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Abstract

Numerical methods based on gyrocenter gauge kinetic theory are suitable for first principle simu-

lations of high frequency waves in magnetized plasmas. The δf gyrocenter gauge PIC simulation for

linear rf wave has been previously realized. In this paper we further develop a full-f nonlinear PIC

algorithm appropriate for the nonlinear physics of high frequency waves in magnetized plasmas.

Numerical cases of linear rf waves are calculated as a benchmark for the nonlinear GyroGauge

code, meanwhile nonlinear rf-wave phenomena are studied. The technique and advantage of the

reduction of the numerical noise in this full-f gyrocenter gauge PIC algorithm are also discussed.
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I. INTRODUCTION

Radio frequency (rf) waves have been theoretically proposed and experimentally proved

an effective method for plasma heating and current drive in magnetic confinement fusion

(MFC) research [1–4]. Recent research shows strong evidences that toroidal plasma rotations

can be induced by rf waves launching in tokamaks [5–7]. These facts reflect that rf waves

launching is important to improve confinement and to maintain H-mode runs of tokamaks.

On the other hand, our understanding on the physics of rf waves in magnetized plasmas is

still limited. The multi-scale and nonlinear properties of rf physics in magnetized plasmas

bring challenges to theoretical analysis. First principle simulations build a bridge between

theories and experiments for rf wave research. To numerically study rf waves, an efficient

algorithm is thus required. A δf particle-in-cell (PIC) algorithm based on gyrocenter gauge

kinetic theory has been successfully applied to linear rf wave simulation [8]. In this paper,

we further develop a full-f gyrocenter gauge PIC algorithm which is appropriate for the

description of nonlinear rf wave physics.

Because the frequencies of rf waves are high enough, the high-frequency responses of

charged particles in magnetized plasmas, as well as the changes of their gyro-orbits, have

to be taken into account. This indicates that the length of time step in rf wave simulations

should be extremely small compared with the time scale of the problem, which brings along

heavy computational burdens. Traditional gyrokinetic theory improves numerical efficiency

through averaging out the fast gyromotion of charged particles and only sustain the slow

gyrocenter dynamics. Though traditional gyrokinetics is a powerful tool for low frequency

physics, it cannot be applied to rf-wave simulation directly because the fast responses of

charged particles are erased by gyro-average.

Gyrocenter gauge kinetic theory is a special version of the generalized kinetic theory,

which deal with the Vlasov-Maxwell system in a geometric view [9–11]. Gyrocenter gauge

kinetic theory is aimed to solve the multi-time-scale problems, such as the high frequency

waves in magnetized plasmas. In the theory, fast gyromotion of charged particles is de-

coupled from slow gyrocenter dynamics instead of being removed by gyro-average. Then

particle dynamics with different time-scales can be advanced separately in different time

steps. When decoupling dynamics with different time-scales, the key step is to find a prop-

er symmetry, which is the gyro-symmetry in the case of charged particles in magnetized
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plasmas. However, the existence of high frequency electromagnetic perturbations breaks

the original gyro-symmetry. gyrocenter gauge kinetic theory resolves it through a second

gyrocenter coordinate transform using Lie perturbation method.

Traditional gyrokinetics consists of two pivotal steps, gyrocenter coordinate transform

and gyrophase average. Gyrocenter gauge kinetic theory shares the first step with tradition-

al gyrokinetics. In this first gyrocenter coordinate transform, particle coordinate (x,v) is

transformed to unperturbed gyrocenter coordinate Z̃ = (X̃, ũ, µ̃, θ̃), where x is particle po-

sition coordinate, v is particle velocity coordinate, X̃ is gyrocenter position coordinate, ũ is

parallel velocity, µ̃ is magnetic moment, and θ̃ is gyrophase. Yet in gyrocenter gauge kinetic

theory, a second gyrocenter coordinate transform is needed to transform the unperturbed

gyrocenter coordinate Z̃ to the perturbed gyrocenter coordinate Z = (X, u, µ, θ). The sec-

ond gyrocenter coordinate transform employs Lie coordinate perturbation method and thus

requires assumption that high frequency perturbations are not strong enough to violently

break the original gyro-symmetry. This assumption means that the differences between two

sets of gyrocenter coordinates are higher order small values, which can be guaranteed if the

magnitude of high frequency perturbation is small and magnetic confinement still holds. Fi-

nally, the distribution function in particle coordinate f(x,v) is replaced by two distribution

functions, the gyrocenter distribution function F (X, u, µ) and a gauge function S(X, u, µ, θ).

The gyrocenter distribution function F , which describe slow dynamics of gyrocenters, does

not depend on gyrophase and advances at large time step. Gauge function S contains dy-

namics of fast time-scale and can be sampled intensively through a structure called Kruskal

ring [12]. These techniques enable algorithms based on gyrocenter gauge kinetic theory to

take sample in a more efficient way compared with full kinetic 6D simulations [13, 14].

In PIC method, fields are sampled on Euler grids fixed in configuration space, therefore

distribution of electric current density in particle coordinate are required. Since the evolu-

tion of charged particles are advanced in gyrocenter coordinate, the calculation of electric

current density involves pullback transformation. In previous linear algorithm [8], first-order

term of perturbation current density is obtained directly by analytic integration and then

feeded into Maxwell equations. This method is a kind of δf method because zero-order

current density, the equilibrium quantity, does not appear. It can reduce numerical noises

evidently. However, nonlinear phenomena require more higher-order terms, which are too

complex to calculate. The nonlinear algorithm abandons this series expansion technique.
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Current density, which include all terms in the series expansion, is given directly by pull-

back transformation, see Eqs. (29) to (31). In Sec. II, we construct the nonlinear algorithm

based on gyrocenter gauge kinetic theory for high frequency waves in magnetized plasmas.

Then in Sec. III, some numerical results using this method are presented, including both

linear and nonlinear cases. Linear cases are used as benchmarks to show the correctness

of this algorithm, meanwhile nonlinear cases, such as frequency doubling phenomena, are

simulated. In Sec. IV, we give a brief discussion and the future plan.

II. NONLINEAR ALGORITHM BASED ON GYROCENTER GAUGE KINETIC

THEORY

In this section, we construct the nonlinear algorithm for high frequency waves in magne-

tized plasmas based on gyrocenter gauge kinetic theory. We start from the Poincaré-Cartan-

Einstein one-form γ in the particle coordinate

γ(x,v) = (qA +mv) · dx− (qφ+
1

2
mv2)dt , (1)

where A denotes the potential vector, φ denotes the potential scalar, q is the electric charge,

and m is the mass of the charged particle. This one-form can be transformed to the un-

perturbed gyrocenter coordinate Z̃ = (X̃, ũ, µ̃, θ̃) through the first gyrocenter coordinate

transform. The transform relation satisfies

x = X̃ + ρ = X̃ +
mw̃

qB0

a , (2)

v = ũb + w̃c , (3)

wher B0 denotes the background magnetic field at the position of the gyrocenter, b is a unit

vector along B0, a is a unit vector parallel to the gyro-radius ρ, and c is a unit vector along

the perpendicular component of velocity.

In the nonuniform background magnetic field, a set of local frame should be chosen. We

choose two unit vectors, e1 and e2, perpendicular to b satisfying e1 × e2 = b, that is e1, e2

and b constitute a local right-handed orthogonal frame. In this local frame, unit vectors a

and c are expressed as

a(θ̃) = cos θ̃e1 + sin θ̃e2 ,

c(θ̃) = sin θ̃e1 − cos θ̃e2 .
(4)

4



This relation can be in turn taken as the definition of the gyrophase. We can also write

down the following relations

a× b = c , b =
B0

B0

∂a

∂θ̃
= −c , ∂c

∂θ̃
= a . (5)

Moreover, the magnetic moment and the gyro-radius are respectively defined as

µ̃ =
mw̃2

2B0

, ρ =
1

q

√
2mµ̃

B0

a . (6)

Each field quantity can be expressed as the summation of a slow varying background part

and a fast varying perturbation part. Given there is no background electric field, we can

write these field quantities as

B = B0 + B1 , E = E1 ,

A = A0 + A1 , φ = φ1 ,

E = −∇φ− ∂A

∂t
, B = ∇×A . (7)

According to Eqs. (2)-(7), the one-form in unperturbed gyrocenter coordinate Z̃ takes

the form

γ̃(Z̃) = qA0 · dX̃ +mũb · dX̃− mµ̃

q
dθ̃ − qφ1(x)dt− (

1

2
mũ2 + µ̃B0)dt

+ A1(x) · (qdX̃ +

√
m

2µ̃B0

adµ̃−
√

2mµ̃

B0

cdθ̃) . (8)

We further assume that the background magnetic field changes very slowly with space just for

simplicity. This assumption neglects the effects caused by the nonuniform of the background

field, such as the gyrocenter drift motion, but has no impact on high frequency physics. The

one-form γ determines the behaviors of charged particles in the electromagnetic fields. To

decouple the dynamics with different time-scales, we could divide the one-form into two

parts. One depends only on the background fields γ̃0 and the other depends on perturbation

fields γ̃1. Their explicit expressions are

γ̃0(Z̃) = (qA0 +mũb) · dX̃− mµ̃

q
dθ̃ − (

1

2
mũ2 + µ̃B0)dt , (9)

and

γ̃1(Z̃) = A1(x, t) · (qdX̃ +

√
m

2µ̃B0

adµ̃−
√

2mµ̃

B0

cdθ̃)− qφ1(x, t)dt . (10)
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In Eq. (10), A1, φ1, a and c are all quantities with the fast time scale. Note that this

partition of one-form is in some extent arbitrary.

Now, Lie perturbation method can be used to the second gyrocenter coordinate transform,

which transforms unperturbed gyrocenter coordinate Z̃ to perturbed gyrocenter coordinate

Z. The transform relation is

Z = Z̃ + G . (11)

Given the magnitudes of the perturbation fields are much smaller than that of the back-

ground fields, G is much smaller than Z. Then we have

γ(Z) = γ̃(Z̃) = γ̃(Z−G) = γ̃(Z)− iGdγ̃(Z) . (12)

In perturbed gyrocenter coordinate, γ1 takes the form

γ1(Z) = γ̃1(Z)− iGdγ̃0(Z) + dS(Z) , (13)

where S is called gauge function, satisfying

dS(Z) = γ̃0(Z)− γ0(Z) . (14)

We have to appeal to gyro-symmetry now to accomplish the decouple of different time

scales. The gyro-symmetry demand the relation ∂γ1/∂θ = 0 holds, that is γ1 is independent

of gyrophase θ. Under the limit of this prerequisite, there is still a freedom left for the

choice of S(Z). Different choices of S brings different expressions for γ1. Essentially, the

choice of S is a kind of gauge choice. That’s why S is called gauge function and why the

theory is named gyrocenter gauge kinetic theory. Different gauge choices only influence the

complexity of computation, but doesn’t change the real physics.

The second term in Eq. (13) can be proved as

iGdγ̃0(Z) = (qB0 ×GX +mGub) · dX + (muGt −mb ·Gx) du

+

(
m

q
Gθ +B0Gt

)
dµ− m

q
Gµdθ − (muGu +B0Gµ) dt , (15)

where Gt = 0 because there is no transform for the time coordinate. Then the expression of
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γ1 is

γ1(Z) = (qA1(x, t)− qB0 ×GX −mGub +∇S) · dX +

(
mb ·Gx +

∂S

∂u

)
du

+

(√
m

2µB0

A1(x, t) · a−
m

q
Gθ +

∂S

∂µ

)
dµ+

(
−
√

2mµ

B0

A1(x, t) · c +
m

q
Gµ +

∂S

∂θ

)
dθ

+

(
−qφ1(x, t) +muGu +B0Gµ +

∂S

∂t

)
dt . (16)

We choose a gauge S which simply makes

γ1(Z) = 0 (17)

hold. Then the evolution equation, which S obeys, is

∂S

∂t
+ ub · ∇S − qB0

m

∂S

∂θ
= qφ1(x, t)− qub ·A1(x, t)− q

√
2µB0

m
A1(x, t) · c . (18)

At the same time, we can get the evolution equations for G as

GX = − 1

m

∂S

∂u
b− 1

B0

b×A1(x, t)−
1

qB0

b×∇S

Gµ =
q

m

(√
2mµ

B0

A1(x, t) · c−
∂S

∂θ

)
Gu =

q

m
b ·A1(x, t) +

1

m
b · ∇S

Gθ =
q

m

(√
m

2µB0

A1(x, t) · a +
∂S

∂µ

)
. (19)

According to Hamilton’s principle, the dynamics of the charged particle follow the rule

iτdγ = 0 . (20)

Then we have

τX = uτtb

τu = 0

τµ = 0

τθ = −qB0

m
τt

, (21)
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and the equations of motion for the gyrocenters as

dX

dt
=
τX
τt

= ub

du

dt
=
τu
τt

= 0

dµ

dt
=
τµ
τt

= 0

dθ

dt
=
τθ
τt

= −qB0

m

, (22)

The distribution function for gyrocenters F thus satisfies

∂F

∂t
+ ub · ∇XF −

qB0

m

∂F

∂θ
= 0 , (23)

and the gauge function S satisfies

dS

dt
= qφ1(x, t)− qub ·A1(x, t)− q

√
2µB0

m
A1(x, t) · c , (24)

According to Eq. (19), the calculation of Gµ and Gθ requires the value of ∂S/∂θ and ∂S/∂µ.

They can be obtained from the partial derivative of Eq. (24) as

d

dt

∂S

∂µ
=

∂

∂µ

dS

dt
=

√
m

2µB0

a · ∇φ1(x, t)− u
√

m

2µB0

a · ∇ (b ·A1(x, t))

− a · ∇ (A1(x, t) · c)− q

√
B0

2mµ
A1(x, t) · c , (25)

and

d

dt

∂S

∂θ
=

∂

∂θ

dS

dt
=−

√
2mµ

B0

c · ∇φ1(x, t) + u

√
2mµ

B0

c · ∇ (b ·A1(x, t))

+ 2µc · ∇ (A1(x, t) · c)− q
√

2µB0

m
A · a . (26)

At the moment, we successfully obtain the decoupled gyrocenter gauge kinetic equations.

The evolution of the gyrocenter distribution function F depends only on the background

magnetic field. All the fast kinetic effects are included in the evolution of the gauge function

S. The next task is to calculate the correct response current density according to the particle

distribution in perturbed gyrocenter coordinate.

In previous linear gyrocenter gauge kinetic algorithm [8], the first-order term of current

density are analytically calculated using pullback transformation and series expansion as

Ĵ⊥(r) = −2B0

v2T

n,m∑
i,j

κi∆(Xi + ρi,j − r)V⊥i,j[(V
⊥
i,j + ub)·A1(Xi + ρi,j) +B0∂θSi,j] , (27)
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where Ĵ⊥(r) denotes current density perpendicular to the background magnetic field, vT is

thermal velocity, κi denotes the weight of the ith gyrocenter, V⊥i,j and ρi,j are the perpendic-

ular velocity and the gyro-radius of the jth sampling point on the Kruskal ring carried by the

ith gyrocenter respectively, Xi is the spatial position of the ith gyrocenter. This method is

a type of δf method, which doesn’t count in the contribution from unperturbed background

electric current density as well as the higher order terms. It has the advantage of low nu-

merical noises, but is inconvenient for nonlinear simulation. On the one hand, nonlinear

phenomena involves the higher order terms in the series expansion of current density. These

higher order terms are more difficulty to handle for analytic deduction and too resource

consuming for numerical computation. On the other hand, it is impossible to calculate all

the expansion terms, which means strong nonlinear phenomena cannot be fully described

by this means. Further more, in the future large-scale integrated rf wave simulations the

equilibrium quantities may also change with time, which can not be dealt with by the linear

expansion algorithm. So we need a more effective way to calculate the current density for

nonlinear rf wave physics.

According to the twice gyrocenter coordinate transforms and corresponding pullback

transformation, it is feasible to calculate the current density in particle coordinate directly

from its definition as

j(r) = −e
∫
f(r,v)v d3v . (28)

Its discrete version which can be used in numerical simulation is

j(r) = −e
n,m∑
i,j

κi∆(xi,j − r)vi,j , (29)

where x and v denote the position and velocity of charged particles in particle coordinate.

They can be achieved from the pullback transform from perturbed gyrocenter coordinate as

x = X−GX +
m

qB0

√
2B0(µ−Gµ)

m
[cos (θ −Gθ)ex + sin(θ −Gθ)ey] . (30)

v =

√
2B0(µ−Gµ)

m
[sin(θ −Gθ)ex − cos(θ −Gθ)ey] + (u−Gu)ez . (31)

The current density obtained from this method contains the contribution from the distri-

bution of the background plasmas. For example the polarization current density caused by

the density gradient of the background plasmas can be achieved directly by this method.
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The coordinate transform and corresponding pull-back transform are both exact, so all

the nonlinear effects of the gyrocenter system are kept. The approximation only exists in

Eq. (12), where the higher order terms of the 1-form are dropped. The equations for X

and S are based on this expansion, which means that the gyrocenter system is not exactly

equivalent to the original particle system. The Lagrangian densities of the gyrocenter system

and the original particle system differ by the higher order terms. In this sense, some higher-

order nonlinear terms of the original particle system are still missing in the gyrocenter gauge

algorithm.

To calculate the nonlinear physics of the original particle system more accurately, the

idea to keep the second-order term in Eq. (12) has been proposed to decrease the differences

between the two systems. However, this treatment brings computational complexities evi-

dently. If G is large enough, more higher-order terms should be kept to make sure that the

difference between the gyrocenter system and the original particle system is small, and this

scheme is impractical. A more efficient method is used in the gyrocenter gauge algorithm to

solve this problem. The initial value of G is zero, but the value of G could grow larger and

larger by accumulation. When the value of G goes higher than a relative threshold ε, this

time should be taken as a new starting point for the transform. The coordinate transform

Z→ Z̃ is restarted at this time step, and G is reset to zero again. Then another gyrocenter

system, which is a better approximation to the original particle system, is found at this time

step. The difference between the Lagrangian density of the gyrocenter system and that of

the original particle system is always smaller than ε. The accuracy of the particle system’s

nonlinear phenomena is thus determined by the value of the threshold ε. Because at each

time step the particle coordinates have been calculated to give the current, it is convenient

to carry out the new coordinate transform without any extra computation cost.

Once the correct current density is obtained, it can be used to compute the field quantities

on the Euler grids through Ampère’s circuital law

∇×B = µ0ε0
∂E

∂t
+ µ0j . (32)

Taken the Weyl gauge, also known as the temporal gauge, φ = 0 to the electromagnetic
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Perturbation fields

Current density

Gauge function S

Perturbation 

on spatial grids

Current density Perturbation 
function G

Gyrocenter 
Coordinates

particle dynamics

slow time scale

FIG. 1. Flow chart of simulation.Within each loop of time advance, particles’ dynamics, including

gyrocenter coordinates and gauge function, is calculated from fields on grids and then gives the

current density on grids. The current density in turn gives the fields. Gyrocenter coordinates

advance at large time step because its slow time-scale dynamics. So the computation consumption

on gyrocenter coordinates can be neglected.

potential, we have

E = −∂A
∂t

, (33)

B = ∇×A , (34)

and the equation for the potential vector

∇×∇×A +
1

c2
∂2A

∂t2
= µ0j . (35)

The current density j on the right-hand side of the equation reflects the responses from

the plasmas to the evolution of the electromagnetic fields. Then with the equations of the

particle dynamics, the method to calculate the current density, and the equation for the

field, the whole flow chart of the algorithm is completed, see Fig. 1. We will practise this

algorithm with some rf wave problems in magnetized plasmas in Sec. III.

III. NUMERICAL CASES

Based on the algorithm introduced in Sec. II, the rf waves in magnetized plasmas can

be studied through the first-principle gyrocenter gauge kinetic simulation. In this section,
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Ex

ω/Ωe

ωR

k     rad/mm

ωUH

ωR

ωL

FIG. 2. Contour plot of the x component of electric perturbation Ex in spectrum space. The

abscissa denotes wave vector in y direction in unit of rad/mm. The ordinate denotes frequency ω

of perturbed field Ex in the unit of electron gyro-frequency Ωe. This plot depicts the dispersion

relation of X waves propagating perpendicular to the background field. The three horizonal dotted

lines mark the value of ωR, ωUH and ωL respectively.

we carry out some numerical simulations of high frequency waves in magnetized plasmas to

verify the correctness and effectiveness of this method. In these cases, we focus on the waves

with frequencies around the gyro-frequency of the electrons. Then for simplicity, the ions

can be taken as the continuous positively-charged background for the electrons because the

response from the ions to the waves with such high frequencies can be neglected.

At first, the linear physics of the rf waves is reproduced as benchmarks to the gyrocenter

gauge algorithm. The simulation code used here is in principle a nonlinear one, which

means the simulation results contain all the nonlinear physics of the particle-field system,

similar to the experimental results in the real lab. However, the linear phenomena can still

be recovered from this nonlinear code by decreasing the amplitudes of the electromagnetic

perturbations to a very low level. The nonlinear effects are thus suppressed.

The magnetized plasma is set to be uniformly distributed in the configuration space with

the periodic boundary conditions in the x, y, and z directions. The external background

magnetic field B0 is along the z direction. The electromagnetic perturbations with small

amplitude are initialized in the spacial region. The evolution of the electromagnetic pertur-

bations and the motion of electrons are computed following the nonlinear gyrocenter gauge

kinetic PIC method. To reproduce linear results, the amplitude of the perturbations is set

12



to be small enough to make sure that the change of the magnetic moment µ caused by the

electromagnetic waves is much smaller than the value of µ itself. Meanwhile, we set the

number density of the electrons to be ne = 1020/m3 and the background magnetic field to

be B0 = 5T . In each direction of the configuration space region 400 sampling grids are

taken, and the distance between two adjacent grids is 0.25mm. Ten sampling points for

the electrons are taken on each Kruskal ring to meet the desired precision. If adjusting the

thermal velocity of the electrons to let their gyro-radii be much smaller than the wavelength,

that is k � 1/ρe, we obtain the dispersion relation of X waves, see Fig. 2, and O waves,

see Fig. 3, in cold plasmas. The same dispersion relations can also be achieved by rigorous

analytic calculation [15]. According to the analytic results, the dispersion relation of X

waves in cold plasmas satisfies

c2k2 = ω2 − ω2
pe

ω2 − ω2
pe

ω2 − ω2
UH

, (36)

where ωpe is the electron plasma frequency, ωUH is the upper-hybrid resonant frequency,

satisfying

ω2
UH = Ω2

e + ω2
pe , (37)

and Ωe is the electron gyro-frequency. And moreover, the dispersion relation of O waves in

cold plasmas satisfies

c2k2 = ω2 − ω2
pe . (38)

It’s obvious that for X waves there are two cutoff frequencies,

ωR,L =

√
(
Ωe

2
)2 + ω2

pe ±
Ωe

2
, (39)

and a resonance frequency ωUP , while for O waves there exists only one cutoff frequency

ωpe. According to the parameter setup in this case, the values of these characteristic fre-

quencies are ωpe = 0.64Ωe, ωR = 1.31Ωe, ωL = 0.31Ωe, and ωUH = 1.19Ωe respectively. By

comparison, it turns out that the first-principle simulation results fits the analytical ones

perfectly.

When the gyro-radii are set to be about the same size with wavelength, that is kρe & 1,

by adjusting the electron temperature, the finite Larmor radius effect begins to appear.

The dispersion relations of perpendicularly propagating waves are different from those in
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Ez

ω/Ωe

k     rad/mm

ωpe

FIG. 3. Contour plot of the y component of electric perturbation Ey in spectrum space. The

abscissa denotes wave vector in y direction in unit of rad/mm. The ordinate denotes frequency ω

of perturbed field Ey in the unit of electron gyro-frequency Ωe. This plot depicts the dispersion

relation of O waves propagating perpendicular to the background field. The horizonal dotted line

marks the value of ωpe.

the long-wavelength case. The simulation results in Fig. 4 exhibit the dispersion relations

of perpendicularly propagating waves with short wavelengths. With the increase of the

wavelength k, the component of the electric field perturbation in the x direction, which is

perpendicular to the wave propagation direction, disappears and the wave develops into the

electron Bernstein waves. An interesting phenomenon is that the slow X wave may connect

to different branches of electron Bernstein wave in the dispersion relation diagram, with the

change of ωUH/Ωe. For different plasma parameters, the mode conversion of the slow X

wave to the electron Bernstein wave is different. It is also can be observed that the lower

branches of the electron Bernstein wave, the branches near the resonance frequency, have

stronger amplitudes.

The second case represents the process of a rf wave launching into a spatially nonuniform

plasma from the low-density side. The density profile of the magnetized plasma in the wave

propagation direction, y direction, is depicted by Fig. 5. The uniform background magnetic

field is still along the z direction with the magnitude B0 = 4T . The rf wave is launched into

the plasma from left, with the frequency ωin = 1.5Ωe. The injection wave is set to be linearly

polarized in the vacuum. Its original polarization direction is along the x direction. In Fig. 5,

the position of the plasma boundary and the places where the wave frequency equals the local
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FIG. 4. Dispersion relations for perpendicularly propagating waves in magnetized plasmas for short

wavelength. The left one is the contour plot of Ex in spectrum space. The right one is the contour

plot of Ey in spectrum space. The abscissa denotes the value of kρe, the ordinate denotes the value

of ω/Ωe. Several horizonal dotted lines marked the value of ωL, ωR, ωUH , ωUH , and harmonic

resonance frequencies ωn = nΩe. In this case, plasma parameters are set to fit ωpe = 2.13Ωe.

launching wave

ne

1020/m3

yPlasma
Boundary

ω =ωUHω =ωR

ω

FIG. 5. Profile of electron number density ne along y. The abscissa denotes the grid number in

y direction. The ordinate denotes electron number density. A rf wave with frequency ω = 1.5Ωe

is launched from the left boundary. Three vertical dotted lines indicate the position of plasma

boundary and where the wave frequency equals the right-handed cutoff frequency, ωin = ωR, and

upper-hybrid resonance frequency, ωin = ωUH , respectively.

right-handed cutoff frequency, ωin = ωR, and the local upper-hybrid resonance frequency,

ωin = ωUH , are indicated by vertical dotted lines. The right-side boundary condition of this

region is set to be the absoption layer condition, avoiding wave reflection from this boundary.

The evolution of the electric field perturbation with time and space are displayed in
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FIG. 6. Contour plots depict the volution of Ex and Ey in time and space. The abscissa denotes

space coordinate in y direction. The ordinate denotes time. Three vertical dotted lines correspond

to the characteristic positions in Fig. 5.

Fig. 6. The behavior of the rf wave in the nonuniform plasma are precisely portrayed. After

entering the magnetized plasma, the wave propagates as a fast X wave. The Ey component

appears in this region. At the cutoff position, where ωin = ωR, the fast X wave is reflected

to the left. A portion of the wave energy penetrates the forbidden region for the fast X

wave, and continues propagating to the right through the resonance position for the fast X

wave, where ωin = ωUH . On the right of the resonance position, where the fast X waves

with original frequency are allowed to propagate, electric field perturbation with complex

properties emerge.

To analyse the nonlinear phenomena in this process in detail, we check the spectrum of

the high-frequency electric field perturbations at different positions, see Fig. 7 and Fig. 8. It’s

clearly shown that the waves with the frequency ω = 2ωin arise at the position y=70. The rf

wave doesn’t form a steady wave pattern after crossing the resonance region, which reflects

the complexity of nonlinear nature of rf physics in the nonuniform magnetized plasmas.
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FIG. 7. Spectrum of Ex at different positions, y = 5, y = 50, y = 90, and y = 120 respectively. The

abscissa denotes the ratio between frequency and electron gyro-frequency ω/Ωe. The frequency of

injection wave is ωin = 1.5Ωe.
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FIG. 8. Spectrum of Ey at different positions, y = 5, y = 50, y = 90, and y = 120 respectively. The

abscissa denotes the ratio between frequency and electron gyro-frequency ω/Ωe. The frequency of

injection wave is ωin = 1.5Ωe.

IV. DISCUSSIONS

In this paper, the nonlinear PIC algorithm based on gyrocenter gauge kinetic theory for

high frequency electromagnetic waves in magnetized plasmas have been developed. The

manipulation of particle dynamics, the current density, and the perturbation field have

been discussed in detail. To successfully apply this algorithm, the reduction of numerical

noises is a technical but important problem. In PIC simulation, the sampling of particles

on Lagrangian grids is very coarse because of the limit of now available computational
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ability [16]. So numerical noises may grow large enough to exceed the physical perturbation

fields and lead to the failure of simulations. In δf method, the equilibrium quantities are

set fixed and only perturbations are considered. This operation enhances the efficiency of

sampling. Instead, we employ another approach to solve the problem of numerical noises in

the nonlinear gyrocenter gauge algorithm. Main numerical noise in the full-f PIC simulation

comes from the unperturbed trajectories of particles. In GyroGauge code, when calculating

current density, the numerical noises from unperturbed trajectories are subtracted directly,

because it’s easy to obtain the unperturbed trajectories of the sampling particles. Besides,

other methods, such as smoothing functions and the sampling optimization, can also be

utilized to reduce the numerical noise [17].

The numerical cases in Sec. III have verified the correctness and effectiveness of the

nonlinear algorithm based on gyrocenter gauge kinetic theory. Both linear and nonlinear

physics can be proper simulated. In the future work, we plan to apply this algorithm to

integrated rf wave simulation with real tokamak geometry. The nonlinear gyrocenter gauge

kinetic algorithm can be used to explore more high-frequency wave problems in the research

of magnetized plasmas.
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