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Abstract

We analyze the linear growth of the magneto-rotational instability (MRI) in the short time limit using

nonmodal methods. Our findings are quite different to standard results, illustrating that shearing wave en-

ergy can grow at the maximum MRI rate, −dΩ/d ln r, for any choice of azimuthal and vertical wavelengths.

In addition, by comparing the growth of shearing waves with static eigenmode-like structures, we show that

over short time-scales shearing waves will always be dynamically more important than static structures in

the ideal limit. By demonstrating that some fast linear growth is possible at all wavelengths, these results

suggest that nonmodal linear physics could play a fundamental role in MRI turbulence.
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Since the seminal work of Balbus and Hawley [1], the magneto-rotational instability (MRI) has

emerged as promising explanation for the observed momentum transport in accretion disks. In

particular, the nonlinear development of the instability has been shown to lead to sustained turbu-

lence and dynamo action in both local shearing box (e.g., [2–4]) and global (e.g., [5]) nonlinear

simulations. Despite substantial concern about transport convergence with dissipation parameters

[6, 7] it seems that such results are relatively robust [4], persisting both with and without an im-

posed magnetic field and somewhat independently of boundary conditions and background density

profiles [3]. Nonetheless, even in the simplest local case, a thorough understanding of the nature

of the turbulence and the dynamo mechanism is lacking (see, for instance [8]). Several promising

closure models and dynamo ideas (e.g., [9–12]) require further testing, and there has been less

work on the nature of the turbulent cascade [13] (if it even exists in the usual sense [14]). The rel-

evance of linear eigenmodes in these processes seems to have mostly been discounted (e.g., [7]),

although there have been hints that linear shearing waves have substantial dynamical importance

[10, 12].

The study of the linear eigenmodes of a system is, in the most basic sense, an attempt to an-

swer the following question: How much can the system grow in time and what initial conditions

will maximize this growth? If said system is self-adjoint in a physically relevant norm, the eigen-

spectrum is certainly the best way to approach this problem; initializing with the most unstable

eigenmode will maximize growth of the disturbance at all times. However, the question becomes

more complex if the linear operator is not self-adjoint and nonmodal effects become important

[15]. In particular, the answer can depend enormously on the time at which one wishes to maxi-

mize the growth, and the eigenvalue result is correct only in the limit t → ∞. If one studies growth

over shorter times, not only can growth rates be very much larger than predicted with eigenvalue

analysis, but the most relevant structures can look very different to the eigenmodes. Investigations

in this vein have been particularly fruitful in fluid dynamics, where they have cleanly answered

longstanding questions about subcritical transition to turbulence in spectrally stable systems [16].

In this letter we approach the linear stability of the MRI from the nonmodal standpoint, study-

ing the short time growth of perturbations. The picture that emerges suggests that eigenmode and

asymptotic shearing wave growth estimates can be quite misleading, since over shorter time-scales

relevant to a turbulent situation the growth can be very different than in the long-time limit. In par-

ticular, we prove that shearing wave structures (we include the axisymmetric mode as a special case

of this) always grow faster over short time-scales than static (eigenmode-like) structures so long
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as dissipation is not too large, a result that also holds with the inclusion of certain global effects.

In addition, for the local ideal case, we show that the short time energy growth rate has the same

maximum value, −dΩ/d ln r, regardless of the vertical and azimuthal wavelengths. To reinforce

the notion that one must be very cautious when relying on eigenmode analyses and dispersion

relations for the MRI, we finish the letter with an example illustrating how eigenmode analysis

might lead to incorrect conclusions about the relative importance of different mode numbers in an

experimentally relevant regime.

The significance of transient growth for non-axisymmetric MRI has been recognized in many

previous papers (e.g., [17–20]), which have mainly focused on the transience brought about by the

time-dependent spatial structure of shearing waves. Our considerations differ in several respects

from those given previously.

1. Curiously, it is generally assumed that shearing waves are the most relevant structures in

local inquiries, while most global studies consider static eigenmode structures (but see

[18, 21]). We advocate that the dynamical relevance of each type of structure should be

determined based on growth rates, since strongly amplified structures will dominate when

starting from random initial conditions. With this in mind, we prove (within a WKB-like

approximation) that in almost all regimes, shearing waves grow faster on short time-scales.

2. We find that the fastest short-time shearing wave growth occurs in a regime where standard

analytic results (based on WKB eigenmodes [17, 19, 20]) are not valid.

3. We find that transient growth can be significant even for axisymmetric modes.

4. We argue that both shearing waves and eigenmodes can be important in many situations.

While shearing waves invariably grow faster over moderate time-scales, they can transition

into an eigenmode as the radial wavenumber becomes large and continue growing (if the

eigenmode is unstable). In this way the eventual decay of shearing waves at finite diffusiv-

ity is not physically important, even without consideration of nonlinearities. This type of

behavior is illustrated in Figs. 2 and 3.

Local Calculation. Our starting point for the local calculation is the incompressible nonlinear
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MHD equations in the shearing box

∂u
∂t

+ (u · ∇) u + 2Ω ẑ × u = −∇p + ∇ × B × B

+ 2qΩ2xx̂ − ∇Φ + ν̄∇2u,
∂B
∂t

+ (u · ∇) B = (B · ∇) u + η̄∇2b,

∇ · u = 0, ∇ · B = 0. (1)

Here, the directions x, y, z correspond respectively to the radial, azimuthal and vertical directions

in the disk, Ω is the local rotation frequency and q = −d ln Ω/d ln r embodies the local velocity

shear. We have used dimensionless variables normalized by the length scale L0 and the time-

scale 1/Ω – as such Ω = 1 in Eqs. (1). Since all parameters in our problem are of order 1,

the fluid and magnetic diffusivities,ν̄ and η̄, are the inverses of the fluid and magnetic Reynolds

numbers respectively. The background velocity is taken to be azimuthal with linear shear in the

radial direction, u0 = −qΩx = −qx, and the background magnetic field is taken to be constant,

B0 =
(
0, B0y, B0z

)
. We linearize about this background and Fourier analyze in y and z, denoting the

respective wave-numbers ky and kz. Changing to convenient Orr-Sommerfeld like variables [19],

u = ux, B = Bx, ζ = ikzuy − ikyuz, η = ikzBy − ikyBz, we are left with 4 coupled partial differential

equations in x and t.

The general idea of nonmodal growth calculations is to compute, for some chosen time, the

initial conditions that lead to the maximum growth of the solution under the chosen norm. We

use the energy of the perturbation, E =
´

dx
(
|u|2 + |B|2

)
, as the norm throughout this work, since

it seems the most physically relevant choice [16]. For the sake of clarity, consider the general

linear system ∂U/∂t = L(t)U(t), with solution U(t) = K(t)U(0). The maximum growth at t,

G(t) = maxU(0) ‖K(t)U(0)‖2E / ‖U(0)‖2E (where ‖·‖E denotes the energy norm), can be calculated by

changing to the 2-norm using the Cholesky decomposition

‖U‖2E = U† · ME(t) · U = U† · F†(t)F(t) · U = ‖F(t)U‖22 , (2)

and computing the largest singular value of the matrix F(t)K(t)F−1(0). For the analytic results pre-

sented in this letter, we compute the growth rate at t = 0+, G+
max = maxU(0) ‖U(t)‖−2

E
d
dt ‖U(t)‖2E

∣∣∣
t=0+ .

Note that for a self-adjoint system G+
max is simply (twice) the most unstable eigenvalue growth.
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Differentiating K(t) and changing to the 2-norm, we obtain the result

G+
max = λmax

(
Λ + Λ†

)
, (3)

where Λ = FLF−1 + ∂tFF−1
∣∣∣
t=0

and λmax denotes the largest eigenvalue.

Our goal is compare the growth of shearing waves with that of static, eigenmode-like struc-

tures. We study this at a given x value using a WKB approximation. While caution is advised

in attempting to predict stability using such methods [22], here we are simply comparing static

and shearing growth at a given kx. Thus, subtle issues regarding the choice of kx relevant to an

eigenmode are alleviated and we make no claim that these approximations are a substitute for the

solution of the x dependent problem. The static equations can easily be derived to lowest order by

inserting the WKB ansatz f (x, t) ∼ f (t) eikx x, and substituting ∂
∂t →

∂
∂t − iu0ky = ∂

∂t + iqxky (this

simply shifts the real part of the spectrum without changing growth rates). The shearing wave

equations are exact [23] and are derived by inserting the ansatz f (x, t) = f (t) exp
(
iqky (t − t0) x

)
for each independent variable. We obtain

∂

∂t
U(t) =



−ν̄k2 − 2Ξqkxky/k2 −2ikz/k2 iF 0

i(q − 2)kz −k2ν̄ 0 iF

iF 0 −k2η̄ 0

0 iF −iqkz −k2η̄


· U(t) . (4)

where Ξ = 0 or 1 for static and shearing waves respectively, F = kyB0y + kzB0z, k2 = k2
x + k2

y + k2
z ,

U(t) = (u, ζ, B, η) and we have used Ω = 1. For the shearing waves, the equations are time-

dependent since kx = qky (t − t0). Solving for the eigenvalues of Eqs. (4) with kx = ky = 0 leads to

the standard MRI dispersion relation [1].

Converting the energy norm into (u, ζ, B, η) variables gives the inner product F =

√
2π2

(
k2

y + k2
z

)−1
diag(k, 1, k, 1),

where diag ( ) denotes the diagonal matrix [see Eq. (2)]. Using Eq. (3) we obtain the remarkably

simple results:

G+
max = max


q kz

k − 2ν̄k2

q kz
k − 2η̄k2

(5)
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for the static solutions (with max{ : denoting the maximum of the two functions), and

G+
max = max


q
(

1
k

√
k2

z +
k2

xk2
y

k2 −
kxky

k2

)
− 2ν̄k2

q
(

1
k

√
k2

z +
k2

xk2
y

k2 +
kxky

k2

)
− 2η̄k2

(6)

for the shearing wave solutions, with k, kx evaluated at t = 0.

Consider first the ideal limit of Eqs. (5) and (6), ν̄ = η̄ = 0. We see that at all wave-numbers

the shearing wave can grow faster than a static structure (or as fast at kx = 0). In addition,

the shearing wave growth rate has maxima at kx(0) = ±ky, at which the growth is qΩ, i.e., the

maximum eigenvalue of the MRI, reached when ky = kx = 0, kz = 1/B0z
√

15/16. Thus, in the

ideal limit, the MRI can have the same growth rate, qΩ, for any choice of ky, kz, so long as the

shearing wave initial condition satisfies kx(0) = ±ky. We note that all channel mode perturbations

(kx = ky = 0) grow at the same rate qΩ, showing that even this most basic of MRI modes can

grow transiently when kz , 1/B0z
√

15/16. At all wave numbers, the initial mode structure is

either purely hydrodynamic or purely magnetic. Of course, these pure modes will quickly become

mixed under time-evolution due to coupling terms in Eqs. (4). Unsurprisingly, adding dissipation

alters some features of this result. In particular, static waves can grow faster than shearing waves

at high enough wave-numbers when Pm = ν̄/η̄ , 1. Rather than embarking on a detailed analysis,

we illustrate this behavior in Figure 1, showing how for perturbations with large positive kx (i.e.,

trailing) static structures grow more rapidly. The asymmetry in kx is caused by the choice Pm � 1.

Inclusion of global effects. We can extend this result to situations in which aspects of the local

approximation may not hold (see e.g., [24]) by starting our analysis from the global MHD equa-

tions in cylindrical co-ordinates [25] and applying WKB-like approximations to obtain systems

of ODEs. Motivated in part by experimentally oriented literature on low Prandtl number MRI

[26], we linearize the incompressible MHD equations (with constant density ρ and pressure cho-

sen to ensure equilibrium) about the velocity profile u0 = U0θr−q+1θ̂ and the magnetic field profile

B0 = B0θr2Rb+1θ̂ + B0z ẑ. Non-dimensionalizing the equations and Fourier analyzing in θ and z, we

obtain a system of 8 linear PDEs in r and t. These are reduced to four equations with the variable

transformation, u = ur, B = Br, ζ = ikzuθ − im
r uz, η = ikzBθ − im

r Bz, where m and kz are the

azimuthal and vertical wave numbers.

The static wave equations are obtained in much the same way as for the local case, by inserting

the WKB-like ansatz f (r, t) ∼ f (t) eikrr and assuming (krr, kzr, m) ∼ 1/ε, (ν̄, η̄) ∼ ε2 to obtain a
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FIG. 1. G+
max as a function of kx(0) for shearing waves (solid) and static solutions (dashed). The parameters

are q = 3/2, kz = 5, ky = 5, ν̄ = 10−4, η̄ = 2 × 10−3, with the large value of η̄ chosen to illustrate the
dominance of static structures in for large kx (0). Also shown is twice the imaginary part of most unstable
eigenvalue (dotted) for a vertical field B0z = 1/20.

set of ODEs in time [27]. The shearing wave equations are obtained by assuming the solutions

are predominantly waves shearing in the background flow, with an envelope that varies slowly

in the r direction. To lowest order, they can be straightforwardly derived by inserting the ansatz

f (r, t) ∼ f (t) exp
(
−im

r U0r−q+1(t − t0)
)

into the global equations and making the same ordering

assumptions as for the static case. After non-dimensionalizing variables using the length-scale r

and the time-scale 1/Ω(r), one obtains

∂tU =

−k2ν̄ − 2qΞmkr
k2 −2ikz/k2 iF (r) 2ikzBaz/k2

i(q − 2)kz −k2ν̄ 2i(Rb + 1)kzBaz iF (r)

iF (r) 0 −k2η̄ 0

−2iRbkzBaz iF (r) −iqkz −k2η̄


· U. (7)

Here U = (u, ζ, B, η), Ξ = 1 or 0 for shearing waves and static waves respectively, Baz = B0θr2Rb+1,

F(r) = kzB0z + mBaz, wave numbers (kr, kz) have been scaled by r and (ν̄, η̄) have been scaled by

r2Ω(r). In the static case we have substituted ∂
∂t →

∂
∂t − iu0m/r (as for the local calculation) and

for the shearing wave, kr = qU0mr−q(t − t0). While all variables in Eqs. (7) technically depend on

both r and t, the dependence on r is parametric in keeping with WKB. The static version (Ξ = 0)

of Eqs. (7) is very similar to the dispersion relation given in [28], aside from slight differences in

how the azimuthal wavenumber m appears in the dissipation terms. Note that Eqs. (7) reduce to

Eqs. (4) in the "local" limit [29].
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FIG. 2. Structure of the magnetic field component of the perturbation that maximizes late time energy
amplification for m = 1, kz = 2. Note that the perturbation shears with the background flow over the
illustrated time period. The global parameters are: U0 = 1, q = 3/2, Rb = −1, B0z = 0.07, Baz = 0.4, ν̄ =

1/8000, η̄ = 1/50, with the large η̄ chosen to be applicable to liquid metal experiments. White and black
regions show positive and negative values respectively. The bars on the left of each frame illustrate the
relative energy amplification of the pictured fastest growing perturbation (blue) and the eigenmode (red) at
each time.

Applying the same procedure as earlier to calculate the t = 0+ growth rates leads to

G+
max = ±

(k2 (η̄ − ν̄) − Ξq
krm
k2

)2

+ 4Baz (1 + Rb)2 k2
z

k2

 1
2

+
q
k

√
k2

z + Ξ
m2k2

r

k2 − k2 (η̄ + ν̄) , (8)

with the ± chosen to obtain the maximum value of G+
max. Note that |r ∂r f |2 ≈ r2 |∂r f |2 has been

applied in the energy norm used to calculate Eq. (8), in keeping with approximations used earlier.

Eq. (8) demonstrates that the fundamental results presented earlier are essentially unchanged by the

addition of certain global effects, as well as illustrating the importance of shearing waves in flows

with more complex shear profiles. We see that in the ideal limit (or more generally at Pm = 1),

shearing waves always grow faster than static structures over short time-scales. The extra terms in

the global equations do however change the maximum of G+
max with respect to kx(0), and the MRI

can grow faster than qΩ for strong B0θ. It is interesting that for the very large η̄ characteristic of

liquid metal experiments there is a large regime (for kx(0) > 0) where static structures grow faster

than shearing waves (see Fig. 1).
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FIG. 3. (a) Amplification of perturbation energy by t = 54 as a function of vertical wavenumber kz for
axisymmetric m = 0 (red, squares) and non-axisymmetric m = 1 (blue, circles) disturbances. The solid
lines illustrate the amplification of the disturbance starting from initial conditions that optimize growth at
late times, the dashed lines illustrate amplification of the most unstable eigenmode. Global parameters are
the same as for Fig. 2. (b) E(t) for the optimal perturbation shown in Fig. 2 (solid), compared to E(t) for the
most unstable eigenmode growth (dashed). The dotted line illustrates energy of the shearing wave, obtained
by solving Eqs. (7) for r = 1.5, t0 = 6.

Transient growth and MRI saturation. While much of the motivation for this work has been re-

lated to turbulent situations, we present as a final example a simple illustration of how eigenmode

predictions could be misleading in a liquid metal experiment [26, 30]. We consider the global

system spanning in radius from r = 0.25 → 2.25, discretize radially with Chebyshev polynomi-

als and calculate the initial conditions that lead to the largest amplification at t = 30 (results are

insensitive to this choice so long as it is large enough). We then evolve these optimal initial condi-

tions, calculate the energy growth and compare this with eigenmode predictions. This example is

chosen to illustrate the necessity of using nonmodal techniques to predict the relative significance

of different modes, as might be relevant in studies of MRI saturation.

The example is illustrated in Figs. 2 and 3. Immediately apparent in Figure 3a is the strong

difference in predicted amplification between the nonmodal and eigenmode analyses. In particular,

while eigenvalues predict the dominance of axisymmetric modes, due to stronger transient effects

in the non-axisymmetric case both types of mode have been amplified by approximately the same

amount by the time amplification of ∼103 is seen. The energy growth of the nonmodal structure

in Fig. 2 is illustrated in Figure 3b, showing a fast initial rise followed by growth at the rate

of the most unstable eigenmode. Since the transiently growing structure resembles a shearing

wave (Fig. 2), for comparison we show the WKB shearing wave growth [Eqs. (7)], with kx(0)

obtained through comparison to the global magnetic field structure around its peak in r. The initial

conditions are obtained by maximizing the energy amplification in the same way as for the global
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solution. Considering that the assumptions used to derive Eqs. (7) are far from satisfied – the wave

structure varies slowly compared to r, and m is decidedly not large – the agreement is remarkably

good (see inset). At larger times the shearing wave must decay due to the increasing kr and high

η̄, while the global solution starts to more closely resemble the most unstable eigenmode (similar

to the t = 15 pane in Fig. 2).

Conclusions. We have analyzed the linear MRI in the short time limit, obtaining exact results

within WKB-like approximations from both local [Eqs. (5) and (6)] and global [Eqs. (8)] MHD

equations. By comparing the growth of shearing waves and static structures, we prove that shearing

structures always dominate in the ideal limit and that the peak growth rates are identical to those

of the axisymmetric channel mode. Of course, this result contains no information about the length

of time over which the short time growth can persist, and thus the overall amplification of a given

mode over finite times. Indeed, since the growth rates are completely independent of magnetic

field, more information is certainly needed to consider a quasi-linear mechanism for the accretion

disk dynamo. Most important is probably the provision for growth over finite time-scales, as well

as the effects of spatial inhomogeneity in the background fields [10]. Aside from such problems,

perhaps the most suggestive idea from the results presented in this work is that turbulence in these

types of magnetic shearing systems could be of a fundamentally different character than usually

envisaged. In particular, since disturbances are strongly amplified linearly over short times at all

dynamically relevant scales, the idea of a turbulent cascade and inertial range may not have the

same relevance as for fluid turbulence [14]. In any case no matter how applicable such concepts

might turn out to be, it seems clear that an over-reliance on eigenvalue and dispersion relation

analyses can lead to incorrect growth predictions in many regimes.

We extend thanks to Dr. Jeremy Goodman for enlightening discussion. This work was

supported by Max Planck/Princeton Center for Plasma Physics and U.S. DOE (DE-AC02-

09CH11466).
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