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In this paper, we present the response of a 3D thin multiply connected wall to an external kink

mode perturbation in axisymmetric tokamak configurations. To calculate the contribution of the

plasma perturbed magnetic field in the vacuum region, we have made use of the concept of surface

currents [following C. V. Atanasiu, A. H. Boozer, L. E. Zakharov, and A. A. Subbotin, Phys.

Plasmas 6, 2781 (1999)]. The wall response is expressed in terms of a stream function of the wall

surface currents, which are obtained by solving a diffusion type equation, taking into account the

contribution of the wall currents themselves iteratively. The use of stream function makes the

approach applicable for both well-studied earlier Resistive Wall Modes and for Wall Touching

Kink Modes, which were discovered recently as a key phenomenon in disruptions [L. E. Zakharov,

S. A. Galkin, and S. N. Gerasimov, Phys. Plasmas 19, 055703 (2012)]. New analytical expressions,

suitable for numerical calculations of toroidal harmonics of the vacuum magnetic fields from the

surface currents on axisymmetric shells, are derived. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821124]

I. INTRODUCTION

One of the major goals in thermonuclear fusion research

is to produce stable high-pressure plasmas, preferably at

steady state, for the economic production of fusion energy.

High power density implies high b but the maximum mag-

netic field B is limited by practical engineering constraints.

Ideal magnetohydrodynamic (MHD) instabilities impose

hard limits on the achievable b. In tokamaks, if internal

instabilities are avoided by a suitable choice of the plasma

current profile, the b limit comes about by the onset of Free

Boundary Kink Modes (FBKM). They cause a deformation

of the plasma boundary, grow on the Alfv�enic timescale of

the order of 10�6s and can terminate the plasma discharge

abruptly.

In the presence of a resistive wall, for non-rotating plas-

mas and in the absence of active feedback, the stability limit

is being virtually the same as in the case without wall.

However, the modes grow much more slowly, namely, on

the resistive timescale of the wall, which is typically of the

order of 10�2s. These decelerated FBKMs are denoted

Resistive Wall Modes (RWMs). Therefore, in the presence

of a resistive wall, the active feedback stabilization of

RWMs by means of magnetic field sensors and a system of

additional correction coils becomes technologically feasible.

Stabilization of RWM is one of the key topics address-

ing prevention of disruptions in tokamaks. There are a vast

number of papers investigating the physics of Resistive Wall

Modes (see, e.g., Refs. 1–20). In Ref. 1, the authors found

that on the time scale over which eddy currents in the wall

decay resistively, the magnetic perturbations of external

modes penetrate the wall, and the stabilization is lost. In

Ref. 2, the assumption has been made that the eddy currents

have negligible radial components, so that the current pattern

in the wall is essentially two dimensional—a reasonable

assumption in the thin wall limit.

The resistive wall is represented in terms of a set of

independent resistors with given “surface resistances”3,4

with the numerical solution accomplished by coupling the

DCON code6 with the VACUUM code7 for a tokamak with

an arbitrary cross-sectional shape.

In Ref. 16, the magnetic coupling of the toroidal plasma

with the resistive wall and other sources of the field asymme-

try is formulated. A general formulation for determining

the ideal magnetohydrodynamic stability of an axisymmetric

toroidal magnetic configuration, including the effects of an

arbitrary equilibrium flow velocity and a resistive wall, is

presented in Ref. 17.

The effects of 3-D electromagnetic structures on RWM

stability of reversed field pinches18 and a model-based

dynamic RWM identification and feedback control in the

DIII-D,19 both using existing numerical codes, have been

investigated. Finally, a comprehensive review of the present

status of the conceptual foundations and experimental results

on the stabilization of the external kink and the resistive wall

mode are given in Ref. 20.

The wall response is an important ingredient of realistic

modeling of the RMW physics, which is now covered by a

variety of numerical codes developed over decades of exis-

tence of the topic. In contrast to this, this paper is focused on

a new topic, related to disruptions, which emerged when the

current sharing effect was discovered in 1996 during a large

vertical disruption event on JET, which generated a m/n
¼ 1/1 kink mode (m, n are its toroidal and poloidal wave

numbers), a large sideways force on the vacuum vessel,

and the current exchange between plasma and the wall.21,22

The initially adopted explanation of the current sharing by
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so-called halo currents was rejected in Ref. 23 as contradict-

ing all vertical disruption cases on JET in the sigh of the

effect. Instead, a basic model for the Wall Touching Kink

Mode (WTKM) was proposed as consistent with both MHD

theory and JET experiments.24

This new type of MHD mode is a key element of disrup-

tion physics, whose importance became evident regarding

the ITER project. As explained in Ref. 24, the new simula-

tion tools, allowing explicit plasma flow into the wall, should

be developed in addressing the physics of WTKM. It was

found that not only the plasma numerical model in the exist-

ing codes has an important deficiency (i.e., inappropriate for

the plasma boundary conditions24), but even the wall simula-

tions need special numerical schemes. They should be

consistent with the spotwise plasma contact with the wall

structure and the current sharing between the plasma and the

wall.

The present paper was motivated by the fact that most

of wall models developed for RWM are not applicable for

WTKM. Thus, DCON and VACUUM codes6,7 are an exam-

ple of the use of scalar potential representation for the vac-

uum field. First, it is suitable only for closed toroidal shells

without holes, second, WTKM needs the explicit use of elec-

tric currents in the wall to describe both Hiro and eddy

currents.24 Several other codes, like, such as the MARS-F

code8 and the KINX code9 rely on axisymmetric walls. At

the same time, 3-D wall structure is essential for the physics

of WTKM. VALEN code,12 one of the first codes which

models the 3-D structure of the wall, uses wire mesh repre-

sentation of currents in the wall, which is singular. Being

suitable for RWM, it is not applicable for WTKM, which

requires reliable magnetic field and current calculations at

the wall surface. The CARMA combination of MARS-F/

CARIDDI codes10 can address realistic stabilization of the

slow dynamics of the feedback stabilized RWM. At the same

time, the volumetric finite elements (FEs) used for wall rep-

resentation are inconsistent with the near surface concen-

trated distribution of the Hiro and eddy currents during the

fast stage of disruption. In this regard, the thin wall represen-

tation seems to be more appropriate.

The primary interest of the present paper is to simulate

the response of a partial wall to magnetic perturbations, as a

first step to the complete modeling of the plasma-wall contact

in disruptions. Essentially, only one wall model, used for

RWM and developed by Merkel (stability code STARWALL

and the feedback optimization code OPTIM13–15), can be

used for WTKM as well. It uses a triangle representation of a

conducting thin wall. The same model was developed inde-

pendently in PPPL by one of the authors (L.Z., Cbshl code24)

but is in the state of calibration against existing experiments.

Here, we present an alternative approach, which is not

as universal as triangle-based model, but can be considered

as complementary to them due to its very high speed of

simulations. In accordance with expected localized area of

the plasma-wall contact and of its potential inhomogeneity,

as a test of the method, a partial wall surface (5 rad long in

the toroidal and 1 rad wide in poloidal directions) is consid-

ered. The cases with the holes in the partial wall are

included.

Note that the frequently used simplified gradient form of

the magnetic field in the vacuum region is not appropriate

for the WTKM physics, which exchanges currents between

the plasma and the wall as well as simply because of the

presence of holes-like spots in the contact area. Instead, the

explicit currents in the wall have to be simulated.

An approximate method for the determination of eddy

currents in weakly magnetic thin plates and shells whose

field is small by comparison with the external exciting

magnetic field has been given in Ref. 25. This approach

has been used by us to organize the iteration process for self-

consistent simulations including the magnetic field from

eddy currents.

Other contributions connected directly to the investiga-

tion of eddy currents in thin walls are given in Ref. 26

(where the Galerkin method is applied to the integral formu-

lation in terms of current density so as to consider only two

scalar functions as unknowns instead of four—the current

density vector and the electrical scalar potential),27 (a mathe-

matical investigation of the validity of the approximation

of the Maxwell equations by the eddy currents model),28

(a numerical method to analyzing transient eddy currents on

thin conductors with arbitrary connections and shapes by

using the finite element method),29 (the transient nonlinear

3-D eddy current problem with differential and integral

methods),30 (the approximation of eddy currents in 3D struc-

tures with toroidal symmetry),31 (an FE modelling approach

for the calculation of transient eddy currents in thin conduc-

tive complex layers),32,33 and (a Green function method

was developed to evaluate the currents induced during

startup in the vacuum vessel of ETE (Experimento Tokamak

Esf�erico)). A convenient coordinate system describing the

neighborhood of a toroidal thin shell has been reported in

Ref. 34 in order to take Halo currents into account.

In this paper, we will present a method to calculate the

response of a thin 3D multiply connected thin wall to an

External Kink Mode (EKM), based on our first results.38,39

The paper is organized as follows. Section II is concerned

with the formulation of the model problem. The equations

governing the time-space dependence of the eddy currents in

thin walls are given. In Sec. III, we defined a convenient

coordinate system to calculate the eddy current distribution

in a resistive thin wall and fix the boundary conditions to be

satisfied by the unknown current stream function. Special

attention is given to a very efficient solving method devel-

oped by us. The obtained numerical results are presented in

Sec. IV. Section V is devoted to the calculation of the vac-

uum magnetic field due to an EKM plasma perturbation. Our

analytical approach to check the numerical results is given in

Sec. VI. Finally, in Sec. VII, the results are summarized and

an outlook for further investigations is given.

II. FORMULATION OF THE PROBLEM

Two simplifying assumptions will be made. The first one

is to consider the plate width small with respect to the other

dimensions, i.e., the surface current case is considered. In other

words, the skin time of the eddy currents sskin ’ l0rd2, with d
the wall width, has to be sufficiently small in comparison with

092506-2 C. V. Atanasiu and L. E. Zakharov Phys. Plasmas 20, 092506 (2013)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.125.235.176 On: Wed, 04 Dec 2013 16:25:42



the characteristic variation time of the exciting magnetic field.

The second assumption consists in considering the magnetic

permeability of the wall as l¼ l0, the permeability of the vac-

uum. To calculate the contribution of the plasma perturbed

magnetic field in the vacuum region in toroidally symmetric

tokamak discharges, we have used the concept of a surface

current.40

The expression of the normal component of the mag-

netic field produced by the perturbation of the flux function

has been calculated using the methodology developed in

Ref. 41. In the thin wall approximation, we will consider a

coordinate system (u, v) attached to the wall surface, where u
and v are representing the poloidal and toroidal directions,

respectively.

In a vacuum gap separating the toroidal plasma from the

wall and other current-currying current elements, the per-

turbed magnetic field can be expressed as ~B ¼ ~B
pl þ ~B

w

þ~B
ext

, where each term corresponds to the plasma contribu-

tion, to the wall contributions and to the electrical currents

flowing outside the wall, respectively.

For the purpose of WTKM, the currents in the conduct-

ing shell can be reasonably considered as surface currents,

dependent on coordinates u, v on the surface of the wall.

Accordingly, they can represented by two components

i ¼ Jþrd; J � rI � n; (1)

where

J ¼ rI � n; r � J ¼ 0 (2)

is the divergence-free component of the surface current

expressed in the term of the stream function I(t, u, v) and the

external normal n to the wall. The curl-free component of

the surface current rd(t, u, v) takes into account the current

shearing between the plasma and the wall

r2d ¼ �j?ðt; u; vÞ; ðr �rdÞ ¼ 0; (3)

where j? is the density of the current coming from/to the

plasma and acting as a galvanic source for the surface cur-

rents on the wall. It should be determined by the physics of

the plasma-wall contact, which is beyond the scope of this

paper.

The divergence-free part of the surface current in

the thin wall is described by the known diffusion

equation3,4,7,15,16,19,25,38

r2Iðt; u; vÞ ¼ dr
@B?ðt; u; vÞ

@t
(4)

for the stream function I(t,u,v). with B? the normal to the

wall component of the magnetic field, d the wall thickness,

and r the electrical conductivity of the wall. The explicit

form of this equation in a curvilinear coordinate system u, v,

used in simulation is presented in Sec. III.

Solving Eq. (3), with d(t,u,v) as unknown and given

right hand side, is linked with the diffusion equation for I
through the contribution to Bw

?. Solving this equation does

not represent numerical problems but is not discussed in this

paper. The real issue is to develop a realistic model for j?,

which would be consistent with plasma interaction with the

wall during disruptions.

The plasma perturbations are typically represented as a

set of toroidal harmonics with a toroidal wave number n,

each containing many coupled poloidal Fourier harmonics.

At the wall surface, the appropriate representation can be

written as

Bpl
?ðt; u; vÞ ¼ Bpl

mn exp½�iðmu� nvÞ� exp½crtþ ixt�;

Bw
?ðt; u; vÞ ¼ �B

wðu; vÞ exp½crtþ ixt�;

Iðt; u; vÞ ¼ �Iðu; vÞ exp½crtþ ixt�;

(5)

where cr is the growth rate of the mode in the plasma refer-

ence system, x is the angular frequency, i is the imaginary

unit, and u,v are some poloidal and toroidal angles on the wall.

A single Fourier harmonics Bpl
mn in the Bpl

? will be considered

as a driving perturbation. The components ð�I; Bpl; �B
wÞ are

complex values. The diffusion equations for them becomes

r2�I ¼ ðcr þ ixÞdr½Bpl
mn exp½�iðmu� nvÞ� þ �B

w�: (6)

III. CALCULATION OF THE EDDY CURRENT
DISTRIBUTION IN A RESISTIVE THIN WALL

A. Coordinate system

Let us define a curvilinear coordinate system (u,v,w)

where two of the covariant basis vectors

ru �
@r

@u
; rv �

@r

@v
(7)

are tangential to the wall surface

ru � n ¼ 0; rv � n ¼ 0; (8)

where r denotes the vector from an arbitrary origin to a vari-

able point and n is the external normal to the wall. The third

basis vector rw is normal to the wall surface and determines

the w coordinate and is chosen as

rw �
@r

@w
� d

ru � rv

D
; D � jru � rvj; (9)

d is the wall thickness. At the side wall surfaces w¼ 0 and

w¼ 1. The metric tensor has only four non-vanishing

components

guu ¼ ru � ru; gvv ¼ rv � rv; gww ¼ rw � rw ¼ d2;

guv ¼ gvu ¼ ru � rv; (10)

while

guw ¼ gwu ¼ ru � rw ¼ 0; gvw ¼ gwv ¼ rv � rw ¼ 0: (11)

The contravariant basis vector perpendicular to the plane

(ru, rv) is given by

rw ¼ rw
1

d2
: (12)
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B. Surface current density

The current density j [A/m2] is coplanar with the wall

surface

j � rw ¼ 0; (13)

and can be expressed with the help of a stream function I

j ¼ rI � rw ¼ 1

dD

@I

@v
ru �

1

dD

@I

@u
rv; (14)

and corresponds to the surface current density i [A/m].

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
guugvv � g2

uv

p
is the 2D Jacobian at the wall surface

i � d

ð1

0

jdw ¼ 1

D

@I

@v
ru �

1

D

@I

@u
rv: (15)

The covariant representation of j is

ðjÞu ¼ j � ru ¼
guu

dD

@I

@v
� guv

dD

@I

@u
;

ðjÞv ¼ j � rv ¼
guv

dD

@I

@v
� gvv

dD

@I

@u
;

ðjÞw ¼ j � rw ¼ 0:

(16)

C. Ohm’s law at the wall surface

With the potentials uE and A, the electric and the mag-

netic fields are connected via

E ¼ �ruE �
@A

@t
; B ¼ r� A: (17)

Multiplying Ohm’s law

� @A

@t
�ruE ¼

j

r
(18)

by ðrw � r�Þ gives

�@ðr
w �r�AÞ
@t

�rw �r�ðruEÞ¼�
@ðrw �BÞ

@t
¼ðrw �r�Þ j

r
:

(19)

Knowing that (j)w¼ 0 and @ðjÞu;v=@w ¼ 0, the curl of vector

j is

r� j ¼ 1ffiffiffi
g
p

@ðjÞv
@u
� @ðjÞu

@v

� �
rw; (20)

where
ffiffiffi
g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detjgikj

p
¼ dD is the Jacobian. We have

ðrw � r�Þ j

r
¼ 1

dD

@

@u

1

r
guv

dD

@I

@v
� gvv

dD

@I

@u

� �� ��

� @

@v

1

r
guu

dD

@I

@v
� guv

dD

@I

@u

� �� ��
: (21)

We are interested in the normal to the wall component

of the magnetic field. Thus, with

n ¼ rw

jrwj ¼
rwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rw � rw=d4
p ¼ drw; (22)

we have

@ðn � BÞ
@t

¼ d
@ðrw � BÞ

@t
¼ 1

D

@

@u

1

rd

gvv

D

@I

@u
� guv

D

@I

@v

� �� ��

þ @

@v

1

rd

guu

D

@I

@v
� guv

D

@I

@u

� �� ��
: (23)

This is a parabolic partial differential equation which

describes the distribution of the stream function I(u,v) in a

given wall domain over time. It is solved iteratively, when the

source term @ðn � BÞ=@t is considered as known in space and

time at each iteration. Then, the contribution of the wall calcu-

lated currents is included to the source in the next iteration.

To determine I(u,v), appropriate boundary conditions

have to be given.

D. Determination of the boundary conditions

The stream function I(u, v) has constant values along the

real cuts in the wall and edges of the holes. Thus Eq. (23) can

be considered as a special kind of boundary value problem

which can be thought of as the stable state of an evolution

problem. For a wall without holes, if I(u, v) is a solution, so is

I(u,v)þC, it is sufficient to fix the stream function I at an arbi-

trary constant value (there are no currents perpendicular to the

boundary) and the Poisson equation can be solved. For the case

with holes, this situation changes and we need to know the dif-

ferences between the constant potentials at the holes boundaries

and the constant potential at the exterior wall boundary.

For a constant electrical conductivity r, we have

r� J ¼ �rd
@ðBpl þ Bw þ BextÞ

@t
: (24)

By multiplying this relation with the surface element ds

and integrating on the surface SC delimited by the C curve

on which there exists a line current density J, we obtainð
SC

r�J �ds¼
þ

C
Jdl¼�rd

@

@t

ð
SC

ðBplþBwþBextÞds

¼�rd
@USC

@t
; (25)

with dl an infinitesimal vector element of surface SC, bounded

by the closed contour C, d~C an infinitesimal vector element of

the contour C. The surface SC, its boundary C and the orienta-

tion of the normal n are set by the right-hand rule. USC is the

magnetic flux through the SC surface. In other words, the curvi-

linear integral of the current density is proportional to the time

variation of the magnetic flux through the considered surface.

In order to eliminate potential multi values of I(u,v), ar-

tificial cuts should be made in shells, which can carry a net

toroidal or poloidal current. The matching conditions across

such cuts can be written as

Iðuþ�; vÞ � Iðu��; vÞ ¼ const; Iðu; vþ�Þ � Iðu; v��Þ ¼ const:

(26)
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Applied to each hole surface and artificial cuts, Eq. (25)

gives the necessary boundary conditions for parabolic equa-

tion Eq. (23).

E. Fast solution algorithm

In the following, we present a fast numerical algorithm

we have found using the property of superposition of inho-

mogeneous and homogeneous solutions for linear equations,

such as (23). The stream function I can be considered as a

linear combination,

I ¼
Xng

n¼1

CnFh
n þ Fnh ! rI � ns

¼
Xng

n¼1

CnrFh
n � ns þrFnh

n � ns; (27)

of an inhomogeneous solution of Fnh
n with 0-values at the

edges of the holes and ng homogeneous solutions Fh
n with

0-values at all edges, except one, where Fh
n ¼ 1.

The unknown constants Cn, related to the I values in the

holes, can be determined at every over-relaxation iteration

used for solving Eq. (23) from

þ
Ck

rI�nsdlCk
¼
þ

Ck

Xng

n¼1

CnrFh
n�nsdlCk

þ
þ

Ck

rFnh
n �nsdlCk

¼�rd

ð
SCk

@B

@t
dSCk

; (28)

for k ¼ 1� ng. With the notation Pk;n ¼
Þ
Ck
rFh

n � nsdlCk
,

the following system of equations:

Xng

n¼1

CnPk;n ¼ �rd

ð
SCk

@B

@t
dSCk

�
þ

Ck

rFnh
n � nsdlCk

;

for k ¼ 1; 2; :::; ng (29)

was obtained with Cn the unknown constant stream functions

on the hole contours.

Such an superposition process eliminates the necessity

of nested iterations and gives a significant gain in the speed

of simulations, as is illustrated in Table I.

To solve Eq. (23), two approaches have been considered.

One, where Bpl has been considered only as l.h.s. of Eq. (23),

while Bw was taken iteratively as a source term and has been cal-

culated by applying the Biot-Savart law for surface currents. The

second approach considers Bw as a part of the l.h.s. of the equa-

tion, expressed in terms of the unknown I via a mutual inductan-

ces matrix. Tested for the case of a growth rate c corresponding

to RWMs, the convergence is obtained in very few iterations.

IV. NUMERICAL RESULTS

The numerical method was tested using a thin wall

structure with elliptical cross-section (major axis a¼ 1 m,

b¼ 2 m, big radius R0¼ 3 m, d¼ 0.001 m and r¼ 106 S/m)

corresponding to the aspect ratio R/a¼ 3 and s � swall

¼ l0adr ¼ 4p10�4s. Having in mind our final goal—the

calculation of WTKMs, we have considered this wall section

to measure 5 rad in the toroidal direction and 1 rad in the

poloidal direction. This wall is located at the outer part of

the plasma and is symmetric with respect to the plasma mid-

dle plane. The perturbed magnetic field generated by the

rotating plasma has been considered of the form Bpl
?

¼ exp½crt�sinðmu� nvþ xtÞ. The methodology to calculate

this field from a kink mode is given in detail in Sec. V. Two

wall cases have been investigated: without and with holes.

For both geometries, constant stream function lines corre-

sponding to two distinct scenarios have been calculated. In

the first one, a vanishing growth rate cr has been considered

for a rotating plasma, while in the second scenario, the influ-

ence of a non-rotating plasma but with a non-vanishing

growth rate of its perturbed magnetic field has been pre-

sented. We have considered different values for the dimen-

sionless parameters xs characterizing the plasma rotation. In

Fig. 1, constant stream function lines calculated for the case

of rotating plasma, with a vanishing growth rate, in the pres-

ence of a wall without holes are presented, while the same

calculations performed in the presence of a wall with holes

are given in Fig. 2. Constant stream function lines obtained

for non-rotating plasma and a non-vanishing growth rate, in

the presence of a wall with holes are reported in Fig. 3. In

addition to the case of a partial wall, we have considered the

wall as a complete toroidal shell with two cuts along both

directions, toroidal and poloidal. The numerical approach

was successful in a wide range of rotation parameters and

wall geometries relevant to the WTKM.

Special attention has been paid to the errors introduced

by the re-entry corners of the holes. For other wall cross-

section geometries, Chebyshev polynomials have been used

to determine the metric coefficients.

V. VACUUM FIELD CALCULATION FROM AN
EXTERNAL PERTURBATION OF ROTATING PLASMA

Let us consider a sharp-boundary toroidal plasma separated

by a vacuum gap from the wall and other current-carrying ele-

ments. A FBKM perturbation, for example, can be expressed as

~B ¼ ~B
pl þ ~B

w þ ~B
ext
; (30)

where ~B
pl

is the contribution from the plasma, ~B
w

represents

the contribution of the wall, while ~B
ext

is due to the electrical

currents flowing outside the wall. In the following, we will

TABLE I. Comparative running times between a classical solving method

and the superposition one for different number of grid points along u and v
coordinates.

Solving method Number of grid points Running time [s]

Dual iterations 101� 101(u� v) 103

Superposition 101� 101 (u� v) 3

Dual iterations 151� 151 (u� v) 690

Superposition 151� 151 (u� v) 14
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FIG. 1. Constant �I lines (same incremental levels for all figures) in a partial toroidal wall with elliptical cross-section without holes, in the presence of a rotat-

ing plasma. u 2 ½0� 5 rad�; v 2 ½0� 1 rad�. The perturbed magnetic field of the plasma has been considered as Bpl
? ¼ B0 sinðmu� nvþxtÞ, with xs ¼ 0:5

and xs ¼ 2. Four phases of wall current distributions are shown, corresponding to the rotating magnetic perturbation.

FIG. 2. Constant I lines for the same partial wall ðu 2 ½0� 5 rad�; v 2 ½0� 1 rad�Þ with 4 holes for rotating perturbation m/n¼ 3/2 and xs ¼ 0:5 (left side) and

xs ¼ 4p. Four phases xt ¼ 0; p=4; p=2; 3p=4 of moving perturbation are shown. The other 4 phases xt ¼ p; 5p=4; 3p=2; 7p=4 correspond to shown ones in

the reversed order.
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calculate the contribution of ~B
pl

to the normal to the wall

magnetic field component.

If somehow we know the flux function perturbation w
then in an axisymmetric coordinate system (a,l,u) attached

to the plasma, the tangential and the normal components of

the perturbed magnetic field ~B
pl

are related to the perturbed

magnetic flux by the relations41

~Bt ¼
ra�ru
jra�ruj �

~B ¼ el

jelj
� ~B ¼ � 1ffiffiffi

g
p

@w
@a
þ galffiffiffi

g
p

@w
@l
; (31)

and
~B? ¼

ra

jraj �
~B ¼ 1

r

@w
@l
: (32)

l is a contour coordinate along the poloidal direction of the

plasma with gll¼ 1, gal are the metric coefficients while
ffiffiffi
g
p

is the Jacobian.

From potential theory, we know that a continuous

surface distribution of simple sources extending over a not

necessarily closed Lyapunov surface @D35 and of density

r(q), generates a simple-layer potential at p, in @D

UðpÞ ¼
ð
@D

rðqÞgðp; qÞdq; (33)

where gðp; qÞ ¼ 1=jrp � rqj, with r the position vector, is
the three-dimensional free space Green’s function. Roughly
speaking, a Lyapunov surface has a continuously varying
tangent plane at each point, but it does not necessarily pos-
sess a curvature everywhere (like a separatrix).35 This poten-
tial is continuous everywhere, is differentiable to the second
order and satisfies Laplace’s equation and is therefore a
harmonic function everywhere except at @D. If r is H€older
continuous at p � @D, then the tangential derivatives of U
exist and are continuous at p, while the normal derivatives of
U exist and are discontinuous.36,37

With ~B ¼ �rU and @UðpÞ=@n ¼ � ~B?, we can write

the basic relation of the magnetic field produced by a general

surface charge distribution on a toroidal closed surface @D

2prðlp;upÞ þ
þ þ

rðlq;uqÞbnðlp; lq;uq � upÞdlqduq

¼ ~B?ðlp;upÞ; (34)

with l a contour coordinate and bnðlp; lq;uq � upÞ the normal

magnetic field to the unperturbed plasma boundary given by

a unit surface charge. In a cylindrical coordinate system

(r,z,u), the ðlpÞ � ðrp; zpÞ coordinates represent the field

point p, while the ðlqÞ � ðrq; zqÞ coordinates represent the

source point q. In our attempt to find a surface charge distri-

bution that gives the magnetic field ~B?, we have to keep in

mind that as with any magnetic field, the normal components

are continuous, while the tangential components present a

jump (due to surface currents). In contrast, the tangential

derivatives of U are continuous, while the normal ones jump

on @D due to the presence of the surface charge.

We will assume the following “classical” dependencies

on u for fields and charges corresponding to a single mode

in a cylindrical coordinate system (r,z,u):

~B?ðr; z;uÞ ¼
X

n

~B?nðlÞe�inu; rðr; z;uÞ ¼
X

n

rnðlÞe�inu:

(35)

~B?ðr; z;uÞ being a real value, the complex values have to

fulfill the following conditions:

~B?nðlÞ ¼ ~B
�
?�nðlÞ; rnðlÞ ¼ r��nðlÞ: (36)

The superscript * indicates complex conjugate values. Note

that for axisymmetric toroidal geometry, the individual

poloidal harmonics are coupled together, while the toroidal

harmonics remain independent.

Equation (34) becomes

2prnðlpÞ þ
þ þ

rnðlqÞe�in/b?ðlp; lq;/Þdlqd/ ¼ ~B?nðlpÞ;

(37)

where / ¼ uq � up. Making the notation

b?nðlp; lqÞ ¼
þ

e�in/b?ðlp; lq;/Þd/; (38)

we obtain finally

2prnðlpÞ þ
þ

rnðlqÞb?nðlp; lqÞdlq ¼ ~B?nðlpÞ: (39)

The real parts of the normal and tangential field compo-

nents are given by

b?nðlp; lqÞ ¼ nrðlpÞbrnðlp; lqÞ þ nzðlpÞbznðlp; lqÞ; (40)

and

btnðlp; lqÞ ¼ trðlpÞbrnðlp; lqÞ þ tzðlpÞbznðlp; lqÞ; (41)

where nr and nz are the components of the normal vector,

tr¼�nz and tz¼ nr are the components of the tangential vec-

tor, while brn and bzn are the r and z components of the mag-

netic field in the application point (rp, zp) given by a unit

surface charge located at the plasma boundary. These com-

ponents are given by the following relations:40

FIG. 3. Constant I lines in a partial toroidal wall section with elliptical cross-section and holes, for a non-rotating plasma and non-vanishing growth rate, at

two different times. Bpl ¼ B0 exp½cr t�sinðmu� nvÞ. u 2 ½0� 5 rad�; v 2 ½0� 1 rad�.
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brn ¼
2rq

rp½ðrpþ rqÞ2þ ðzp� zqÞ2�1=2½r2
p þ r2

q þ ðzp� zqÞ2�

� f½r2
p � r2

q � ðzp� zqÞ2�Dnþ ½r2
p þ r2

q þ ðzp� zqÞ2�Cng;
(42)

bzn ¼
4rqðzp � zqÞ

½ðrp þ rqÞ2 þ ðzp � zqÞ2�1=2½r2
p þ r2

q þ ðzp � zqÞ2�
Dn;

(43)

where

Cn ¼
ð1þ aÞ1=2

4

ð2p

0

cos n/d/

ð1� a cos /Þ1=2
; (44)

Dn ¼
ð1þ aÞ1=2

4

ð2p

0

cos n/d/

ð1� a cos /Þ3=2
; (45)

and

a ¼ 2rprq

r2
p þ r2

q þ ðzp � zqÞ2
: (46)

Due to the singular nature of the kernels of the second-order

Fredholm integral equations, great care has been taken when

performing the integrals in the neighborhood of the singular-

ities. We have used both an analytical method and a numeri-

cal adaptive method to treat these singularities of the

kernels.40 The method we developed to calculate the periodic

integrals Cn and Dn is given in Sec. VI.

VI. ANALYTICAL SOLUTIONS TO CHECK
A NUMERICAL APPROACH

We intend to compare the magnetic field produced

by surface currents distributed on an axisymmetrical to-

roidal thin wall, calculated analytically with the mag-

netic field calculated numerically by a Finite Element

Method, recently developed at PPPL (Princeton) to

investigate the Hiro currents.24 In this purpose, we have

to calculate the Biot-Savart law for a surface current

J [A/m]

BðrÞ ¼ l0

4p

ð
SC

Jðr0Þ � ðr� r0Þ
jr� r0j3

ds; (47)

with r the vector radius of the observation point, r0 the vector

radius of the point on the shell, and ds the surface element of

the wall surface SC. The following form of a single toroidal

harmonic of the stream function:

Iðl;u0Þ ¼ �IðlÞ cos nu0 (48)

specifies the origin of the azimuth u0. Here, l is the poloidal

length of the shell contour. Accordingly, the unit tangential

vector t to the wall surface has components

t¼ trer0 þ tzez; tr ¼
dr0ðlÞ

dl
; tz ¼

dz0ðlÞ
dl

; nr ¼�tz; nz ¼ tr;

(49)

and

rI ¼ @I

@l
tþ 1

r0
@I

@u0
eu0 ;

J � �JtðlÞ sin nu0tþ �JuðlÞ cos nu0eu0 ;

�JtðlÞ ¼
n

r
�IðlÞ; �JuðlÞ �

d�IðlÞ
dl

:

(50)

After straightforward calculations, the expression for

practical calculations of magnetic field components of a sin-

gle toroidal harmonic of the stream function can be repre-

sented as

Br ¼
l0

4p
cos nu

þ
a

2rr0

� �3=2

� 2

ð1þ aÞ1=2
f�Jt½tzr

0 þ trðz� z0Þ�ðDn�1 � Dnþ1Þ

þ �Juðz� z0ÞðDn�1 þ Dnþ1Þgr0dl; (51)

Bu¼
l0

4p
sinnu

þ
a

2rr0

� �3=2

� 2

ð1þaÞ1=2
f�Jt½2tzrDn�½tzr

0 þ trðz� z0Þ�ðDn�1þDnþ1Þ�

� �Juðz� z0ÞðDn�1�Dnþ1Þgr0dl; (52)

Bz ¼
l0

4p
cos nu

þ
a

2rr0

� �3=2 2

ð1þ aÞ1=2
f��JttrrðDn�1 � Dnþ1Þ

þ �Ju½2r0Dn � rðDn�1 þ Dnþ1Þ�gr0dl; (53)

with Dn given by relations (45)–(46) and with / ¼ u0 � u.

In Eqs. (51)–(53), we have to calculate the integrals

Dn for different toroidal wave numbers n. This represents

the most challenging part due to the fact that recurrence

relations, similar to those found in Ref. 40, though sim-

ple and computationally fast, failed for k ¼
½2a=ð1þ aÞ�0:5 < 0:4 and n> 4. Instead, to overcome

this, we have developed a new calculation method of the

Dn integrals by using the associated Legendre functions.

An integral representation of the associated Legendre

functions is given by42–44

Pn
�ðzÞ¼ ð�1Þn �ð��1Þ:::ð��nþ1Þ

p

ðp

0

cosðn/Þd/

½zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2�1
p

cos/��þ1
:

(54)

By making the substitution

z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p ; (55)

we obtain

Pn
�ðzÞ ¼ ð�1Þn �ð� � 1Þ:::ð� � nþ 1Þ

p
ð1� a2Þ:5ð�þ1Þ

�
ðp

0

cosðn/Þd/

½1� a cos /��þ1
: (56)
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For our special case, the associated Legendre function Pn
�ðzÞ

is given by42–44

Pn
�ðzÞ ¼

Cð� þ nþ 1Þðz2 � 1Þn=2

2nCð� � nþ 1Þn!

� 2F1 n� �; nþ � þ 1; nþ 1;
1� z

2

� �
; (57)

where 2F1 is the hypergeometric function and C is the

Factorial (Gamma) function. Thus, by using the associated

Legendre functions, for �¼�1/2, we have obtained the Cn

integral, while for �¼ 1/2, the Dn integral has been obtained.

For example, the Dn integrals have been computed exactly

up to the ninth digit (double precision) for any k and for n up

to 20.

Our approach has been applied to the following par-

ticular case: a toroidal wall with circular cross-section,

with big radius R¼ 4 m and small radius a¼ 1 m with a

surface current distribution of the form I ¼ sin mh cos nu
(h is a poloidal angle). Two domains where the magnetic

field has been calculated have been chosen: one external

to the toroidal wall located at z 2 ½�2m� 2m�; r 2
½0 � 2m� and the second in the interior of the same wall,

located at z 2 ½�0:6m� 0:6m�; r 2 ½3:4m� 4:6m�. For all

cases we investigated, the toroidal angle of the both

domains has been considered intentionally as u¼ 0 in

order to verify how close to the vanishing value of Bu

given by Eq. (52) is the numerically computed Bu value.

The distributions Brðh;uÞ and Bzðh;uÞ in both domains

are presented in Figs. 4 and 5.

VII. CONCLUSIONS

In this paper, a simple fast algorithm for calculation of

the response of a thin conducting partial shell to magnetic

perturbations is presented. Due to its high speed of calcula-

tions, the method is complementary to the more universal

approach, based on wall representation by conducting trian-

gles with a uniform current density. The method is consistent

with the physics requirements of the Wall Touching Kink

Mode and disruption simulations and at the same time is

applicable for RWM studies.

The use of curvilinear coordinates, adjusted to the

hole geometry was utilized efficiently with high accuracy of

computations. While for a cylindrical or elliptical wall cross-

section, the metric coefficients could be described analyti-

cally, the Chebyshev polynomials interpolation have been

tested and used for other wall geometries. A numerical

superposition solving method of the stream function equation

has been developed and was found to be order of magnitude

faster than a straightforward, dual iteration solving method.

Finally, analytical expression have been derived for

accurate, high speed calculations of toroidal harmonics of

the vacuum magnetic field generated by the surface currents

on axisymmetric walls. Unlike earlier used scalar potential

FIG. 4. Distribution of the radial and axial components of the magnetic field Brðr;u; zÞ and Bzðr;u; zÞ in an external domain with respect to the wall, given by

a surface current distribution of the form I ¼ I0 sinðm2p=LlÞcosðnuÞ on an axis-symmetric closed tokamak wall. L ¼
Ð 2p

0
dl is the length of the poloidal wall

contour. The notation Bre� 2� 8 on the top of the figures has the following significance: Br means the radial magnetic field component, e indicates the exter-

nal domain where this component has been calculated, 2 represents the poloidal wave number m, and 8 the toroidal wave number n.
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expression for vacuum field, the new expressions are suitable

for the WTKM and Hiro currents24 as well.
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