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Abstract
The capability to calculate the magnetic field due to the plasma currents in a toroidally
confined magnetic fusion equilibrium is of manifest relevance to equilibrium reconstruction
and stellarator divertor design. Two methodologies arise for calculating such quantities. The
first being a volume integral over the plasma current density for a given equilibrium. Such an
integral is computationally expensive. The second is a surface integral over a surface current
on the equilibrium boundary. This method is computationally desirable as the calculation does
not grow as the radial resolution of the volume integral. This surface integral method has come
to be known as the ‘virtual-casing principle’. In this paper, a full derivation of this method is
presented along with a discussion regarding its optimal application.

(Some figures may appear in colour only in the online journal)

1. Introduction

The calculation of three-dimensional magnetic fields due to
the plasma currents, in regions external to three-dimensional
plasma equilibria, is essential to equilibrium reconstruction
and divertor design. The magnetic induction is a linear
superposition of the vacuum field ( �BVacuum) produced by the
current flowing in conductors external to the plasma and the
plasma field ( �BPlasma) generated by the currents flowing in the
plasma:

�BTotal = �Bvacuum + �BPlasma. (1)

Various analytic and numerical methods exist for calculating
the vacuum component of the field (figure 1). As the vacuum
component is a well-treated problem [1], we turn our attention
towards the plasma component of the field. The most direct
method for calculation of the magnetic field due to the plasma
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is to envoke the Biot–Savart integral:

�BPlasma (�x) = µ0

4π

∫ �j (�x ′) × (�x − �x ′)
|�x − �x ′|3 d3x ′. (2)

Here primes denote integration over the plasma volume, �j is the
plasma current density and µ0 is the permeability of free space.
This volume integral is numerically expensive to evaluate and
grows as a radial resolution of a given plasma equilibrium
model. In this paper we are only interested in solving for the
plasma field in regions external to the plasma domain thus, a
‘virtual-casing’ principle may be applied to convert the volume
integral to a surface integral [2]. This significantly reduces the
computational load required to obtain the plasma field. For
an equilibria with 99 surfaces a surface integral would provide
a nearly two orders of magnitude reduction in the number of
operations over a volume integral with the same poloidal and
toroidal resolution.

In past works, the derivation of this method involved the
assumption that an infinitely conducting sheet exists between
the plasma and external conductors. This sheet shields out the
total magnetic induction, producing a current sheet. For 2D
systems, the plasma response (external to the plasma volume)
is purely in the poloidal direction producing a current sheet
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Figure 1. Depiction of plasma cross section and field coils.

in the toroidal direction. This allows the poloidal currents on
this sheet to be explicitly set to zero. In 3D, this assumption
is not valid. However, the fundamental method is correct and
a generally valid result can be derived without invoking the
existence of unphysical current sheets. It is worth noting that
the ‘virtual-casing’ principle is just the magnetostatic limit of
Love’s equivalence theorem [3].

2. Method

The ‘virtual-casing’ principle makes use of the magnetostatic
jump conditions present at the plasma–vacuum interface to
describe volume integrals over currents in terms of surface
integrals. The derivation of these jump conditions begins with
the equations of electrodynamics [4]:

∂ρc

∂t
= ∇ · �j, (3)

∇ · �B = 0, (4)

∇ × �H − ∂ �D
∂t

= �j, (5)

�B = µ �H, (6)

where ρc is the charge density, �B is the magnetic induction, �H
is the magnetic field, �D is the electric displacement, �j is the
current density and µ is the magnetic permeability of a given
material. It is important to note that all quantities have a spatial
dependence f = f (�x). In the magnetostatic limit (vanishing
time derivatives) equations (3) and (5) become

∇ · �j = 0, (7)

∇ × �H = �j . (8)

We now imagine some toroidally closed surface, S, which
encloses all the plasma currents and excludes any external
conductors. For our purposes, we will use the plasma
equilibrium surface. This geometry allows us to follow

Figure 2. Depiction of the Stokesian loop (C) and the pillbox (V)
spanning the plasma–vacuum interface (S). The jump conditions on
the magnetic field allow the construction of a dipole moment density
(σ ) and surface current density (K), from which the plasma response
outside the surface may be calculated.

a similar exposition as found in many texts on classical
electrodynamics. We consider an infinitesimal Stokesian loop,
C, to be present across the surface, S, where two legs are
directly parallel to the boundary surface (S) and the other two
are perpendicular to the surface. The resulting normal vector
(�t) to the loop is then tangential to the boundary surface, S

(figure 2). Equation (8) may be converted to a integral form∮
C

�H · �dl =
∫

S ′
�j · �tdA′, (9)

where �dl is a line element on the contour C and S ′ is the surface
spanning the loop and dA′ is a surface element of S ′.

Taking the contour C to lay infinitesimally close to the
surface S the left-hand side of our modified Ampère–Maxwell
equation (equation (9)) may be written as∫

C

�H · �dl = (�t × n̂
) ·

(
�Hexterior − �Hinterior

)
�l, (10)

where �l is the length of the curve parallel to the surface and n̂

is the unit surface normal. The right-hand side of our modified
Ampère–Maxwell equation becomes∫

C

�j · �tdA = �K · �t�l, (11)

where �K is an idealized surface current and the integral is over
the surface area enclosed by the Stokesian loop (C). Here,
the integral over a volume has been transformed into a surface
integral. The implication is that �K is a two-dimensional object.
Taking these three equations ((9), (10) and (11)), the surface
current can now be written in terms of a jump condition on the
tangential component of the field

�K = n̂ ×
(

�Hexterior − �Hinterior

)
. (12)

This transforms the current density of the plasma to a surface
current on a boundary surface.

Returning to our surface, S, let us now imagine an
infinitesimal pillbox of volume (V ), where the ends of
the pillbox have normal components parallel to the surface
normal (figure 2). If the surface (S) is a flux surface the
solenoidal constraint on the magnetic induction (equation (4))
is identically satisfied on this surface, we may write∫

S ′
�B · n̂dA =

(
�Bexterior − �Binterior

)
· n̂�A = 0, (13)
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Figure 3. Calculation of plasma field outside a circular cross section VMEC equilibria (R = 100 m, a = 1 m). The horizontal axis indicates
distance from the plasma surface (normalized to the plasma radius 1 m). Circles indicate field as calculated by a volume integral over the
plasma volume. Crosses indicate fields as calculated by a virtual casing method with the full (vacuum and plasma) field. Xs indicate field as
calculated by virtual-casing with just the plasma field utilized. Errors in the toroidal field persist for distances up to four minor radii from the
equilibrium surface.

where �A is the surface area of our pillbox and S ′ is the surface
of the pillbox. This gives the jump condition on the normal
component of the field, namely

(
�Bexterior − �Binterior

)
· n̂ = 0. (14)

In general our surface (S) need not be a flux surface. We now
introduce a dipole moment density (σdipole) with the property

∫
S

�B · n̂dA =
∫

S

σdipoledA = 0. (15)

In the limit that the volume of the pillbox vanishes we may
then write

(
�Bexterior − �Binterior

)
· n̂ = σdipole. (16)

This dipole moment density allows our surface to become
arbitrary with respect to the magnetic topology [5].

The surface current density and dipole moment density
may then be utilized to construct the plasma component of the
magnetic field in the vacuum region:

�Bplasma (�x) = µ0

4π

∫ �K × (�x − �x ′)
| (�x − �x ′) |3 dA′

+
1

4π

∫
σdipole

(�x − �x ′)
| (�x − �x ′) |3 dA′. (17)

This is the ‘virtual-casing’ principle where primes denote
integration over our surface, S, and �x is the point at which
we desire the plasma field.

3. Comments

The application of the ‘virtual-casing’ principle to calculate the
plasma response is easily understood but care must be taken
to use the vacuum or plasma field where appropriate. In the
Shafranov and Zakharov paper [2], the method is derived for an
axisymmetric tokamak. The clear result is that there can only
be a poloidal plasma response in the exterior region. They
then use this information to construct their current sheet. A
toroidal plasma response is never even calculated because there
is an implicit assumption that the integral over such a field
is zero.

The effect of including the toroidal field can be evaluated
for this case. The magnetic induction is a linear superposition
of fields so the total field can be written as before:

�BTotal = �Bvacuum + �BPlasma. (18)

Assuming for simplicity that the toroidal surface is a flux
surface (dipole moment density vanishes), the surface current
density becomes a linear superposition as well:

�KTotal = �Kvacuum + �KPlasma. (19)

The �Kvacuum portion of the surface current density arises from
sources external to the surface. This requires the following
integral relation to be fulfilled:∫

�Bvacuum · d�l = µ0

∫
�Kvacuum · d �A′ = µ0Ienclosed = 0. (20)

Recently, the magnetic diagnostics code DIAGNO [6] has
been modified to incorporate a virtual-casing principle and
a volume integral over current densities into its diagnostic
calculation methods. Figure 3 depicts the magnetic field as
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calculated by eight field probes located on the outboard mid-
plane (φ = 0, θ = 0) of the equilibria. The VMEC code [7]
was utilized to calculate an aspect ratio 100 (R = 100 m,
a = 1 m) circular cross section equilibria with zero pressure.
A total toroidal current of 7000 A with a current profile of
dI/ds = I0(1−s−s4+s5) was assumed, where I0 is calculated
to guarantee the total toroidal current to be correct and s is the
normalized toroidal flux. This configuration was chosen to
minimize effects of torodicity and any uncertainties regarding
the equilibrium itself. In this configuration the polodial field
is generated by plasma currents alone and the toroidal field
is generated by external conductors. The plot indicates the
plasma field as calculated by a volume integral over the current
densities (o), a virtual-casing principle utilizing the full field
on the equilibrium boundary (+), and just the plasma field
on the equilibrium boundary (x). It is clear that by utilizing
the total field an erroneous toroidal plasma field is generated
outside the equilibria in both the radial and toroidal directions.
Although both methods seem to properly calculate the correct
vertical plasma response (BZ), this problem was separable with
no vacuum field present in the vertical direction. A situation
which in 3D is not necessarily true.

In general, both the vacuum and plasma fields will have
toroidal, poloidal and radial components. Any surface current
contribution, due to the vacuum field, must integrate to zero
explicitly (

∫ �Bvac · d�l = 0). The vacuum field does not contain
any source terms inside the equilibrium boundary. As a result,
the field due to this vacuum surface current must be zero in the
region outside the equilibrium. This result can be identically

satisfied by explicitly assuming this contribution is zero and
thus only using the plasma field to calculate a surface current
sheet. This significantly reduces the demands on the accuracy
of any numerical integration scheme.
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