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Ponderomotive forces on waves in modulated media

I. Y. Dodin and N. J. Fisch
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

Nonlinear interactions of waves via instantaneous cross-phase modulation can be cast in the same
way as ponderomotive wave-particle interactions in high-frequency electromagnetic field. The pon-
deromotive effect arises when rays of a probe wave scatter off perturbations of the underlying medium
produced by a second, modulation wave, much like charged particles scatter off a quasiperiodic field.
Parallels with the point-particle dynamics, which itself is generalized by this theory, lead to new
methods of wave manipulation, including asymmetric barriers for light.

PACS numbers: 52.35.Mw, 52.35.Sb, 52.35.Fp

Introduction. — One of the curious effects in wave-
particle interactions is that a rapidly oscillating electro-
magnetic (EM) field can produce a time-averaged force,
known as the ponderomotive force, on any particle that
is charged or, more generally, has a nonzero polarizability
[1, 2]. This effect, which can be attractive or repulsive
depending on a specific interaction, is widely used in var-
ious applications ranging from atomic cooling to plasma
confinement [3, 4]. Moreover, it was shown recently that
ponderomotive forces can cause nonreciprocal dynamics,
such as one-way-wall effects [4-7], and perform other non-
intuitive transformations of the particle phase space [8].
As it turns out, and as we argue in this paper, the same
effects can be practiced also on waves (including EM,
acoustic, or, for that matter, any propagating signals), if
the parameters of the underlying medium are modulated
quasiperiodically in time or space.

Specifically, what we show here is that the interac-
tion of waves in Kerr media via cross-phase modula-
tion (XPM) can be cast in the same way as ponderomo-
tive wave-particle interactions. The ponderomotive effect
arises when rays of a geometrical-optics (GO) probe wave
(PW) scatter off perturbations of the underlying medium
produced by a second, modulation wave (MW), much like
particles scatter off a quasiperiodic EM field. In contrast
to the PW refraction caused by gradual changes of the
medium average parameters (“slow” nonlinearity), the
ponderomotive effect on rays is instantaneous and can be
inferred from the PW linear dispersion alone, irrespective
of the medium evolution.

The practical utility of this finding is threefold:
(i) Based on parallels with the wave-particle dynamics,
new qualitative effects for wave-wave interactions are pre-
dicted. Examples of such effects that we put forth here
are ponderomotive reflection (which must not to confused
with resonant, Bragg reflection) and asymmetric barriers
for light. (ii) The XPM via instantaneous nonlinearities
can now be described, both generally and quantitatively,
beyond the special cases studied in literature [9-11]. In
particular, we derive equations for the PW continuous
ponderomotive dynamics that remain manifestly conser-
vative even when the medium average parameters slowly

evolve in time or space. (iii) The traditional theory of
ponderomotive forces on point particles, which happens
to be subsumed under the new formulation, is also gen-
eralized now, specifically to quasiclassical interactions.

Basic equations. — Consider a linear PW propagat-
ing in a general dissipationless medium such that the
GO approximation is justified. This implies, in particu-
lar, that the wave resides on a single branch of the dis-
persion relation, even though parameters of the medium
may vary with time ¢ and (arbitrarily curved) spatial co-
ordinates x. Assuming, for simplicity, that the wave is of
the scalar type (which includes vector waves with fixed
polarization too), it can hence be assigned a single canon-
ical phase 6(t,x), a scalar action density Z(t,x), and the
Lagrangian density [12, 13]

£ = —Z[0,0 + w(t,x, VO)]. (1)

Both 0(t,x) and Z(¢,x) are independent functions here,
so Eq. (1) generates two Euler-Lagrange equations,

90 +w =0, (2)
AT +V - (Ivy) =0, (3)

where vg(t,x) = Okw(t, x,k(t,x)) is the group velocity,
and k = V@ is the local wave number. (We use the
symbol = to denote definitions.) Equation (2) is of the
Hamilton-Jacobi type and serves as the dispersion rela-
tion, w = w(t, x, k), since —0;0 is, by definition, the wave
local frequency. Equation (3) has the form of a continuity
equation and represents the action conservation theorem.
To close this set of equations, the so-called consistency
relations are used,

Ok +Vw=0, Vxk=0, (4)

which flow from the definitions of w and k. Equations
(2)-(4) are also known as the Whitham equations and
subsume the familiar ray equations [14],

i’ = Ow(t,x,k)/0ky, ke = —0w(t,x,k)/0z¢, (5)

as their characteristics [15, 16].

Reduced equations. — Suppose now that w = w + @,
where O(t,x,k) = Re [@c(t,x, k) %] is a small per-
turbation. We term the latter a MW and introduce its



frequency Q) = —0;0 and wave vector K = VO. Sup-
pose also that © evolves slowly enough, so that the GO
approximation for the PW holds (and, in particular, res-
onant effects like Bragg scattering do not occur). On the
other hand, we will assume that © evolves fast compared
to the rate at which @ and the MW parameters (2, K,
and the amplitude) change in time and space. Hence we
can unambiguously introduce the slow, ©-independent,
or adiabatic dynamics, which is done as follows.

Let us express the PW phase as 6 = 6+ 0 and the PW
action density as Z =7 +7Z, where 6 and 7 are oscillating
functions of the order of @.; also, § = (), and T = (Z),
where the angular brackets denote local averaging over
O. As usual [15, 17], the Lagrangian density of slow,
adiabatic dynamics can then be calculated as £ = (£).
After neglecting terms of order |@.|" with r > 2, one gets

£ =-1[00 + w(t,x, V)], (6)

where w(t, x,k) = @+ (V0 - @i - VO) /2 + (0 - VO) + h,
and h = ((9,0 + &g - VO + ©)ZI). Both @ and & are
evaluated here at (£,x,k), and the index k denotes the
corresponding partial derivative. The quiver phase, 0,
satisfies the linearized equation 9,0 + Wi ~~Vé +w =0,
with k = V. This leads to h = 0 and also § = —i@/(Q—
K - o). A straightforward calculation then yields

_ _ K 0 |@e]?
w(t,x k) =@+ - o <Q—K-w1;)’ (7)
where, within the adopted accuracy, Wi can be replaced
with v, = Ogwo, and wq is the unperturbed PW fre-
quency evaluated at k. (The possible difference between
wo and @ will become clear from examples below.) Equa-
tions (6) and (7) also lead to dynamic equations akin to
the original Whitham equations (2)-(4):

até +w= 07 (8)
WL +V - (Tug) =0, (9)
Ok+Vo=0, Vxk=0, (10)

where u, = Ogw. Then the corresponding “oscillation-
center” (OC) ray equations, which can be considered as
time-averaged Egs. (5), are

i = ow(t,x,k)/0ke, k¢ = —0w(t,x,k)/0z". (11)
Here w acts as the OC Hamiltonian of PW rays, or
their ponderomotive Hamiltonian, so one may recognize
Eq. (7) as an extension to continuous waves of what is a
known theorem in classical mechanics of discrete systems
[18, 19]. [The cause of this parallel is that Eq. (2), which
describes the dispersion relation of a continuous wave, is
identical to the Hamilton-Jacobi equation for a ray as a
discrete quasiparticle governed by Egs. (5).] From the
particle analogy (cf., e.g., Ref. [5]), one also obtains the

adiabaticity condition underlying Eqgs. (6)-(11); namely,
in addition to the smallness of @&, one must have

F<l, T=(Q-K-v,| (12)
where 7 is the modulation time scale in the ray reference
frame, and the time derivative is taken along rays.

Equations (6)-(12) are the main analytical results of
our paper. They provide a new, general description of
the MW effect on the GO propagation of a nondissipative
continuous PW in any medium with a Kerr-type, cubic
nonlinearity [20]. (XPM via second-order nonlinearities
does not appear in our picture because the Pockels ef-
fect, such as in Ref. [21], requires 7 2 1 and otherwise
averages to zero.) Slow nonlinearities enter here through
the dependence of w on O-averaged parameters of the
medium. To assess this effect quantitatively, one merely
needs to add the OC Lagrangian density of the medium
to .Z [16, 22, 23] and calculate the medium evolution in
response to the ponderomotive force that a MW produces
on matter. However, below we will focus instead on the
general nonlinearity that is independent of the medium
inertia. It can be viewed as an instantaneous pondero-
motive effect that the MW produces directly on PW rays
and hence is termed “ponderomotive refraction”.

Ponderomotive refraction. — Even at small @, pon-
deromotive refraction can be a significant factor in the
PW evolution, especially when the underlying medium is
homogeneous and stationary. The effect can be partic-
ularly strong near the group-velocity resonance (GVR),
1 ~ K- v,. This is naturally understood for broad-
spectrum PW pulses, as then the GVR can be (at least
loosely) interpreted as the Cherenkov resonance between
PW “quanta” and the MW [10, 11, 24]. However, as seen
from our theory, the GVR remains a peculiar regime even
for homogeneous waves, in which case v, does not have
a transparent meaning of the envelope velocity.

What is also remarkable is that Eq. (7) describes pon-
deromotive refraction solely from the PW linear disper-
sion, without consideration of details of the nonlinear
dynamics of the medium, in contrast to traditional the-
ories [25]. Here are some examples. First, suppose a
sound-like wave, w(t,x,k) = kC(¢t,x), where C(t,x) =
Co(t,x) + Re[C(t,x) ©®¥)] such that Cy and C are
slow functions. Then @ = wy = kCy, and @ = kC, so
Eq. (7) yields

£2sin? y
2(U — cos x)?

€2 cosx

w=uwy |1+ (13)

U —cosx

where U = Q/(KCy), €2 = |C|?/(2C3), and x is the
angle between k and K. Suppose, for simplicity, that
U ~ 1 and that any spatial gradients are along K, so
the transverse wave vector, k| , is conserved. At quasi-
parallel propagation (l_fn > k, , where ];:H is the parallel
component of the wave vector), one then gets w ~ k| Ceg,

where Cegr = Cp[1 +¢2/(U — 1)]; i.e., the ponderomotive



effect simply changes the sound speed from Cy to Cog. In
contrast, at quasi-transverse propagation (EH <k L ), one
gets w/(kCo) ~ 1+ (p— a)?/2 + ¢, where p = ky /k.,
a = —e2(1+U?)/U3, and ¢ = €%/(2U?). In particular,
if Cy is a constant, and « is time-independent, the latter
can be removed by gauge transformation as an effective
vector potential. Then the ponderomotive effect consists
of ray repulsion by the effective scalar potential ¢. (As a
side remark, we note that these effects are not captured
by the standard, linear theory of mode conversion [26],
as the latter does not account for the dependence of ray
scattering on the MW amplitude.)

As another example, consider an EM wave in nonmag-
netized plasma with electron-density relative perturba-
tion N (t,x). Then w(t,x, k) = [w2(t, x)+ k2?12, where
Wy = wyo(1+N)'/? is the plasma frequency, wyy is its un-
perturbed value, and c is the speed of light. (Relativistic
effects such as in Ref. [27] are neglected in this model.)
Hence @ ~ Nwio/(2w0), 0~ (1 - ¢&?)wy, and v, =
c*k/wo, where wy = (W) + k2?2, & = Npw?/(4w3),
and N,, is the amplitude of N. One then gets

w=uwy[l—e*(V - K)/(Q-K-v,)%]. (14

Note that EM wave propagation in static modulated me-
dia, like photonic crystals [28], are described by Eq. (14)
as a special case corresponding to Q@ = 0 (cf.,, e.g.,
Ref. [29]); then w = wq [1 + (¢/n))?], where n| = kjc/wo
is the PW refraction index along K. (Keep in mind,
however, that this result applies only at large enough n|,
such that u, does not deviate much from v,.) Also let us
consider the opposite limit, 2 > K - v,. Assuming, for
simplicity, that k is small enough, in this case one gets
w/wpo >~ 1+ 02E2/(2w§0) + ¢, where ¢ = £2(N? — 1) acts
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FIG. 1: (color online) Results of one-dimensional full-wave
simulations of the EM pulse scattering in plasma off a density
wave with stationary envelope, Q = wpokd, and K = —0.12ko;
here ko = cko/wpo <& 1, and ko is the initial wave number.
Slow nonlinearities are ignored, and oscillations at the con-
stant carrier frequency wpo are mapped out. The electric field
envelope E is given in units of its maximum amplitude; N
is given in units k3; ¢ is given in units Kq 20.1;01; x is given in
units ky '. (a) Initial setup (¢ = 0); shown are E (blue, narrow
envelopes) and N (red, wide envelope). (b) |E(t,z)|* and the
ray trajectory found by numerical integration of Eqgs. (11).
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FIG. 2: (color online) Same as in Fig. 1 but for Q = 0.03wpo k3
and K = 0.2|ko|. Two cases are considered, ko > 0 and
ko < 0, with identical |ko|. (a) Initial setup (¢ = 0); the
arrows denote the directions of propagation. (b) |E(¢, )| for
ko > 0. The pulse hits the GVR at about kox ~ —100; then
it is partially transmitted and partially reflected, much like it
is described for particles in Ref. [31]. (c) |E(¢t, z)| for ko < 0.
As the signs of ko and K are different, the pulse never hits
the GVR and is fully transmitted.

as an effective potential. Its sign is determined by the
MW refraction index, N = K¢/Q, which, in principle,
can have any value, especially if the MW is produced by
driven fields. Such ¢ thereby attracts PW rays if N < 1
and repels them [30] if N > 1 (Fig. 1). (In particular,
the latter case is realized when MW is one of the natural
plasma waves, e.g., an ion acoustic or Langmuir wave.)
Such an effective potential is similar to the adiabatic
ponderomotive potential seen by point charges in a high-
frequency EM field [1]. It is hence also natural to ex-
trapolate the wave-particle analogy to the Pockels regime
(t 2 1), where the interaction is nonadiabatic [4, 8].
Based on what is known about the particle dynamics
in nonadiabatic ponderomotive barriers [4, 8, 31], one
readily anticipates that regions of strong MW can be ar-
ranged in this regime to scatter PW rays probabilistically
and, when {2 is nonzero, also asymmetrically. This is con-
firmed in simulations already for simple MW envelopes
(Fig. 2), and asymmetry can be made even stronger if the
MW shape is specially adjusted (Fig. 3). (Notably, these
manipulations are somewhat akin to those practiced via
effective gauge fields on PWs in externally-driven lattices
of multimode resonators [32]. The difference is, however,
that our ponderomotive forces exist in much simpler, con-
tinuous media and can be applied to single-mode pulses.)
Such “one-way walls” can be used to direct rays in a
ratchet manner, as suggested in Refs. [5, 6] for charged
particles, or even to concentrate them, as proposed and
implemented in Ref. [7] for atoms. For example, suppose
a barrier shown in Fig. 3 and the concentrator scheme
as in the inset. With the aid of an additional mirror,
this barrier can confine photons on its left side. That
applies, of course, only for photons with energies below
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FIG. 3: (color online) Main figure: schematic of a one-
dimensional asymmetric ponderomotive wall for PW rays.
Rainbow-colored and oscillating is &%, which determines w
[Eq. (7)]. On the left, adiabatic side (shaded), the pondero-
motive force reflects all rays below a certain frequency before
they even reach the nonadiabatic region. On the right side,
rays enter the nonadiabatic region first; then, depending on
the initial phase, some of them are reflected, but others are
transmitted. The feasibility of this type of asymmetric walls
for charged particles was studied in detail, both analytically
and numerically, in Ref. [6]. Inset: possible scheme of a light
concentrator (see the main text).

a certain threshold, whereas those transmitted from the
right have energies above that threshold and thus can
escape. (This is because, in the adiabatic domain, the
motion is reversible, so any photon that once was at the
top of the barrier can return there in the future.) How-
ever, like in the case of charged particles [5, 6] and atoms
[7], the barrier can serve as a one-way wall if dissipation
is added. Suppose that a transmitted photon, with some
frequency wi, undergoes Raman decay into some natural
oscillations with frequency wg and another photon with
frequency ws < wj. The former will dissipate, but, as-
suming wr < wi, this energy loss can be negligible. The
second photon, however, now has a smaller (ideally, zero)
probability to escape due to its lower energy and thus is
stuck between the one-way wall and the mirror until it
decays through the Raman cascade. Hence the photon
density in that region will be higher than outside.

Classical particles as PWs. — Although the above dis-
cussion appeals to understanding waves as particles, the
particle dynamics itself can be viewed merely as a special
case of the ponderomotive-refraction theory. To show
this, we approach it quantum-mechanically as follows.
Consider the Lagrangian density of a (scalar) quantum
particle, £ = (ih/2)(W*Opb—1 Opp*)—p* H (t, x, —ihAV )1),
where H is a Hamiltonian, and (¢, x) is the wave func-
tion in the spatial representation [13]. Let us represent
this function through its (real) phase S/h and amplitude
VZ. Specifically, we write ¢ = e*¥tX)/" /T(t x), where
T is now chosen to have units of number density rather
than of action density, as before. Assuming that ¥ (¢,x) is
quasiclassical, we have H (t,x,—iAV)Y ~ H(t,x,V.S),
so £ acquires the same form as in Eq. (1),

£=-T[0,S+ H(t,x,V5S)], (15)

4

which does not contain h. [Notably, and naturally,
Eq. (15) reproduces the well-known Lagrangian density
of cold classical fluid [33] as a special case.] There-
fore, if the particle Hamiltonian consists of a slow and
rapidly-oscillating parts, H = H + H , we can introduce
a ponderomotive Lagrangian that describes the particle
dynamics averaged over the oscillations of H:

&L =-1[0,S +H(t,x,VS)], (16)
K o (P

Here V = v, is the OC velocity, and the remaining nota-
tion is self-explanatory. The model of point particles, if
needed, corresponds to Z(t,x) = §(x — X(t)) |det g|~1/2,
where ¢ is the spatial metric. The OC total Lagrangian,
L, is then obtained by integrating £ over the volume;
that yields £ = P - X — H(t,X,P) with P = VS, so H
serves as the Hamiltonian for the canonical pair (X, P).
In particular, for an elementary particle with mass
m and charge e, one has H(t,x,P) = {m?c* + [P —
eA(t,x)/c]?}'/? + ep(t,x). Here A = A + A and
@ = @ + @ are the vector and scalar potentials; A and
@ describe quasistatic fields, if any; A = Re[A, e?®(t¥)]
and @ = Re|[@.e®®)] describe a MW, which is now
comprised of oscillations of the electric field with com-
plex amplitude E. = iQA, /¢ — 1K@, and magnetic field
with complex amplitude B, = iK x A.. This leads to

H = Ho + €*|A.[*/(4mc*7°), (18)
H=—e(P—eA/c)-A/(mcy) + e, (19)

where Hy = mc?y +e@, 7 = [1+ (P —eA/c)?/(mc)?]Y/?,
and quiver terms scaling as second and higher powers of
A and ¢ are neglected. One can check then that Eq. (17)
reproduces the OC Hamiltonians derived earlier, and ® =
H — Hy is the well-known ponderomotive potential [1].

Conclusions. — In summary, we showed that non-
linear interactions of waves via instantaneous XPM can
be cast in the same way as ponderomotive wave-particle
interactions in high-frequency EM field. The ponderomo-
tive effect arises when rays of a PW scatter off pertur-
bations of the underlying medium produced by a MW,
much like charged particles scatter off a quasiperiodic
EM field. The striking parallels with the point-particle
dynamics, which itself is generalized by this theory, lead
to new methods of wave manipulation, including asym-
metric barriers for light.
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AC02-09CH11466, and by the U.S. DTRA through Re-
search Grant No. HDTRA1-11-1-0037.
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