence on angle coordinates in all situations.
The best representation

¥ = Too(a) +(0.0,0) = Fao@) + 3 ene @60, Foo(a) = 15 § § T8 d (6)

can be achieved only in a special coordinate system, called the Reference Magnetic Coordinates (RMC) [17], where
only resonant Fourier harmonics 9, s+ enter into ¥ with m*®), + n*®h, = 0 at some @ = ap+p+. In equilibrium
configurations these resonance terms determine the magnetic islands, which make the topology of the magnetic field
different from the coordinate system. RMC give the most compact representation of the 3-D ergodic flelds. The
design of EST utilizes RMC for representation of 3-D confinement magnetic fields in the form of Eq. (6).

The averaged 27%qq is equal to the poloidal ¥ flux of the magnetic field through the contours a = const, § = const.
For the purpose of ESI we consider only simple nested magnetic configurations, where

U = Tgo(a) = U(a). (7)

In the following, we will drop the subscript '00’ in By, Too assuming representation (6) in the case of ergodic fields.
The periodic function 1 = n(a, 8, {) is oscillatory

/ nd6d¢ = 0. (8)
For special purposes, it can be eliminated by massaging the angles
6 +0=0+a, (¢(—=C+B Ta+Tp=27 (9)
in order to produce the so-called “straight field line” coordinates
A=dVI4 (I 1)V (10)

“Barred” notations a, 0, are used for the straight field line coordinates.
In RMC, the magnetic field has the following contravariant representation

B =9,(Vo x V) — (W + 4, + ') (V¢ x Va) + (¥ + &'ny)(Va x V), (11)
N 7 = \i,/ / i)/ / . = ,
B“EB'Va:%, BGEB»vez—w, BCEB-VC=M, (12)

where 1 with resonant harmonics describes magnetic istands. In flux coordinates (§ -Va =0, ¥ = 0), the magnetic
field B has a simpler form

B =—(V + &n}) (V¢ x Va) + (& + &'np)(Va x V). (13)



The definitions (1, 13) introduce two {(out of a total of four in ESI) 1-D profiles
®'(a), ¥'(a) (14)
and, together with |B|, four basis functions of EST interface

r=r(a6,0), z=2(a06,0), |Bl=Ba060), nh=npabq). (15)

In ESI, the units of 7, z are in [m], B is in [T], 7 is dimensionless, while fluxes ®, ¥ are in [V-sec]. Units of g, 6, are
not essential.

Note, that the basic functions (14,15) represent any nested magnetic configurations, even unrelated to a static
equilibrium.

In magneto-static equilibrium
X B., 3 p = LoD, 75 qu, (16)
“Vp=0, 7 -Va=0, (17)

=V x

Sl

Vp =

i
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where p is the plasma pressure in [MPa), 7 is the current density in [MA/m?], and o = 0.4, one can introduce two
additional 1-D profiles, i.e., P(a),T(a)
dp

P(a) = d_\il’

_dF -
T(a)=F—, F=02F. 18
(@=Fx (18)
Here F = 5F is the total poloidal current in [MA] through the contour a = const, = const (analog of magnetic flux
T). In axisymmetric configurations

F=rB,. (19)

ESI relies on the fact that four space coordinated functions (15) and four 1-D profiles (14), (18) together with
their first derivatives contain all necessary information for transport, stability, particle motion as well as gyro-kinetic
codes [18, 19]. They are called hereafter the “basis” functions. The ESI input file contains Hermit representations of
r,z,(, B, which are well behaved and can be accurately interpolated. The function n and its derivatives are generated
by ESI routines.

As a special case, ESI accepts 2-D data on a rectangular grid r,z from free boundary codes in the form of
U(r,z), 9., ¥ U . This is not sufficient to generate all possible information for other magnetic confinement codes.
The special ESI routine can convert » — z data into basis functions of flux coordinates.

ESTIreconstruction routines do not provide the second derivatives of basis functions, since the equilibrium does not
give information about second derivatives. The following sections describe the self-consistent rules of using basis
function for different kinds of numerical codes without use of second derivatives.

III. MAIN RECONSTRUCTION ROUTINE OF ESI

All EST routines are int C-functions, which return 0 in the case of success, and non-zero otherwise. In order to
initiate ESI from a data file (which should be created by an equilibrium code), the user should use the C-code, like

if (File2ESI(FileName,iE)){
printf ("Failure: %s is not an ESI-file\n’’,FileName);

J;
or FORTRAN-code, like

external integer file2esi

if (file2esi(FileName,ie) .ne.0) then
write(*,’(aaa)’)’Failure: ’,FileName,’ is not an ESI-file’

endif

The FORTRAN file name FileName in file2esi should contain o space character > * at the end ! The integer
parameter 0 < iE < 8 activate one of instances of ESI. Several of them can be activated simultaneously.



In the case of using shared memory the corresponding function is Shmem2ESI(int key, int iE), where ’key’ is a
unique identification number for the memory segment, known to mutually communicating equilibrium and user codes.

ESI contains the main reconstruction routine ESI2A11(REAL *a,REAL *gq,int n), which generates the basic pro-
files and functions and their first derivatives in a given number n of points (a, ) inside the calculation region. This
routine puts the calculated values of the basis profiles and space functions into arrays, allocated in advance at the
user side.

The user code should provide the storage for these arrays. The example is the following C-code

int N=2000;

double al[N],gqlN];

double F[N],Fa[N],gFalN] [N],gFaa[N],gYal[N],gYaalN]
,T[N],Ta[N],P[N],Pa[N]
,r[N],ra[N],rq[N],z[N],za[N],zq[N]
,B[N],Ba[N],Bq[N],gh[N],ghalNl,ghq[N];

int iswl[N];

double gz[N],rz[N],zz[N],Bz[N],ghz[N];

The number N should not be less than the number of points requested in reconstruction, n < N. The last line is
necessary only for the 3-D case. The FORTRAN analog of the same would be

parameter (N=2000)
double precision a(N),gq(l)
double precision F(N),Fa(N),gFa(N),gFaa(N),gYa(N),gYaa(N)

& L,T(N) , Ta(N) ,P(N) ,Pa(l)
& ,o () ,ra(N) ,rq(N) ,z(N) ,za(N),zq(N)
& ,B(N) ,Ba(N) ,Bq(N),gh(N),gha(N),ghq ()

integer isw(N);
double precision gz(N),rz(N),zz(N),Bz(N),ghz(N);
external integer link2esi,link2esi3d,esi2all,esi2all3d

The meaning of these arrays are specified in the Table L.

Set of output radial profiles Table 1
C-code Math C-code Math
F[],Fal] FF isw[] index of the particle
gFa[l,gFaal] o', 3" g¥all,gYaall v,
T[1,Tal] T =FF /%, T;||P[1,pPall P=¢/¥, P

Set of 2-D and 3-D output space functions

C-code Math C-code Math
r[],rall,rql],rz[] 7‘,7‘{1,7‘2,,7"( z[],zall,zql],2zz[] z,zz,z{g,zé
B[1,Ball,Bq[],Bz[1|B, B,, By, B, ||ghll,ghall,ghql],ghz (1|7, 4. 76,17

TABLE I: The list of basic profiles and 2-D functions for 2-D ESI

The addresses of these arrays should be given to ESI, at least once, using routine

i=Link2ESI(F,Fa,gFa,gFaa,gYa,gYaa,T,Ta,P,Pa
,r,ra,rq,z,za,zq,B,Ba,Bq,gh,gha,ghq, isw);
i=Link2ES8I3d(rz,zz,Bz,ghz) ;

for C-code or for FORTRAN as

i=1ink2esi(F,Fa,gFa,gFaa,gYa,gYaa,T,Ta,P,Pa
& ,r,ra,rq,z,za,zq,B,Ba,Bq,gh,gha,ghq,isw)
i=link2esi3d_(rz,zz,Bz,ghz)

Again, the last line is necessary only for the 3-D case. At present, the main reconstruction routine does not use the
index array isw([i], which can be used as a marker of points to control some service routines.

After the addresses are given to ESI, the call of the main reconstruction routine is simple, as soon as the n <N
coordinates points a, 6 (and ¢ in 3-D case) are put into array al[l,gql[] (and gz[1) by calling the routine



i=ESI2all(a,gq,n);

or for 3-D case
i=ESI2all3d(a,gq,gz,n);

The FORTRAN analog of the same is

i=esi2all(a,gq,n);
i=esi2all3d(a,gq,gz,n);

After these calls the information is placed into the mentioned arrays. In addition to the main reconstruction routine,
ESI contains numerous service routine for calculating specialized information. Some of them are listed at the end of
this paper, and their sets can be extended.

The Link2ESI() routines can accept NULL as an argument for unused variables. In this case, the reconstruction
routines will not generate the corresponding data.

The next 4 sections describe how to use basic functions for calculation of physics variables.

IV. METRICS OF TOROIDAL CONFIGURATIONS

The metric tensor gi, (1 = 1,2,3, k = 1,2, 3) of the coordinate system {a,8,¢} = {z!,22,2°} is defined by the
element of length dl
dli? = dr? + d2® + r?dp? = gaada® + 2gapdadd + geedd? + 2gucdad( + 2gecdOdC + geed(?, (20)
Joa = ol + 22 +72CC00 oo = 10T + 202p + 120G,
Goo = 4Ty + 2oz + 1°CoCh,  Ga = Tole + 2a20 + TQCégé,
go¢ = Tor + 22 + 12, gee = rert +zgrg + L,
J =149, g=Det(gix)-

Gradient vectors of cylindrical and curvilinear coordinates are related with each other by a matrix of first derivatives

D
Vr Va Va , vr Ta To T¢
Vo | =D-| vo |, | V8 |=D""-| Ve |, D=| ¢, ¢ ¢ |- (21)
Vz V(¢ V¢ Vz Zo Zp 2

The Jacobian J of the coordinate system can be calculated as the determinant D of the matrix of first derivatives
of ¢ylindrical coordinates

D =Det(D), J=rD=./g, (22)

In axisymmetric configurations, only g, ga, g66: 9o aTe Non-vanishing
di? = dr? + d2? + r2dp? = gaada® + 2gapdadf + gepdf® + r2dy?, (23)
Gaa = /’Azllr(,z —+ Z;Z‘/l, Goe = ""lﬁré) + Z{;Zé, Gpp = 721 D = réz; - 'r:zzé' (24)

EST reconstruction routines provide all necessary derivatives for calculation of g;, elements of matrix D, and Jacobian
J at the user side. The derivatives of ¢k, D, J are not defined by ESI.

A. Behavior near the origin ¢ =0

In configurations with a smooth current density near the axis a = 0, flux coordinates have a special behavior near
the axis. Thus, in some coordinate systems Fourier coefficients of r(a, 6, (), z(a, 6, ()

m<Mpy m< Mg
r=ro+ Y [rme™ +r5e7 ™), 2=+ Y [2m€™ +2he™™) (25)
m=1

m=1



vanish at a certain rate when ¢ — 0. If a is proportional to the distance from the axis, then in some coordinates
(ESC, Hamada, PEST, Boozer) asymptotically

r0(@ ) 2 Ro(Q) + 374007, 7m(a,0) @™, 2000~ Zo(Q) + 3O (O oxa™  (26)

The ESI data generated by the equilibrium codes in these coordinates should reflect this behavior. All coefficients with
m = 0,m > 1 should vanish near the axis, at least, like a2. This would allow to resolve the details, essential for some
instabilities near the magnetic axis.

In other coordinates (e.g., polar, equidistant, see Table III) all Fourier coefficients are proportional to 7, o< a™ 1
for m > 1, which creates some resolution issues for ESI near the magnetic axis.

B. Conversion of laboratory r,y, z into a,8,(

For diagnostics on the experimental machines and other purposes, ESI has the ability of conversion of laboratory
coordinates 7, ¢, z into curvilinear coordinates a, 8, (. This is done by a Newton iterative procedure

a(k+1) :a(k) +da(k)
gkt — gk) 1 qelk) | 27)
(D — &) e

where
da® w [T r(k)
o | = (D—l) A o—p® |, (28)
a¢® z— 2%

and k is the iteration counter.

V. NESTED MAGNETIC CONFIGURATIONS

The vector potential A in Eq.(4) contains integrals from the basis profiles of ESI

a a 6 ¢
o= 271'/ & (a)da, ¥ =2m / ¥'(a)da, n= / 7pd6 +/ <i fnéd&) dc. (29)
0 40 0 0 2

There is a special service routine in ESI which calculates ¥, ® for the transport codes, while 1 and its derivatives are
calculated by the main reconstruction routine.

A. Magnetic field

The contravariant representation of the magnetic field is given by Eq.(13). It can be reconstructed from ESI basis
functions in a straightforward manner. On the other hand the derivatives of individual components of the magnetic
field are not defined.

The covariant components of magnetic field B; (integer subscript ¢ is used to distinguish them from the physical
components),

B =Bi1Va+BoV8+ BsV(, B;=guB* i=123, k=123 (30)

are useful for particle motion. Here the summation convention on repetitive indexes is assumed.
In flux coordinates (no islands) B! = B* = 0 and only the following metric tensor combinations are present in
Eq.(30)

K (31)

%, mM=9e N=%0 N, =98 N= L=



All of them can be calculated at the user side using the relationship between co- and contra-variant components of

the vector B.
In the case of an “ideal” (isotropic) equilibrium, the covariant components have a special form

= (v+0,)Va+ [ +05)VO+ (F+0p)V( (32)
and can be calculated using
v+ o, = —N(T' + ®n¢) + Nac®' (1+75), (33)
T+0p=—K(Y +31;) + Noc®' (1 + 1), (34)
F+0f = —Np (W' + ®'np) + +L"" o (35)

For the 2-D case of axisymmetry

1 +7)

- = _ - = D
v4o,=—~NU', I+o,=-K¥', F= @', L=7. (36)
B. Current density
In equilibrium configurations the current density 7 has the following contravariant form
F=—(F —v)(V¢xVa)+ T — vp)(Vax V6) (37)

where I(a) = 5I is the toroidal current through the toroidal cross-section of magnetic surfaces. Both F,F’, together
with P, are calculated inside ESI using

a

_ Ty @ N . -
F'= F, > F( ) JFT?ef / T(a)‘lﬂdav ﬁl = PlI/l? 13((1,) = / P¥da. (38)
Qref Uref

Here, aros is a reference radius, where the function F' has a prescribed value, (aref) = Fref Typically ares
corresponds to the plasma boundary. The exceptional case is the RFP configurations, where a,..; should specify the
surface with F(a. #) = 0. The main ESI reconstruction routine delivers F, F', while p,p’ are provided by a special
service routine. For RFP case the sign of F cannot be determined from the ESI data. It is chosen using convention
F(0) > 0.

The radial component of equilibrium equation (17) (the pressure balance)

Jp = — (9 + ') (F' - ve) + (v + 5’772-)(.?’ —vp) (39)
determines I'(a) inside ESI from the averaged Eq.(39)
PJy = —@’Z +I, Jyo= = ?{j{Jdeg, J=Joo + J--. (40)
F 472
The oscillatory part of this equation, having the form of the so-called magnetic differential equation (MDE)
(& + 'my)ve — (V' + ')y =5 T + © (F'my — I'e) (41)

allows one to determine the function v. In the case of axisymmetry this is simply given by an integral
0
I'—vy=TL+PJ, vj=-TL.—PJ., v= —/ (TL.. + PJ..)d6. (42)
0

In the case of 3-D equilibrium configurations, it necessary to solve MDE (41). In configurations with simple nested
surfaces (with no islands), the Jacobian does not contain resonance harmonics, and MDE for v has a nonsingular
periodic solution. This is described in the next section. A special service routine of ESI generates v.

Thus, all physical quantities in the equilibrium configurations can be calculated from ESI basis functions without
using their second derivatives.



Note that the output information from ESI can appear to be inconsistent. For example, in 2-D, the third equation
in (35) gives the relationship

- _ 1 D
/_[ Por=r— pnct 4
P’ = OF, 0_.2 frde, (3)

which gives an alternative to the Eq.(38) way of calculating F. The level of discrepancy between the two calculations
may be used for testing the accuracy of ESI data.

In fact, the user has no information from ESI on how to perform integration without interpolation of the integrand,
which makes such comparison “illegal” within EST rules. Instead, the main reconstruction routine of ESI provides
the values of F', F', &, & explicitly, thus, giving Lo, L}. Alternatively, a specially written service routine of ESI can
provide Lg, Ly, consistent with relation (43).

C. Magnetic differential equation (MDE)

For simplicity, let us assume that a, 8, ¢ are straight field line coordinates with 7 = 0. Then, the magnetic differential
equation (41)

ci)l
Vé + qyé = _P(G')J""(aa 9; C) = _S(a‘a 97 C)v q= —@ (44>
has a solution
¢

(0,6,0) = Aa,¢ —a6) = [ (a0 + g = a)do, (45)

0

2
A(a,¢) — Ala,{ —2mq) = S(a, o, ¢ + qo — 2mg)day, (46)

0

where a 2-D function A(a,() is added in order to provide the periodicity of v as function of §. The equation for A
can be solved directly numerically in Fourier space

S(a,6,¢) = ZS (a,0)e™, Afa,() = ZA (a)e’™,  An(a) = % 0% Sp(a, )™ da. (47)
In the general case when 7 # 0, the equation for v (41) can be written as
a1 +71p)v + (L — qni)vp = —J—P + q(F'ng ~ I'nt) = —(1 +15)5(a, 6, C). (48)
A transition to a new variable 8 = 8 + 1 in v(a, 6 + 7, () leads to
(1 +np) (v +nmivg) + (1 — qnp)(vh + mgvg) = a1+ mp)ve + (1 + v = —(1+ ) S(a, 6, ¢). (49)
qué—l—l/g:—S(a,g—n,(), (50)

whose solution is given by Eqs. (46,47).

Because of resonant denominators ng = m (m,n are integers), the function v may have a rather complicated
behavior even when the MDE can be resolved. Therefore, it cannot be well represented by smooth polynomials on a
finite grid, and its calculations cannot be delegated to the user. Instead, a specially designed ESI routine reconstructs
v upon the user’s request.

D. Curvature of the magnetic field lines

The curvature of the magnetic field lines, essential for some instabilities,

5 \B_ (B B\\_ 7 o (B-V)B) 4 151,
F= viZ o ([Zx(vx=|)=Z v X2 VIPVE, v (51
<|B| ) 5] <|B| ( |B|)) 5P B B )

can be calculated at the user’s side using the data from ESI reconstruction routines.




10
E. Evolution equation for magnetic fluxes

In evolving magnetic configurations, the electric field E can be written as

8A
- e,
E 3 Vog (52)

Elimination of the scalar potential V®g from the classical parallel Ohm’s law
oy(B-E)=(B-J) (53)
using averaging gives the evolution equation for magnetic fluxes

@M—%@:%@FJF) (54)
I

It can be rewritten as a magnetic diffusion equation

Nigd 1 |PF-TUT Jee go¢ ! I_ﬁ’
W — 4% = - | [ (W 4+ q)) - = (P , - = 55
N 57 (\/5 +nz) \/g( + ng) 32 (v/9)oo | 5 (55)
B 960 =/ ' 96¢ /=4 ’
I=—(—\If+n)——(¢> +n9)> : (56)
Vi Y Ve 00

The averaging can be performed on the user’s side, while ESI reconstruction provides data for all coefficients in this
equation.

When the radial coordinate a represents the toroidal magnetic flux (e.g., in the ASTRA code a = %%, By =
const), the convective term in the left hand side vanishes, &, = 0.

F. Transport equations

The structure of the transport equations is given by

8 8 [ = 3
gﬂJnno4-5a(JF-Va)w::(Jshm J =3, (57)

where n is a physics variable, I is its flux through the magnetic surface (both diffusive and convective), and S are
the sources and sinks.

The ESI reconstruction routines provide the necessary information for calculating coefficients of the transport
equations on the user’s side. In contrast, the approach based on “cooking” out all the information inside the equilibrium
codes is always deficient due to the unpredictable nature of plasma transport models.

G. Transition to the straight field line (SFL) coordinates

Straight field line coordinates are important for stability theory and for stellarator equilibrium calculations. ESI
reconstruction routines provide the necessary information for making transition to the SFL coordinates a,8, ¢

0="0-a(a,6,(), ¢(={-pa,6,0), (58)
df = df — ofyda — apdd — ald(, d¢ =d(— fda — Bpd6 — Bed, (59)

where « is an arbitrary function, determined by
da+Vp=207. (60)
Substitution of df,d¢ (Eq. 59) into element of the length (Eq. 21) allows calculation of the metric tensor in new

coordinates. With the function 7, as one of the basis functions, which is calculated by the main reconstruction routine,
the ESI interface provides information for transition into any SFL coordinates.
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VI. FIELD LINES AND PARTICLE MOTION
A. Equation for magnetic field lines

In curvilinear coordinates, the magnetic field lines are determined by three ordinary differential equations

& B° d( B da _ B“

e [ pin = S P= 1
A48 4B 4B (61)

where B%, BY, B¢ are given by Eq.(12). In the case of of magnetic configurations with the nested surfaces, a =const,
and only the two first equations are essential. EST provides a special step advancing routine ESI2mf1 () for calculating
derivatives of coordinates for ODE solvers.

B. Guiding center Lagrangian equations

The guiding center Lagrangian obtained by Littlejohn has the following normalized form (see, e.g., [20])

ar eBo

— = Qgt = — 62
a7 of, o me’ (62)
me2dp

L=(E+WE)U—H,55
cPp

Ry B()QO ’ (63)

EpERoBg, PE =

H=fZ v uBign p=li, pu=
) » T o -
Here, 7 is considered as the normalized time derivative of the particle position, €2 is the reference cyclotron frequency
in the reference magnetic field By whatever is used for normalization (e.g., for ESI Units, By = 1 T and Q¢ = 95.7 9.1016
sec™! for protons), p|l, oL are the ion Larmor radii calculated based on particle velocities parallel and perpendicular
to the field

vl _ 91 Bo _ v _ v Bo

A=, B “Ta. % B
In the Hamiltonian H the last term ¢p is associated with the electric field potential ®r and can be expressed in
terms of the Larmor radius pg calculated based on drift velocity in the effective electric fleld @ z/Ro where Ry is some

characteristic unit length (e.g., 1 m).
Written for generalized coordinates of a particle a, 8, ¢, the Lagrangian has the form

L= P,a+ Pyd+ P:( — H, (65)

(64)

a

[
Po=pyBa, Py=0 +/ ®'nyda+ pyBy, Pr =T —|—/ ®'neda + py Be- (66)
0 0

The straightforward variation of L with respect to pj|,a,6,{ leads to the following system of coupled equations of
motion

[

0 B B = ¢ B

. 6 ¢ I 9py
B, 0 JB o) —IB +a) | o [_| & | (67)

g 8H

—By —J(B¢+ ) 0 J(B* + py7%) é 3

F):d

—B¢ J(B°+p’)  —J(B*+p7*) 0 \¢ ) *

Using the matrix
A= ( o om ) . |Al = an1a22 — @120 = VB +py (B-(V x B)), )
G21 Q22

where

a11 = B, a12 =GB +p5¢), am =B, ax= ~9(B? + p15°), (69)



the equation of drift motion can be written in the explicit form

on\ ( 0 g G2 012 ( OH '\

|A| |A| 8/)"

a21 ai11
; 0 0 — =+ OH
¢ Al 1Al a0
| e e Ba| | om
4 Al A A 0
a1z 011 B, OH

\¢ ) \ T T %) \a)

12

(70)

ESI allows calculation of the right hand side of the guiding center equations at any point inside the plasma without
interpolations. In fact, ESI contains a guiding center motion routine which calculates the derivatives gy, a, 6 ,¢ given

Pl @y g, ¢

C. Hamiltonian equations for guiding center motion

By transformation of angle coordinates it is possible to eliminate the B, = v+0, term in the covariant representation
of B (Eq. 32) together with the P, term in Lagrangian. For this purpose, new, canonical coordinates 6, ¢ are determined

by
b=0+0a, (=C+85,
where «, § satisfy equations
vWa+ Vo +V({Ia)+V(FB) —I'aVa— F'Va=0
Fv+Fo Iv+To

FatFp=v, la+Ff=—-0, a=—pm—==, b=z 77

In canonical coordinates a, é,f the covariant representation of the magnetic field is very simple
B=1vé+Fv(
The vector potential becomes
A=-83Va+dVE+IV(, i=dn-&a-Tg
Accordingly, the Lagrangian is reduced to the Hamiltonian form

. . a a
L:&0+%C—H,}%E@+Z;@%M+pﬂ,}15W+[;@%M+mf.

with no explicit time derivative a¢. The equation of motion for a,f,{ can be now written as

()

0 or; 9P oH
dpy Dpy ; dp

0 arp, o0F; e aH
da fa . Da

apP; OP, 4 = bl
oty Wi . _an
Opy  da 0 4 0 o0
aF; oF; 0 0 _an
dpy Ja a¢

\ ¢/

These equations are equivalent to Hamiltonian equations, if momenta Py, Pf are used instead of py,a

oH ;. 0H . O0H . _oH

o, “Toapy T T T

9':

~P

(1)

(72)
(73)

(74)

(75)

(76)

(77)

(78)
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The Hamiltonian form of the equations of motion guarantees that the guiding center motion not only preserves the
value of Hamiltonian H (and, in the case of symmetry, the momentum PE)’ but also preserves the phase volume of

an ensemble of particles in the phase space 6 , (A , P, P@‘

For calculations of guiding center motion in unperturbed equilibrium configurations the Hamiltonian form does
not suggest any advantage with respect to the Lagrangian form. Canonical variables are essential only for studies of
perturbed particle motion, where adiabatic invariants play the key role.

Note, that there are other choices of canonic variables than Eq. (73). Indeed, in order to eliminate B, it is sufficient
to satisfy only the Va component in Eq. (72)

a f /
vtol + I, + P =0, f=— / Ha"ff‘m“da. (79)
0
The case with o = 0 was pointed out earlier. The attempt to use the freedom for elimination of the n term in the
vector potential (making SFL canonical coordinates) leads to substantial, unjustified complications in calculations.
The canonic variables a, §,, suggested by Eq. (73) represent the best choice.

EST interface is capable of providing a transition to canonical coordinates a, 6 } (A and to a Hamiltonian representation

of guiding center motion.

D. Hamiltonian form of the guiding center equations for axisymmetric case

Although Lagrangian written for generalized coordinates a, 8, ¢ of a particle conserves the particle energy & = H
and, in a case of symmetry, the corresponding canonical momentum, it does not have the Hamiltonian form because of
the presence of P,a term. In this section we desribe the coordinate transformation which allows to exactly eliminate
this term in the case of symmetry, and to do this approximately with a rigorous small parameter in the case of 3-D
configurations.

In the case of symmetry, 3/0¢ = 0, the Lagrangian, written for the generalized coordinates a, 8, ¢ of a particle

L= P,a+ Py + P,p — H, (80)
a a
P, =pylo,—v), Pp=® +/ 'nypda+ py(I+0p), P,=T +/ &'nl,da+ p) F (81)
0 [0}

can be converted into the Hamiltonian form with no a term by a change of the ignorable variable, i.e.

p=(-C(0), ¢=¢-Ca—Gh, (82)
where C is a periodic function of the poloidal angle §. With the following choice of ¢
- ol —v oz oz ¢ F'g — Fu
= — = = R = —_— 83
¢ /0 7 da 7 +¢ ¢ /0 7 da (83)

the covariant representation of the equilibrium magnetic field has no radial component
B = (0, —v)Va+ (I +0,)V8+ FVp = (I - F§)Ve + FVC. (84)

In its turn the vector potential acquires the form

A=—®'nVa+®VO+ UV = —fVa + dVH + IV — V(¥(), (85)
_ = a =
T=n+aC=n+ag+aC (86)

As a result, the Lagrangian takes the Hamiltonian form in variables a, 6, ¢

d - _
L= —E(Q’ﬁ) + P60 + P:¢ — H, (87)

(,Eci»+/ ¥fodat py(I - FG), Pr=P, =T+ pF (88)
0
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with no explicit time derivative a. The equation of motion for a, 8, ( can be now written as

([ o o OB, OF \ A\ oH
Opy 9py ap
oPy 0P . )
0 9% @ || o
0P, 0P . = é,)ﬁ' ’ (89)
=t et 0 0 6 el
9p)  da 8
or or o ||, | |-
\ dpy O /] \< ) %
where
OP, - - 0P
BT’IT =ay =1— F(y, 8: =a1p =0 (1+7) + oy [T — (FE)L, (90)
op; ) . _ oH
6p =ag1 = F, o an =9'(1- qntlp) + PIIFI: 8—§ =0. (91)

The Hamiltonian form guarantees that the guiding center motion preserves the value of Hamiltonian H, the momentum
Pg = P,, as well ag preserves the phase volume of an ensemble of particles in the parameter space 8, ¢, By, Pc All
variables in these equations are accessible through ESI.

E. Approximate Hamiltonian equations for 3-D configurations

In the 3-D case there is no explicit transformation to the canonical coordinates. Nevertheless, the approximate

transformation can be easily performed using the fact that
B, a?
— =0 1, 92
B, <R2> < ©2)

where ag, R are minor and major radii. Here, we assume that the cylindrical azimuth ¢ serves as a third coordinate
in the curvilinear coordinate system a, 8, . By introducing a variable ¢

90=<_€(a's0"p)s EE/O

o~V . H T h =1 A =t .
F+O'Llpda7 ‘PZC—CQG_CQG—C;% (93>

the magnetic field and vector potential can be written in the form

—

B = [(I+0p) — (F+0,)GIV0+ (F +0,) (V- (Vo)

~ (T +0p) — (F +0,,)(]V0 + (F +0},)(1 — () V¢, (94)
A = —¥nVa+ Vo + IVp = —¥7Va + &V + TV — V(T{), (95)
7 = d'n+qC. (96)

As a result, the Lagrangian acquires the Hamiltonian form
d - .
L= —E(Q’ﬁ) + Py + P — H, (97)
a a
Bp=%+ / 'fda+ py[I + o5 — (F+0,)), Po=P,=9¥+ / ' fpda+ py(F +o,)(1—C,).  (98)
0 0

Addition of function ¢ into the minimal set of basic function of EST allows use of the Hamiltonian form of equation
of guiding center motion.

While making variation of L it is necessary to take into account that in ESI all functions are given as function of
a, 8, p rather than of a, 8, (. The difference is small and could be negligible. Otherwise, it is necessary to use relations

8| _8, %0 8] _0 %08 06| _0Od
dal,, a " dadp B6|, 09 0639 |, 0C0p (69)
3@__ 4 3_@__ C-(la %_ 1_ (100)

da  1+(, 90 1+, 9 1+,

in deriving the equation of motion from this Lagrangian.
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VII. MHD ENERGY PRINCIPLE

The well-known functional of potential energy in ideal magneto-hydrodynamics (see, e.g., [? ])

VV=%/{§2+(E~V§)(V-E)—EX (Vxﬁ)-ﬁ%—%ﬁ(v'az}d% B=(Bx(Vx&), (101)

where E is the test function, does not contain anything that cannot be calculated using basis functions of ESI. Also,
the kinetic energy term

K =+2 / pE2dv (102)

needs only the metric tensor for its calculation.
At a deeper level, instead of three contravariant components of £

e ={geh ¢}, g=¢ (103)
another set of test functions is used, i.e, £, A, X, where
X=(V-§), A=+ (104)
In terms of £ and A the perturbation of the magnetic field can be written as
JB = A(V8 x V() — B'E(V( x Va) — V'E(Va x V). (105)

In new variables the potential energy has the form

1 D 2 p o opa B Rb R e T, 2 74 29/
= — X B,B ByB B:B*) — PV PU 106
& /{\@ +\/§( +Be 5" + D¢ ) V& + [PU'\/g€7], (106)
+2(I' — vp)ALE — 2(F' — vp)AE + ¢ (F' — vp)¥'€?} dadbd(. (107)

All functions in the integrand can be calculated by ESI interface.

VIII. ESI FORMAT OF THE EQUILIBRIUM DATA FILE

The source code of ESI is contained in the esiXZ.c files (available on w3.pppl.gov/ zakharov), which is comple-
mented by the documentation file esiXZ.c.d. This section explains a reference data structure of the input file for
ESI, as well as a reference layout of the shared memory as an option for communication between ESI and user
codes. At this moment, ESI is operational for 2-D equilibrium configurations. Its source code and design of the data
structure are extendible, thus making the ESI upgrade to 3-D equilibria, configurations with ergodic magnetic fields
or different representations of the vacuum magnetic fields outside the plasma, etc, in a straightforward way. These
updates do not affect the previous functionality. The documentation of the code is contained in the documentation
file esiXZ.c.d, which is maintained by a special software. In fact, esiXZ.c.d is updated prior to or together with
esiXZ.c, what makes it always consistent with the current state of the source esiXZ.c file. In particular, esiXZ.c.d
explains routines, which are only mentioned or skipped in this paper.

All routines, mentioned below, are referenced by their C-names. The corresponding FORTRAN names are lower case
version of C-names (in esiXZ.c the underscore sign *_’ follows the FORTRAN callable names).

This section specifies the information and its format, which should be provided by the equilibrium codes in order
to be used as an input for ESI. In examples below, the ESC-EEC code [4, 22] system is used as a generator of data.

A. Interface ID

First, we introduce the integer parameter ID, which reflects the basic properties of the ESI data and is composed
from 5 two decimal digits ’dd’ integers (from O till 99), ID,, IDg, IDg, IDy, IDy. 88

ID = ID,.*100000000+1ID,*1000000+1ID4;*10000+1IDy*100+1ID,. (108)
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1D works as a sort of a ‘bar-code’ for recognizing data by the ESI code. First, the design of ID distinguishes between
data in flux coordinates and in laboratory coordinates: ID,, IDg, IDy characterize the flux coordinate data inside the
plasma, which are ready for use in different plasma physics codes, and ID,, refers to data in the laboratory coordinates
(e.g., generated by the r — z codes) and to data in the vacuum region outside the plasma. Second, the ESI data may
contain both the flux and laboratory coordinate output from the equilibrium codes. Otherwise, the EST interface can
generate the flux coordinate data from the laboratory coordinate data.

1.  Radial coordinate 1D,

The ID, is designed to have the structure ID, = 20xi+;. The index i specifies combination of two general properties
of a: 4 = 0 is for dimensional (in absolute units) p-like (minor radius like) coordinate a; ¢ = 1 is for dimensionless
(normalized) p-like (minor radius like) coordinate a; ¢ = 2 is for dimensional V-like (volume-like) coordinate a; i = 3
is for normalized V-like (volume-like) a. The value % = 4 remains reserved.

The index 0 < j < 19 determines the physics meaning of a. Some of useful cases, implemented in ESC-EEC, are
specified in the Table II (e.g., vertical size, volume, magnetic fluxes, etc). The j-values 6 < j < 19 are reserved for
unspecified choices of radial coordinate.

ID, of radial coordinate a in ESI Table IT
ID.|a ID.|a Comment
ola=+/S 20|la = \/ S T—— fda.ry S is the area of poloidal cross-section.
40fa= S 60|a = g—>——
e
1]a = arey /%ﬁf 21|a = \/Vbo+“ V is a volume of magnetic surface, ares [m], Vrey [m®]
are some dimensional reference numbers.
Mlg=V 61 ﬁ.:-—wa vd =
2|a = ares Lf’e 7 22|la = ﬁ L is the inductance of the vacuum toroidal magnetic
¥ [field L = [ 22 inside the magnetic surface, ares [m],
L [m™).
42|la=1L 62|a = —2—o LM
O T2 T
3la = \/ % 23|a = ﬁ ® is a volume of magnetic surface, Brey [T)] is some
¥ |dimensional reference numbers (ASTRA code).
43|la =@ 63|a = e a‘idaw
4la=1b 24|a = ﬁ b is a vertical semiaxis of the cross-section of the mag-
' netic surfaces
44|q = b? 64|a = rt—
houndory
5|la = \/ WB\I:'ef 25|a = ;l-,-;:—'idT T is a volume of magnetic surface, Bres [T)] is some
" |dimensional reference numbers (ASTRA code).
45|la =T 65|a = "_—%n.':a..--.,

TABLE II: Radial ID, for some radial coordinates used in 2-D equilibrium codes

The use of “V”-like radial coordinates is discouraged because of possible singularities in first derivatives of space
functions at the magnetic azis.

2. Poloidal angle IDg

The next Table III introduces the numerical identification number 0 < IDy < 99 depending on the choice of the
poloidal angle. The capital letters in the name stand for different coordinate systems and can be used for as a part
of the data file names.

Fig. 2 illustrates the flux coordinates with different choices of poloial angle in an example of a spherical tokamak
configuration.
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IDy of poloidal angle 6 Table 11|
IDg |Name Specific property
E-ESC a,0,0, 7 =1(a,0), z = z0(a) — b(a)sin

1|K-KINX, polar r =170 + pla,d, p)cos b,z = z0 + p(a,d, ) sind

2|H-Hamada J = J(a)

3|P-PEST a,6,, J = fla)r®

4|B-Boozer SFL a,8,¢ with n =0 and J = IngT%

5|U-Equidistant goo = goo(a)

6|[V-VMEC-like coordinates with separation of odd and even harmonics in

Fourier representation of 7,z in Eq.(1)
7|C-Canonical a,8,$, Bas.(71,73)
9|U-General unspecified poloidal coordinates in Eq.(1)

TABLE III: Poloidal IDy for different choices of poloial angle

.
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FIG. 2: Typical coordinate systems for equilibrium configurations: a) ECS coordinates, b) KINX (polar) coordinates, c)
Hamada coordinates, d) PEST coordinates, e) Boozer coordinates, f) Canonical coordinates

3. Toroidal angle IDy

At present, for the toroidal angle 0 < IDy < 99 only a few values are recommended

1D, of toroidal angle ¢ Table 1V
IDy | Comment

0 2D case, ¢ is ignorable coordinate

1| cylindrical azimuth in 3-D case

2| 6, are straight field line angles

3| 6, ¢ canonical angles

9| # ¢ general, unspecified ¢

TABLE IV: IDy of toroidal angle

4. IDy, for free boundary equilibria and vacuum fields

Free boundary equilibrium codes are widely used for plasma control and equilibrium reconstruction in real machines,
as well as for designing new devices. EFIT is a famous example. Their data are generated on r — z grid, which is not
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conformal to the magnetic field. The example is given in Fig. 3, where EAST equilibrium configuration is calculated
by a r — 2z routine of ESC-EEC. The ID for these data would be 1000000.

Other codes use a conformal mapping for generating a laboratory coordinate system. In both cases, a conversion
into flux coordinates is necessary for using the equilibrium data in stability and transport simulation codes. In the
Table V the values 1 < ID, < 9 are reserved for this kind of data.

Because of importance for tokamak physics of the edge (pedestal) layer near the plasma boundary, it may have
a special representation in flux coordinates, different from the plasma core. One example is ESC-EEC code, where
the edge equilibrium code EEC uses the Hermite finite elements, while the core equilibrium code ESC used Fourier
harmonics.

(b)

FIG. 3: Examples of EAST free boundary equilibrium configurations with (a) single and (b) double null separatrixes calculated
by ESC-EEC on r — z grid.

These kind of data are represented by 10 < ID, < 19. The values 20 < ID, < 29 are reserved for vacuum region
representations. The data on the vacuum field outside the plasma may or may not be present, and the ID, reflects
this.

Some recommended values of ID, are listed in Table V. It is expected that the presence of stochastic perturbations
will be in calculations.

ID, for free boundary and vacuum data Table V

ID, | Comment
01|r — z data (EFIT, DINA, CORSICA) in a rectangle domain
02|HELENA data in curvilinear laboratory coordinates

03-09 |reserved for other laboratory coordinate data

10|2-D data for the edge layer in flux coordinates (ESC-EEC)
11-19|reserved for edge layer (Pedestal)

20|2-D data for Scrape Off Layer (SoL)in flux coordinates (ESC-EEC)
21-39|reserved for other SoL representations

40-59 |reserved for both Pedestal and SoL layer representations

80-79 [reserved of 3-D equilibrium perturbations

80-99 |reserved for 3-D ergodic components and stochastic fields

TABLE V: ID, for data on free boundary equilibrium and vacuum fields

5. IDy. for future extensions

The ESI interface is extensible and may include in future the data describing the evolution of the magnetic con-
figurations or equilibrium reconstructions. These data are complimentary to the mentioned ones. For this reason a



(a) TD=00,10,00,00,23 (b) ID=00,10,00,00,23

(¢) ID=00,40,00,00,23 (d) ID=00,40,00,00,23

FIG. 4: Magnetic filed lines and grid in the vacuum region outside the plasma

special ID,. is reserved for their future specifications.

B. Data groups and Records in the structure of ESI data files

Both ASCII and binary files are suitable for storing the ESI data file. The human readable ASCII files contain the
structural information and information on plasma parameters and radial profiles. The 2- or 3-D data can be stored
in a ASCII form file, or in a stream-like binary data file. In the case of binary storage, the ASCII file specifies the
name and the address of data in the stream.

The suggested names of the data files are constructed as esiE.00 for ASCII data-file, or esiE.00b for binary
data-file. The extension .00 specifies the equilibrium sequence number. The binary data has b at the end of the
extension.

Every equilibrium code of a general use should be capable of producing data and creating the ESI data files. This
subsection specifies the format of the ASCII file, which should be created by individual equilibrium codes in order to
be processed by ESI interface routines.

The ASCII EST file consists of a number of groups of records. Each group starts with an identification Head-line,
which has the following format

<Group name>[Number of records @address:name of stream data file]] (reading format)

-
optional

~ v

optional

Here, <Group name> is a predefined name of the group (listed below), then in [...], the Head-line specifies the
number of records, and optionally after '@’ the starting address (in terms of bytes) of data, ending with ':’, and then,
an optional binary file name. If the file name is absent, the last opened file is assumed. The records in each group
have the same data reading format, which is specified inside ()’ parentheses.

The reading format serves two purposes: (a) it specifies the type of each data to be read, and (b) the number of
items in a single record. At present, three data types are suggested: %e for double, %d for int, and %s for character
strings. The text elements between this symbols in the format string are processed literally. The special symbol * <’
in the reading format indicates that the data in the records are read as a data stream. If the symbol ’ <’ is absent,
the data are read according to the format per record.

The following example demonstrates the functionality of the format line:

(% %d x %#d %d %e bhe %e(I.A) %s)

This line specifies a record, containing 2 int data, a character 'x’, 2 int, 7 double with last one having Units
Amperes of the current, and a string data, thus, 12 data per record.

[65] (%e <)
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This line specifies a record read as a stream with 65 double data.
The comments can be freely distributed outside or between the groups of data. The single line comments with the
leading ’!’ can be placed between the records.

1. Data groups for fluz coordinates

Two-dimensional equilibria in flux coordinates represents a basic type of EST interface. It contains several scalar
data, 4 radial profile data, and 3 data sets for 2-D functions. The 3-D equilibria are represented by a complementary
group of data for 3-D functions.

The first significant line in the ESI data file, corresponding to the first group of data, specifies the basic information
on flux coordinate data. A representative example can be given by the beginning of an ESI ASCII file for a tokamak
equilibrium calculated by ESC-EEC code system

11l Do not edit this file

<ESI dimensions>[1] (%d x %d %d %e %e %s) Date: 03/09/14 at 20:16

'Nql x Nai ID Rext RBtor Name | Btor Ipl - this is a comment starting with !
65 x 21 000002 2.448 2.448 ESC 1.000 1.000 - after-record comment (after Name)

<ESI [gql>[65] (%e <)

Here '<ESI dimensions>’ is the predefined name of the very first group of ESI file, '[1]’ means 1 as the number
of records in the group. The string *(%d x %d %d %e %e %s)’ specifies the format for reading each record (3 integers
with ’x’ between the first two, two double numbers, and one string), as explained earlier. What follows the Head
information (the date in the example) is a comment, ignored by the reading routine.

The following line, starting with !’ is also a comment. This kind of comments can also be placed between the
separate records. The next line contains the data itself.

The full set of the groups names and their data are given in Tables VI-XIII.

Note, that only first 6 parameters, out of 11 listed in Table VI, are present in the example. Others are optional
and are filtered out by the format line if present. They can be accepted by ESI if the format line will be extended for
reading more data in the order specified in Table VL.

Groups 0-2: basic parameters Table VI

C name |Type |Format|Math # | Group name <ESI dimensions>
Npi int %d||Ne + 1 0|number of polodial grid points

X char bd O|separator between N, +1 and N, + 1
Nal int Y%d||No +1 0|number of radial grid points
ID int %d 0|ID of ESI data
Rext double %e|| Rext 0|reference major radius
rBtor |double %e||Frey = Flares)| 0|7By outside the plasma
ESI char[] %s 0|Name of the code
Btor double %e|| Btor 0|optional
Ipl double %e || Intasma 0|optional
bspl double %e || Proundary 0|optional
aref double %el|ares 0|optional
Vref double %el| Vies 0|optional
C name |Type |Format|Math #|Group name <ESI [gql>
gq[Npi] |double %e)|6; 1|grid value of poloidal angle
C name |Type |Format|Math #|Group name <ESI [sal>
sa[Nal] [double %el ai 2|grid value of radial coordinate

TABLE VI: Data structure of group 0,2

In the above example the line with a record of the radial coordinate data <ESI [gq]>[65] (%e) shows a 65 records
with a single items.

The following group 3 (Table VII) is informational. These data are initialized by ESI after reading the set of basic
data.
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Group 3: Auxiliary profiles Table VII

Cname |Type |Format|/Math|#|Group name <ESI [baF bsp gF g¥l>

aF [Nal]|double %e|| F(as)| 3|Poloidal current or rBy [m-T]
3
3
3

bsp[Nall |double %e||p(a:)
gF [Nall|double %oe|| @ (as)
gY¥ [Nai]|double Yoe || T (a:)

plasma pressure pop [MPa)
Toroidal flux through the magnetic surface, [Vs]
Poloidal flux through the magnetic surface, [Vs]

TABLE VII: Data structure of group 3

The groups 4,5 (Table VIII) gives a list of basic radial profiles. In the case of V-like radial variable the fluxes
derivatives in group 5 are represented by @' (a), ®"(a), ¥'(a), ¥” (a).

Groups 4,5: Basic profiles Table VIII
C name ___ﬂge |Format _Math #|Group name <ESI aT aTa aP aPa>
T [Nall |double %e || T{(as) 4
Ta[Nai] |double %e || T’ (a:) 4
P [Na1ll |double %e|| P(as) 4
Pa[Nall |double %e|| P’ (as) 4
C name Type |Format|Math #|Group name <ESI bgFa bgFaa bgYa bgYaa>
gFa [Nall|double %e (%) (as)| 5
=, ’
gFaa[Nai] |double %e (%) 5
g¥a [Nail|double %e (%) (as)
= 7
gYaa[Nall |double %e (%) 5

TABLE VIII: Data groups 4, 5: basic profile data

<ESI T Ta P Pa>[21] (%e Y%e %e %e)

! T T’_a P P’_a #
1.9846424244460485e+00 1.340594302234876be-14 8.0619056626615754e-02 2.1764431728238866e-16 0
1.9796808182902292e+00 -1.9846424571701443¢-01 8.0417508981202174e-02 -8.0619057955919875e-03 1

The following 4 groups of records, listed in Table IX are common for 2-D and 3-D cases. Each record consists of 4
data, representing the function, its radial, poloidal and mixed derivatives as in shown in the following example

<ESI r ra rq raq>[1365] (ke %e %e %e)

! r r’_a r’_gq r’’_{a,gqr ia jq
2.4808030305575612e+00 6.2827195830545617e-01 —0.0000000000000000e+00 -5.8754587638547547e-03 O O
2.4808030305575612e+00 6.2467076203297478e-01 -0.0000000000000000e+00 -6.7428587585144528¢-02 O 1

Group 6-8: Basic functions of coordinates comon for 2- and 3- cases Table IX
C name Type |[Format ||Math #|Group name <ESI r ra rq rag>
r [Nt1] [Na1] [Npi]|double %e||r(as, 8, dr) 6|cylindrical radius
ra [Nt1] [Na1] [Npi]|double %e||re(ai, 65, or) 6
rq [Nt1][Nall[Npil|double %e||rs (as, 05, dr) 6
raq[Nt1] [Na1] [Npi] [double %e|[ria(as, 05, Pr) 6
same for z, 25, b, 20y 7|Group name <EST z za zq zag>
same for |B|,|B|,, |Bls, | Blus 8|Group name <ESI B Ba Bq Bag>

TABLE IX: ESI data structure of group 6-8
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Functions @, ¥, ', 5 in Table VII are calculated during the initialization of ESI. Indexes 4, , k are used for the mesh
points along a, 8, ¢ correspondingly

0<i< N, 0<j< Ny, 0<k<Ng. (109)

Multidimensional arrays in Tables IX are equivalent to a 1-D array referenced as [(k*Nal+i)*Npi+j]. In the 3-D
case the following storage, listed in Table X is added for derivatives with respect to ¢.

The 3-D case requires additional data on multidimensional functions, which are listed in Table X as groups 9-12.
The record format is the same as in the previously described groups.

Group 9-12: Basic functions of coordinates specific for 3-D case Table X
C name Type |Format|/Math #|Group name<ESI [gz]>
gz [Nt1] double %e || dr 9
C name Type |Format| Math #|Group name<ESI rz raz rqz raqz>
rz[Nt1] [Na1] [Np1]l |double Y%e||ry (ai, 05, Pr) 10
raz[Nt1] [Nai] [Np1] |double Y%oe ||y (@i, 05, dr) 10
rqz[Nt1] [Nai] [Np1] |double %e||ry (as, 85, dr) 10
raqz [Nt1] [Na1] [Np1] [double %oe||riloy(as, 85, dr) 10
same fOT 245, Zap, Zhoghs Zuba 11|Group name <ESI zz zaz zqz zagz>
same for |Bly, |Blug, | Blos, | Bluse 12| Group name <ESI Bz Baz Bqz Baqz>

TABLE X: ESI data structure of group 9-12: addition storage for 3-D cases

The resulting total size of EST data for the basic groups 0-12 is
3*sizeof (int)+(7+13*Nal+Npl+Nt1+24+Nal*+Np1*Nt1)*sizeof (double)

and, e.g., for Na1=21,Np1=65,Nt1=33 this is equal to 8,651,676 bytes only, which shows the compactness of EST.
In specific cases some groups of ESI data could be dropped or not used. A special array in the ESI code keeps
addresses and sizes of these groups. It marks the absent groups by zero size.

C. Data structure for free boundary equilibria

Equilibria calculated on r — z grids are widely used for controlling plasma. configurations and reconstructing plasma
parameters in real time. Here only a minimal set of groups for free-boundary » — z equilibria is introduced leaving for
future (or for other interfaces) more specifications.

D. ESI data in the plasma edge layer

The edge equilibrium code EEC was developed as an extension of ESC for representation of equilibrium configuration
in flux coordinates using finite elements in the cases when a separatrix determines the plasma boundary. The edge
equilibrium is interfaced with the core equilibrium from ESC at a virtual boundary whose geometry is adjusted to
provide the continuity of the solution and its first derivatives across the virtual boundary. The EEC data mimic the
data of the basic groups 0-8 and have the same names of the groups with a prefix EDGE.

Figs. 4a),b) show two examples of EAST plasma equilibrium configurations with one and two X-points respectively
generated by ESC-EEC code in flux coordinates. The data ID = 0010000023 indicates that the data are 2-D data for

the plasma edge with the radial coordinate a = , /—2— and the poloidal angle §gsc in the core.

‘I)bounda'ry

In the ESI data file, the data generated by EEC code for the plasma edge follows data groups 0-8 for the plasma
core. The beginnings of the first three records in this layer are shown below. These records describe the number of
radial and poloidal intervals in the plasma edge.

<EDGE ESI dimensions>[1](%d x %d %e %s) Date: 03/06/14
'Ng1 x nBL1 RBtor Name | - this is a comment starting with !
656 x 9 6.223 EEC - after-record comment (after Name)

<EDGE ESI [gql>[65](%e <)
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Groups 13-17: Equilibrium data on r — 2 Table XI
C name Type |Format| Math #|Group name<RZ ESI dimensions>

Nri1 int %d|| N, + 1 13|number of grid points in r-direction

x char X 13|separator between N, +1 and N, + 1

Nzi int %d||N, + 1 13|number of grid points in z-direction

D int %od 13|ID of ESI data

Rext double %e || Rext 13| Reference major radius

RBtor double %e|| Frrc 13| Vacuum magnetic field outside the plasma
ESC char[] %s 13|name of the code

Btor double %e|| Bior 13|optional, reference toroidal field

Ipl double %e || Ipiasma 13|optional, plasma current

R1 double Yoe|| Ra 13|optional, inner r of calculation box

Z1 double %oe|| Z1 13|optional, lower z of calculation box

R2 double %e|| Rz 13|optional, outer r of calculation box

Z2 double Y%oe|| 2o 13|optional, upper z of calculation box

C name Type |Format| Math #|Group name <RZ ESI 0- B-points>
r,z,gY double 3%el|r, z, ¥ 14|70, 70, o of magnetic axis, 14, 25, Us of boundary control points
C name Type |Format||Math #|Group name <RZ ESI X-points>

r,z,gY double 3%el|r, 2, ¥ 15|rx, zx, Yx of X-points, where Byo; =0

C name Type |Format| Math # | Group name <RZ ESI r grid>

r[Nri] double %e|| 7 16|grid values of r— coordinate

C name Type |Format||Math #|Group name <RZ ESI z grid>

z[Nz1] double %e|| z; 17|grid values of z— coordinate

C name Type |Format||Math #|Group name<RZ ESI gY g¥r gYz gYrz>
gY[Nril [Nz1] |double %e|| T (rs, 25) 17|Poloidal flux at the calculation grid

g¥r [Nr1] [Nzi] |double %e|| (s, 25)  |17|Radial derivative T,

g¥z[Nr1] [Nz1] |double %el| W, (rs, z;)  |17|Vertical derivative U/,

gYrz[Nr1] [Nz1] |[double %e|| Ui, (ri, z;) |17|Mixed second derivative ¥7,

TABLE XI: Data structure for free boundary equilibria on r — z grid

0.0000000000000000e+00 9.8174770424681035e-02 1.9634954084936207e-01 2.9452431127404310e-01
3.9269908169872414e-01 4.9087385212340517e¢-01 5.8904862254808621e-01 6.8722339297276724e-01

<EDGE ESI [sal>[9] (%e <)
8.0000000000000004e-01  8.2500000000000007e-01  8.5000000000000009e-01 8. 7500000000000000e-01
9.0000000000000002e-01  9.2500000000000004e—-01  9.4999999999999996e-01  9.7499999999939998e-01
1.0000000000000000e+00

The rest of the data on r, z, B and their derivatives follow the same format as the data for the core.

E. Flux coordinate data in vacuum region

Plasma flows in the Scrape Off Layer (SoL) outside the plasma boundary are highly anisotropic and directed
predominantly along the open field lines. Accordingly, the flux coordinate representation for the vacuum magnetic
fields has its value for simulation of the plasma losses and energy deposition on the plasma facing components.

The vacuum field data groups mimic the data of the basic groups 0-8 and have the same names with a prefix Vac.

Figs. 4¢),d) show vacuum configurations generated by ESC-EEC code in flux coordinates for two examples of the
EAST plasma equilibria. The data ID = 0040000023 indicates that the in addition to the plasma edge, the vacuum
magnetic configurations is represented in flux coordinates.

The data for the SoL follow after the date in the edge region. The first record describes the number of X-points
and the number of topological regions.

<Vac ESI dimensions>[1](%d %d %s) Date: 03/06/14 at 17:19
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Groups 18-23: Equilibrium in the plasma edge layer Table XII
C name Type |Format|Math #|Group name<EDGE ESI dimensions>

Nq1l int %d||No + 1 18|number of grid points in #-direction

x char x 18|separator between N, 4+ 1 and N, + 1
nBL1 int %d|| Nz + 1 18|number of grid points in a-direction

RBtor double %e|| Frec 18| Vacuum magnetic field outside the plasma
EEC char[] %s 18|name of the code

C name Type |Format| Math #|Group name <EDGE ESI [gql>

gql[Nq1i] double Yoell 0; 19]6 - poloidal angle in the boundary layer

C name Type |Format||Math #|Group name <EDGE ESI [sal]>

sa[nBL1] double %e||as 20|a - radial coordinate in the boundary layer
C name Type |Format||Math # |Group name <EDGE ESI r ra rq rag>
r[1[Nq1l,ral] [Nq1],rq[] [Nq1l,raq(] [Nq1] [double| 4%el||r,va,7q,Tns  |21|r, 70, 7g,7he for grid points

C name Type |Format| Math #|Group name <EDGE ESI z za zq zaq>
z[] [Nq1],za[] [Nq1],zq[] [Nq1],zaq[] [Nq1] |double| 4%e||z, s, 2s, 2hg  |22|2, 24, 24, 2oy for grid points

C name Type |Format|Math #|Group name <EDGE ESI B Ba Bq Bag>
B[] [Ngq1],Ba[][Nq1l,Bq[] [Ngi],Baq[] [Nqil |double| 4%e| B, B, By, Bl |23| B, B, B;, By for grid points

TABLE XII: Data structure for the plasma edge (Pedestal)

! nX nRg Name | - this is a comment starting with !
1 2 ESC-EEC - after-record comment (after Name)

Then it is the basic information of each region, including the index of the region, the number of radial and poloidal
points, and the range of radial and poloidal coordinates. Here gq0 < § < gql are normalized by 27.

<Vac ESI Vacuum Regions>[1]1(%d %d %d %e %e %e %e)
'Rg# Ngl Nal aX aVac gq0/2gp gql/2gp
o 77 6 1.400 1.000 -0.060 1.060

The data format of r, 2z, B and their derivatives are the same as described in the plasma core and plasma edge layer.

In conclusion of data description, note that the ESI format is suitable for real time inter-process communications
between equilibrium and other codes, using shared memory, message passing, ete.

IX. BASIC SET OF ESI ROUTINES

The prototypes of ESI C-routines for the user’s side (some not yet available) are listed in Table XIV. The non-
descriptive names of variables are constructed using the following conventions: ’g’ prefixes the name of Greek math
variables, *b’ prefixes “barred” variables, >d’ prefixes time derivatives, and names with *a’,’q’’z’ after the symbol
of are used for derivatives. FORTRAN-callable analogs of C-routines have the same names with capital letters replaced
by lower case ones.

Except for different initialization, the use of ESI routines is independent on the storage of the data.

More complete information is given in the escXZ.c.d document file (which also contains this text as a part of
it). At present ESI is functional with Equilibrium and Stability Code (ESC) for axisymmetric tokamak equilibrium
configurations. ESC is interfaced with the transport simulation ASTRA code using ESI through the shared memory,
and using the data files with a number of author’s codes.

A. Service routines of ESI.

Some available and possible routines are listed in Table XVI. The set of service routines can be expanded with
more practice.
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Groups 24-29: Vacuum configuration in flux coordinates Table XIIT
C name Type |Format|Math #|Group name<Vac ESI configuration>

nX int %d|| Nx 24 [number of X-points

nReg int %A || Nreg 24 [number of topological regions

EEC char[] %8 24|name of the code

C name Type |Format| Math #|Group name<Vac ESI dimensions>

iReg int %d||ireq 25|index of the region

Ngl int %d|{Ne + 1 25|number of poloidal 8 points

Nal int %d|| N, +1 25 |number of radial § points

aX double %d|lax 25|a-value at the plasma boundary (separatrix)
aVac double %d | avac 25|a-value of the outmost field line in the region
bgq0 double %d || 60 /27 25| minimum value of § in the region

bgql double %d || 61 /27 25| maximum value of 8 in the region

C name Type |Format| Math #|Group name <Vac ESI [gql>

gqlNqil double Yoe|| 8, 26|60 - poloidal angle in the vacuum region

C name Type |Format| Math #|Group name <Vac ESI [sal>

sa[Nai] double %el|a: 27|a - radial coordinate in the vacuum region

C name Type |Format| Math #|Group name <Vac ESI r ra rq ragq>

r[1 [Ngil,ral] [Nq1l,rql] [Nq1],raq[] (Nq1l |double| 4%e||r,7%,75.7ha  |28|7, 74,74, rae for grid points

C name Type |Format|/[Math #|Group name <Vac ESI z za zq zaq>
z[1[Nq1],zal][Nqil,zq[] [Nq1],zaq[] [Nq1l|double| 4%e||z, 2,2y, 200 |29]2, 21, 2y, 20 for grid points

C name Type |Format|/Math #|Group name <Vac ESI B Ba Bq Bag>
B[1[Nq1],Ba[] [Nqil,Bq[] [Nq1],Baq[] [Nq1i] [double| 4%e||B, B, By, B, |30|B, By, By, By for grid points

TABLE XIII: Data structure for the vacuum configuration

B.

EST as a structure.

In fact, the Tables VI-X show the necessary elements of a single C data-structure which is typedefined as ESIstruct.
The user can work simultaneously with several of them (from 0 to 7), e.g., for comparison of different codes. But only
one structure is functional at the ESI side. By default the ESI[0] is activated. Using the call

i=ESI2up(1);

one can switch between active structures.

C.

ESI as a virtual machine.

In a primitive manner, ESI can mimic the “virtual machine” approach of OpenGL. A particular service, like
calculation of function |B|, 0, or graphics output can be activated any time by using

i=esiFEnable (esiGL,NULL);
i=esiFEnable(esiBASIS,ESIB);
i=esiEnable (esiBASIS,ESIgh);

and disabled by

i=esiDisable(esiGL ,NULL);
i=esi2Disable(esiBASIS,ESIB);

when it is not needed anymore. By default all calculations corresponding to a predefined parameter esiBASIS are

activated.

The full set of possibilities is specified EST documentation file esiXZ.c.d.

For the use of control parameters of a ESI virtual machine the definition file, e.g., esiXZ.h, (or esiXZ.inc for
FORTRAN) should be created and included into the user source code. Its content is specified in the ESI source file

esiXZ.c.




Minimum set of ESI routines. Marked by * are not yet available

Table XIV

example of C call

*

Comment

i=File2ESC (FNm) ;

i=FreeESI();

’FNm’ is the name of the ESI data-file.

frees the memory allocated for ESI by File2ESC().

1=FShM2ESC (key) ;

>key’ is the ID of the shared memory segment with ESI data

i=Link2ESC(F,Fa
,gFa,gFaa ,gYa,gYaa
,T,Ta ,P,Pa
sr,ra,rq,z,za,zq
,B,Ba,Bq
,gh,gha,ghq,isw) ;

Called once, it sends to ESI the addresses of arrays, which will contain
values of the basic functions.

isw is the integer array which could be necessary for marking the parti-
cles.

i=ESI2all(a,gq,n);

The main reconstruction routine, which calculates the basic functions
for n particles in positions given by a[il,q[i].

i=ESI2P1P(F,Fa
,gFa,gFaa ,gYa,gYaa
,T,Ta ,P,Pa,a,n);

Puts the values of plasma profiles F,F, & &" &' ¢ 1,7, PP
into arrays F[1, Fall, gFall, gFaall, gYall, gYaall, T[], Tall,
P[1, Pall for n points specified in a[].

i=ESI2bsp(bsp,bspa
,a,n) 5

Puts the values of p, 5’ into arrays bsp[], bspall for n points specified
in a[l.

i=ESI2gFgY(gF,g¥
»a,n);

Puts the values of magnetic fluxes ®, ¥ (un-barred) into arrays gfF[1,
gY[1 for » points specified in a[].

i=ESIrz2agq(a,gq

,T,Z,ierr,n);

Converts n cylindrical coordinates r, z into a,8. ierr[i] is the array of
errors for every point with the following values:

0 - success,
1 - point r[i], 2[1] is out of plasma,
2 - failure in convergence to afi], 0[i]

i=rzESI2agq(ID
,0a,nq) ;

Converts original ESI data on r — z grid into ESI data in nested flux
coordinates specified by the identification number ID with na,nq radial
and poloidal intervals.

i=ESI2gcm(dgr,da
,dgq,dgf
s8T,a,gq,gm,n);

2D

Time advancing routine for guiding center motion. It calculates the time
derivatives gy, &, 8, ¢ in Eq.(70) for n particles. gm[] contains magnetic
moments of the particles. Integer marker isw[] is used behind the scene.
Only 2-D version s available.

i=ESI2mf1(dgqL,dgfL
,a,89,0) ;

2D

Calculates derivatives of 8], ; in Eq.(61) with respect to length [ along
n magnetic field lines. Only 2-D version is available.

TABLE XIV: Minimum set of ESI routines

Minimum set of ESI routines for 3D. Marked by * are not yet available

Table XV

example of C call

*

Comment

i=Link2ESI3d(rz,zz
,Bz,ghz);

*

Specifies additional links for 3-D case.

i=ESI2all3d(a,gq
,8Z,1);

3-D analog of ESI2a11().

i=ESIrzf2agq3d(a,gq
,82 ,T,z,gf,n);

*

3D version of ESIrz2agq().

TABLE XV: Minimum set of ESI routines for 3D

X. SUMMARY

26

The described EST interface has unique properties in being well organized, comprehensive, compact and independent
of the computer architecture. For many plasma physics codes it can provide a uniform access to information about
magnetic configurations, independent of how this information was created and by what equilibrium code.

Without changing the format of communications, ESI allows one to drop some groups of data if they are not
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ESI service routines. Marked by * are not yet available Table XVI
example of C call * | Comment
i=ESI2geom(r,ra,rq, Calculates 7, 75,75, 2, 24, 25 for n points.

z,za,Zq, 2,gq,0);
i=ESI2rzB(r,z,B,a,n);| |Calculates r,z,|B]| for n points.

i=rzESI2gem(dgr,dr Analog of ESI2gem() with use of r — z ESI data. Calculates the time
,dz,dgf ,r,z,gm,n); derivatives gy, 7, 2, for guiding center motion for n particle specified
by their r, z and magnetic moment pu.

TABLE XVI: ESI service routines

necessary for a particular communication. On the other hand, within the same approach it is extendible to more
general cases, e.g., anisotropic equilibria or equilibria with perturbed or ergodic magnetic configurations.
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