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A new class of magnetic confinement device in the shape of a knot

S.R. Hudson,∗ E. Startsev, and E. Feibush
Princeton Plasma Physics Laboratory, PO Box 451, Princeton NJ 08543, USA

(Dated: to appear in Physics of Plasmas, March, 2014)

We describe a new class of magnetic confinement device, with the magnetic axis in the shape
of a knot. We call such devices “knotatrons”. An example is given that has a large volume filled
with magnetic surfaces, with significant rotational-transform, and with the magnetic field produced
entirely by external circular coils.

The principle of magnetically confining a plasma ex-
ploits the fact that the motion of charged particles in a
strong magnetic field consists of a free-streaming motion
parallel to the field combined with a small, perpendic-
ular gyration. In a uniform field in cylindrical geome-
try, for example, the particles are well confined in the
perpendicular direction: in the absence of electric fields
and magnetic field inhomogeneities, the perpendicular
loss of particles is due solely to collisions. However, a
finite-length cylinder is not closed. To prevent so-called
“end-losses”, modern experiments, such as ITER [1] and
W7X [2] presently under construction, join the ends of
the cylinder and thereby construct a topological torus.

The simplest toroidal configuration has each magnetic
fieldline making a circle about a given rotational axis of
symmetry, e.g. the Z axis, where (R,φ, Z) are the usual
cylindrical coordinates. Such a configuration, however,
cannot support a plasma. Bending the magnetic field
into a torus necessarily compresses the field on the in-
side of the torus. The vertical drift of particles caused
by the inhomogeneity in the field strength produces an
electric field, which in turn results in loss of confinement.
To cancel the particle drifts it is necessary that the mag-
netic fieldlines rotate the short way around the torus,
the poloidal direction, while they rotate the long way
around, the toroidal direction. The average pitch of this
rotation is measured by the rotational-transform, defined
as average number of poloidal rotations per toroidal ro-
tation, ι- ≡ ∆θ/∆φ as ∆φ → ∞, where θ measures the
angle around the magnetic axis, which may be defined as
follows.

Consider a magnetic field with at least one mag-
netic flux-surface, defined as a toroidal surface to which
the field is everywhere tangential. Assuming a strong

toroidal component of the field, so that B · φ̂ > 0, we
may take the φ = 0 plane as a Poincaré section. Because
∇ · B = 0, the area of the Poincaré section bounded by
the flux-surface is mapped to itself by the return map,
which is defined by following along a fieldline around the
the machine back to the initial Poincaré section (or, if
there is a q-fold symmetry in φ, its symmetric equiva-
lent). The Brouwer fixed-point theorem [3] applies: there
must be one (in fact, at least one) point on this area
which is mapped to itself. The fieldline passing through
this point is called the magnetic axis and closes upon
itself after just one turn.

At the most primitive level, a magnetic confinement

∗
Electronic address: shudson@pppl.gov

device must have a large volume of space occupied by
magnetic fieldlines that wrap around on closed, toroidal
surfaces.

The tokamak class of toroidal confinement device is ro-
tationally symmetric. (Realistically, however, there will
always be some “toroidal ripple” due to the finite num-
ber of external current coils that produce the required
magnetic field.) In the axisymmetric case, the only pos-
sible way to produce a poloidal magnetic field needed
for rotational-transform is to induce or drive a toroidal
current in the plasma itself. Tokamak plasmas are, con-
sequently, inherently prone to disruptions: anything that
leads to a sufficient kinking or displacement of the plasma
current can break the magnetic “bottle” confining the
plasma.

Axisymmetry does provide some important advan-
tages: toroidal magnetic fields are analogous with 11
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dimensional Hamiltonian dynamical systems [4], and the
rotational symmetry guarantees that space is filled by
magnetic surfaces, i.e. that the magnetic field is inte-
grable. The particle trajectories are also governed by
a Hamiltonian [5], and the rotational symmetry means
that the particle trajectories possess certain invariants,
so that particle transport is reduced.

There are methods other than driving a toroidal cur-
rent by which a rotational-transform can be produced.
For example, if the configuration is smoothly deformed to
create a non-planar magnetic axis, which of course must
destroy the rotational symmetry, the nontrivial torsion
of the axis creates a rotational-transform [6, 7]. This is
the approach adopted by many [8] important examples
of the stellarator class [9], in which a magnetic field with
non-zero rotational-transform is produced by currents ex-
ternal to the plasma. (This definition includes torsatrons
[10], heliotrons [11] and heliacs [12], all of which refer to
a particular arrangement of the external currents and
which are hereafter referred to as conventional stellara-
tors.) The confining magnetic field in stellarators does
not depend on the plasma current, and stellarators are
thus far more stable than tokamaks.

To construct a set of external currents that pro-
vide vacuum magnetic surfaces with non-zero rotational-
transform is, however, easier said than done. The lack of
a continuous symmetry means that there will not, in gen-
eral, be a nested family of flux-surfaces. Whenever there
is a resonance between the geometry of the configuration
and fieldlines with rational rotational-transform, ι- = q/p
for integers p and q, a magnetic island will form at the
resonant surface. The size of the island depends on the
strength of the geometrical resonance and the shear. In a
large magnetic island there is a volume of “elliptic” flux-
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surfaces with fieldlines that rotate about a stable periodic
orbit. A (p, q) periodic orbit is defined here as a fieldline
that closes upon itself after completing q poloidal transits
and p toroidal transits. When nearby islands are suffi-
ciently large so as to overlap, irregular fieldlines emerge,
which wander seemingly randomly over a volume. The
existence of such chaotic volumes degrades confinement.

The challenge of stellarator design is, in part, to con-
struct coil configurations that either avoid the reso-
nances, by tailoring the configuration so that no strongly-
resonant, rational surfaces are present, or to ensure that
strength of the geometrical resonance is sufficiently small
so that the islands are negligible. This must be achieved
by geometrical shaping. Magnetic islands also appear
in tokamaks, but rather than being caused by geometri-
cal resonances they result from resistive plasma instabili-
ties associated with unstable pressure and current profiles
and are usually called tearing modes [13].

Breaking the rotational symmetry breaks the associ-
ated invariants of the particle motions. This introduces
a variety of additional transport mechanisms by which
particles may be lost. Historically, this has put stellara-
tors at a disadvantage as compared to tokamaks [14].

However, the lack of axisymmetry does not mean that
stellarators cannot have a sufficiently large volume oc-
cupied by flux-surfaces. By careful geometrical design,
both the vacuum field [15] and finite-pressure equilib-
ria [16] in strongly non-axisymmetric stellarators can be
made arbitrarily close to integrable. Similarly, the lack
of axisymmetry does not mean that stellarators cannot
have good particle trajectories, and modern stellarator
designs are able to significantly reduce the level of neo-
classical transport [17].

The stellarator class allows for three-dimensional shap-
ing and so a far greater variety of configurations is pos-
sible; but the theoretical analyzes are more complicated,
numerical computation is more costly, and the configu-
ration space of stellarator design takes longer to explore.
We stress this point because the example knotatron con-
figuration described below has not been geometrically op-
timized to obtain optimal plasma performance. This will
be left for future work.

Joining the ends of a cylinder together to form a toka-
mak or conventional stellarator is not the only option
for closing the magnetic field in order to prevent end-
losses. The magnetic axes of rotationally symmetric toka-
maks are circles, and those of conventional stellarators
are smoothly deformable into circles. There is another
class of plasma magnetic confinement device that (i) is
closed, in the sense that magnetic fieldlines wrap around
on flux-surfaces that enclose a finite volume; and (ii) has
significant rotational-transform, even in the absence of
plasma current; and (iii) that has a magnetic axis that is
not smoothly deformable into a circle. We may wonder if
better plasma confinement can be obtained if the plasma
is, instead, tied into a knot.

Mathematically, a knot is defined an embedding,
K : S1 →֒ S3, of a 1-sphere, i.e. a circle, into the 3-
sphere [18, 19]. Or more simply, a knot is a closed, one-
dimensional, non-intersecting curve in three-dimensional
space, R

3. This includes the trivial knot, the circle, which

is also called the unknot. Both knots and unknots share
the topology of the circle. Two knots, K and K̄, are am-

bient isotopic if there exists a continuous one-parameter
family, ht, of homeomorphisms of S3 such that h0 is the
identity map and h1 ◦ K = K̄. In other words, two knots
are equivalent if there is a continuous deformation of R
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that maps one knot into the other. A knot may be distin-
guished from the unknot, as it is not possible to deform
a knot into the unknot without the knot passing through
itself or it being cut. The theory of knots is relevant
to a wide range of topics, including the study of DNA
dynamics [20] and quantum field theory [21].

A (p, q)-torus knot, where (p, q) is a pair of co-prime in-
tegers, is a special kind of knot that lies on the surface of
a torus: it winds q times around the poloidal direction,
and p times around the toroidal direction. (The torus
that the knot winds around on need not have any partic-
ular symmetry, i.e. the torus may look like a conventional
stellarator flux-surface.) An example parametrization is

x(ζ) = R(ζ) cos(p ζ),

y(ζ) = R(ζ) sin(p ζ), (1)

z(ζ) = −r sin(q ζ),

where R(ζ) = R0 + r cos(q ζ), and R0 and r are
constants. Note that R(ζ + 2π/q) = R(ζ) and
z(ζ + 2π/q) = z(ζ), so there is a q-fold rotational
symmetry around the Z axis. The usual cylindrical
angle, tanφ = y/x, is φ = p ζ. The simplest, nontrivial
example, which will be considered in the following, is
the (2, 3)-torus knot, which is also known as the trefoil
knot.

This article introduces a new type of plasma confine-
ment device – the knotatron – a device that has a mag-
netic axis in the shape of a knot. A set of external coil
currents that provides the required magnetic field is con-
structed as follows.

A reference curve, x(ζ) ≡ x(ζ) i + y(ζ) j + z(ζ)k,
that has the shape of a (p, q)-torus knot is chosen as a
proxy magnetic axis. The unit tangent to this curve is
t ≡ ẋ/|ẋ|, where the ‘dot’ denotes derivative with respect
to ζ.

A set of i = 1, . . . , N circular coils are positioned
equally spaced along this reference curve, so that the
center of each coil is located at xi ≡ x(ζi), where
ζi = 2π(i − 1)/N . Each coil is assumed to carry unit cur-
rent and has radius a. The magnetic field produced by
each coil, Bi, is computed using the Biot-Savart law. The
initial orientation is such that the i-th coil is described
by

x(θ, ζi) = x(ζi) + a cos θ n + a sin θ b, (2)

where n ≡ ṫ/κ is the principal normal, κ = |ṫ| is the cur-
vature, and b ≡ t × n is called the bi-normal. The set
(t,n,b) is called the Frenet-Serret frame. The torsion,
τ , measures the speed of rotation of the bi-normal vector,
ḃ = −τn.

By symmetry, Bi is tangential to the reference curve
at the coil center, Bi(xi) × ti = 0; however, this initial
orientation of the coils does not guarantee that the total

magnetic field, B =
∑

i
Bi, is tangential to the reference
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FIG. 1: (color online) A trefoil-knotatron: 36 circular coils,
each with unit current, produce a magnetic field with an axis
in the shape of a trefoil knot. The color indicates |B| on a
flux surface.

curve. To enforce the condition B(xi) × ti = 0, ∀xi, with
a set of N circular coils centered at the xi, it is required to
appropriately adjust their orientations. This is a simple
numerical task: there are 2 degrees-of-freedom in the ori-
entation of each coil, and the condition B(xi) × ti = 0,
∀xi, represents a total of 2N constraints. A solution
may be obtained iteratively. With only a finite set of
coils this algorithm cannot guarantee that B(x) × t = 0
everywhere along the reference curve, and so the mag-
netic axis of B will not exactly coincide with x(ζ); but
as N increases the agreement improves.

Shown in Fig. 1 is an illustration of the resulting coil
configuration for a (2, 3) torus-knot, where we have cho-
sen R0 = 2, r = 1 and a = 2/3, in units of meters,
and N = 36. Shown in Fig. 2 is a Poincaré plot of the
resulting magnetic field on the φ = 0 plane, and Fig. 3
shows the rotational-transform. The φ = 0 plane cuts
a (p, q)-torus knotatron p times; and the magnetic axis
is 2πp/q periodic in φ, rather than the usual 2π/q, in a
device with a q-fold symmetry. The rotational-transform
on axis is ι- ≈ 0.261. The colored surface shown in Fig. 1
is a flux-surface. The color indicates |B|, with blue show-
ing areas of weak magnetic field and red showing strong.
The intersection of this surface with the Poincaré section
is shown as the thick line on Fig. 2. There is a large
volume of space, about 5.08m3, filled with flux-surfaces
with a significant rotational-transform.

The first conceptual obstacle to overcome in the inves-
tigation into whether knotatrons may provide advantages
for confining plasmas is to overcome the perception that
such devices may be awkward or even impossible to con-
struct. To address this concern, rather than adjusting
the coil geometry in order to shape the vacuum flux-
surfaces to improve confinement, we have instead sought
to construct a simple set of coils that do not intersect

FIG. 2: Poincaré plot on the φ = 0 plane.

– the minimum coil-coil separation is 32cm – and that
produces the required magnetic axis. We have chosen a
moderate number of coils, 12 coils per period, to illus-
trate that knotatrons should be easy, at least possible, to
engineer; however, the fewer coils the greater the toroidal
ripple, and some toroidal ripple is clearly seen in Fig. 1.
(The surfaces closer to the magnetic axis are less rippled.)

This coil configuration is unlikely to be “flexible”, in
the sense that it may not be possible to construct many
different magnetic configurations by simply varying the
currents. Additional helical windings and/or vertical
field coils, such as those used in conventional stellarators,
will probably be required for an attractive experimental
design.

It is natural to ask, what advantages do knotatrons
provide? Common sense would suggest that the con-
struction and operation of knotatrons would be far more
complex than that of conventional stellarators, but this
is not necessarily the case. Modern experiments are al-
ready quite complex, and there is no obvious reason why
an experimental knotatron would need to be as compact
as the example shown in Fig. 1.

The knotatron example presented here could perhaps
be compared to an early stellarator design, e.g. the
model-A stellarator, which had the magnetic axis in the
shape of a figure-8 [9]. The early stellarators are not at-
tractive experimental designs by today’s standards. To
thoroughly investigate the potential of knotatrons, and
thus determine what knotatrons may have to offer, it is
required to perform extensive equilibrium, stability and
transport studies, and to employ optimization algorithms
to find an attractive design, as is required for all modern
devices.

The rotational-transform is produced by the torsion,
which measures the extent to which the magnetic axis
deviates from lying in a plane. As non-trivial knots can-

not lie on a plane, one may speculate that knotatrons
are capable of producing greater rotational-transform
than a conventional stellarator, but this is unclear. The
Fary-Milnor theorem [22] states that three-dimensional
smooth curves with small total curvature must be un-
knotted: if

∮
κ(ζ) dζ ≤ 4π, then the curve is an unknot;

but it does not follow from this that curves with large
total curvature must be knots.
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FIG. 3: Rotational-transform, ι-, plotted against R.

Just as there is a much greater variety of conventional
stellarators than tokamaks, there is a much greater vari-
ety of knotatrons than conventional stellarators. There
is a seemingly infinite variety of knots: not all knots are
torus knots, there is for example also the class of Lis-
sajous knots [23]; and given two non-trivial knots an ad-
ditional composite knot may be constructed by cutting
each knot and joining the ends. Within each class of
knot family it is possible to vary the geometry of the
configuration to improve the confinement. This begs the
question: is there a class of knot that provides optimal
confinement? The curvature and torsion of the magnetic
fieldlines are important for magnetohydrodynamic sta-
bility, and it would seem that knotatrons can provide a
greater variety of curvatures and torsions than tokamaks
or conventional stellarators.

As both tokamaks and conventional stellarators have
magnetic axes that are ambient isotopic to the unknot,
these devices may be called unknotatrons. As the confin-
ing magnetic field in a knotatron is produced by external
currents, and the rotational-transform is produced by a
non-planar magnetic axis, knotatrons are a new example
of the stellarator class.

To our knowledge, this is first time that a magnetic
confinement device in the shape of a knot has been con-
sidered. However, knotatrons have already been realized

experimentally in a sense, albeit perhaps unintentionally
and as yet unrecognized as knotted confinement regions.
A (p, q) periodic orbit, for (p, q) relatively prime, is a
torus-knot. The region of elliptic flux-surfaces in a large
magnetic island, with fieldlines that rotate about a sta-
ble periodic orbit, forms a confinement region ambient
isotopic to that of a knotatron.

Closely related to the theory of knots is the theory
of links: given two closed curves, x(ζ) and y(ζ ′), the
number of times one links the other is called the linking
number and is given [24, 25] by

−
1

4π

∮ ∮
r

|r|3
× dy · dx, (3)

where r(ζ, ζ ′) ≡ y(ζ ′) − x(ζ), and dx and dy are in-
finitesimal line segments along each curves. Generalizing
this to continuum of curves in a volume we obtain the
helicity integral [24, 25],

H ≡ −
1

4π

∮ ∮
r

|r|3
× B(y) · B(x) d3y d3x, (4)

which, on using the vector potential in the Coulomb
gauge [24, 25], reduces to H =

∫
A · B dv.

The helicity integral has received a lot of attention in
plasma physics: the principle of Taylor relaxation [26]
has been successful in the predicting the behavior of re-
versed field pinch (RFP) experiments by postulating that
weakly resistive plasmas will evolve to minimize the to-
tal energy, thermal + magnetic, of the plasma under the
constraint of conserved helicity. Seen as the general-
ization of the Gauss linking integral, the constraint of
conserved helicity is equivalent to the constraint of con-
stant “linked-ness”. Recently [27], the Taylor relaxation
model has been extended to explain the experimentally
observed self-organization of the RFP into helical states
[28], but the physical mechanism of Taylor relaxation re-
mains a topic of ongoing investigation [29–31].

This work was supported by DOE. We would like to
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