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Abstract. This paper introduces the notion of Tokamak Magneto-Hydrodynamics
(TMHD), which explicitly reflects the anisotropy of the high temperature tokamak
plasma. The set of TMHD equations is formulated for simulation of macroscopic
plasma dynamics and disruptions in tokamaks. Free from the Courant restriction
on the time step, this set of equations is adequate to plasma dynamics with realis-
tic parameters of high performance plasmas and does not require any extension of
the MHD plasma model. At the same time, TMHD requires the use of magnetic
field aligned numerical grids. Examples of their use in 2-dimensional cases of
tokamak equilibria and dynamics of the wall touching kink mode are presented.
For the 3-dimensional case of ergodic magnetic field, this paper introduces the
Reference Magnetic Coordinates as a practical algorithm for generating adaptive
grids for TMHD.
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1. Introduction

Numerical methods always played a significant role in magnetic fusion research, a fact

that motivated the development of innovative numerical schemes, specific for the high

temperature plasmas. Magneto-hydrodynamics (MHD) of plasma[1] is a large part of

plasma physics, where numerical methods are still evolving in order to address the

emerging challenges in simulations of the high performance plasma of present and

future devices.
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The importance of different toroidal configurations for fusion is determined by

two major properties:

(i) How macroscopically stable the plasma configuration is

(ii) How well does it confine particles and energy

The typical toroidal confinement devices are

(i) Stellarators, (3-dimensional, Btor ≫ Bp, q ≃ 1), are stable (no macroscopic

MHD)

(ii) Tokamaks, (2-dimensional, Btor ≫ Bp, q > 1), are conditionally stable

(disruptions are a problem[2])

(iii) Reversed Field Pinches, or RFP, (Btor ≃ Bp, q ≪ 1), are full of MHD activity

(iv) Spheromaks, (Btor ≃ Bp, q ≃ 1), are full of MHD activity, short lived

(v) Field Reversed Configurations, FRC, (Btor ≃ 0, q = 0), are MHD unstable (need

energetic particle beams for stabilization)

Here, Btor, Bp, q are the toroidal and poloidal magnetic fields, and the safety factor,

correspondingly.

Regarding confinements, tokamaks have no rivals: 2-D (dimensional) tokamaks

are consistent with the so-called Lithium Wall Fusion (LiWF) regime[3, 4, 5], uniquely

suitable for fusion power. In this regime, which still remain to be developed, the plasma

ions from the boundary are pumped out by the flowing liquid lithium. This prevents

them from returning as cold neutral atoms back to the plasma edge and cooling down

the plasma edge. As a result, the edge temperature is becoming comparable with the

core temperature, while significantly enhanced confinement is determined by the core

particle diffusion (rather than, as presently, by thermal conduction, which is always

anomalously high).

The critical possibility of LiWF regimes makes tokamaks superior with respect to

stellarators, despite the need for elimination of disruptions in tokamaks. Because of

particle losses in their 3-D magnetic field, stellarators cannot utilize the LiWF regime

at the same extend as tokamaks.
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In this regard, tokamaks represent the special interest as a leader in fusion research

with needs in simulations of macroscopic phenomena such as plasma equilibrium

and disruptions. Being relatively benign in the earlier and present machines, the

disruptions recently attracted a special attention because of their potentially big

impact on design and future operation of the ITER device and other next step

machines.

This paper describes the specifics of the macroscopic MHD in tokamaks and the

needs in special numerical schemes, related to the dynamics of a highly anisotropic

high temperature tokamak plasma. Now it is understood that new numerical schemes

with grids aligned with the magnetic field have to be developed for simulation of

tokamak disruptions and general MHD with realistic plasma parameters. The existing

schemes, which are based on laboratory grids and are hydrodynamic in nature, cannot

address the scale separation in the growing plasma anisotropy at enhanced plasma

temperatures.

The tokamak plasma configurations during the stationary phase of the discharge

are well described by classical equilibrium equations

∇p = (~j × ~B), (1)

(∇ · ~B) = 0, (2)

(∇× ~B) = µ0
~j, µ0 = 0.4π, (3)

where p is the plasma pressure, ~j, ~B = ~Bp+ ~Btor are the current density and magnetic

field. In this paper we use the Units m (for lengths), T (for magnetic field), MA (for

currents), MPa (for pressure), Vs (Volt-seconds, for magnetic fluxes).

Insensitive to the plasma model, the equilibrium equations serve as a basis of

toroidal confinement: because of

( ~B · ∇p) = 0 (4)

plasma can be confined inside toroidal configurations if they have closed magnetic

surfaces.

The needs in adaptive grids in equilibrium calculations were understood in the

middle 1970s[6, 7, 8], and many tokamak equilibrium codes may exemplify the use of
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adaptive, so-called flux coordinates. But even for this classical problem the adaptive

grid approach had to be extended to the configurations limited by a separatrix.

This step was done recently by the authors[9] and described in Section II. It can be

considered also as a preparation of a transition to the plasma dynamics of tokamaks,

where force balance plays an exceptional role, which is not yet recognized to its full

extent.

The first important characteristic of disruptions and other macroscopic MHD

events in tokamaks is that their time scale is much shorter than the penetration time

τresistive of the magnetic field into the plasma. This implies that the plasma dynamics

preserves the magnetic fluxes and as a result excites localized currents of two types:

surfaces currents at the plasma boundary, and the sheet currents at the resonant

magnetic surfaces[10].

The second property is that in large machines the fastest phase in disruptions,

called “thermal quench” (loss of plasma thermal energy), lasts about 1 ms, which is

much longer than the characteristic inertia transit time τMHD. This implies that the

plasma inertia, which is the driving term in existing numerical schemes, plays a minor

role. Instead the electro-magnetic force balance plays a much bigger role.

The third characteristic of plasma dynamics in tokamaks is that the plasma flow

to the wall is unrestricted, and the conventional hydro-dynamic boundary condition

Vnormal = 0 is not applicable for disruptions. The existing 3-D MHD codes, e.g.,

M3D[11] or NIMROD[12] imply this irrelevant restriction[13] to the high temperature

plasma of tokamaks. Moreover, in the wrong plasma model of M3D code, the tokamak

parameters are artificially adjusted in order to amplify a typically benign internal

instability, thus, simulating the ITER device with 24 MA plasma current instead of

its reference value of 15 MA[11].

In order to emphasize these specifics, we here introduce a special notion of

Tokamak MHD (TMHD), which describes the macroscopic dynamics of the tokamak

plasma as a fast equilibrium evolution with flux conservation and generation of

localized currents in the plasma and the wall. It is based on the following time scale
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relations, typical for tokamaks

τMHD ≃
R

VA
=

R

2.18 · 106Btor
︸ ︷︷ ︸

<1 µs

≪ τTMHD
︸ ︷︷ ︸

≃1 ms

≪ τtransport
︸ ︷︷ ︸

≃0.1 s

≪ τresistive
︸ ︷︷ ︸

≃1 s

. (5)

Here, R, VA are the major plasma radius and Alfvén velocity, τTMHD is the low limit

of events in the TMHD, τtransport is the characteristic time of evolution of plasma

parameters.

The paper is organized as follows. Section II gives numerical implementation of

2-D adaptive coordinates for tokamak equilibrium (ESC-EEC code system[9, 14]). The

equations of TMHD are written in Section III with examples of numerical simulations

of the Wall Touching Kink Mode (WTKM) Section IV introduces and describes the

3-D field aligned Reference Magnetic Coordinates (RMC) for ergodic magnetic fields

together with an algorithm for generating and advancing RMC. The Summary specifies

the near term needs in simulations of TMHD.

2. 2-D Grad-Shafranov equilibrium in tokamaks

The well known Grad-Shafranov (GSh) equation[15] describing tokamaks equilibrium

(∂/∂φ = 0) in cylindrical coordinates r, z, φ is represented by

∆∗Ψ̄ ≡
∂2Ψ̄

∂r2
−

1

r

∂Ψ̄

∂r
+
∂2Ψ̄

∂z2
= −r2P (Ψ̄)− T (Ψ̄). (6)

Here Ψ̄ ≡ Ψ/(2π) and Ψ is the poloidal magnetic flux. Use the notation Bp and

Bφ ≡ Btor for poloidal and toroidal magnetic field respectively, the P and T in Eq. 6

have the following form

~B = ~Bp + ~Bφ =
1

r
(∇Ψ̄× ~eφ) +

1

r
F̄ (Ψ̄)~eφ, (7)

F̄ = rBφ, P (Ψ̄) ≡ µ0
dp

dΨ̄
, T (~Ψ) ≡ F̄

dF̄

dΨ̄
. (8)

The r−z codes[16, 17] do not address the plasma anisotropy. Instead, we introduce the

curvilinear coordinates[18] a, θ, φ, where a represents a radial coordinate, θ represents

a poloidal angle and φ a toroidal angle, which are determined by

r = r(a, θ), z = z(a, θ), . (9)
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Then the Grad-Shafranov equation can be expressed as

LΨ̄ ≡
D

r
∆∗Ψ̄ = −rDP −

D

r
T (10)

where the linear operator

L =
∂

∂a

(
gθθ
rD

∂

∂a
−
gaθ
rD

∂

∂θ

)

−
∂

∂θ

(
gaθ
rD

∂

∂a
−
gaa
rD

∂

∂θ

)

(11)

and D ≡ z′ar
′

θ − z′θr
′

a is the 2-dimensional Jacobian, and gaa, gaθ, gθθ are the

components of the metric tensor.

2.1. Linearized Grad-Shafranov equation

The fastest way of solving the non-linear GSh equation is by using its linearization[14],

which can be outlined by

Ψ̄(a, θ) ≡ Ψ̄0(a) + ψ(a, θ), (12)

∆∗(Ψ̄0 + ψ) = − r2P (Ψ̄0 + ψ)− T (Ψ̄0 + ψ). (13)

Here ψ is considered as a small perturbation, ψ ≪ Ψ̄0 and is determined by the

linearized GSh equation. Then, after linearization two equations follow

∆∗Ψ̄0 = −r2P (a)− T (a),

∆∗ψ + r2
dP

dΨ̄
ψ +

dT

dΨ̄
ψ = 0. (14)

The alignment of the coordinates with the magnetic surfaces is achieved by the

massaging toroidal surfaces in accordance with the equation

a→ a+ ξ. (15)

The displacement ξ is determined in an explicit form by

Ψ̄(a+ ξ, θ) = Ψ̄0(a+ ξ) + ψ(a, θ) = const, (16)

ξ = −
ψ

Ψ̄′

0

. (17)

Then, the coordinate system is adapted by a simple rule

r(a, θ) → r(a, θ) + r′aξ, z(a, θ) → z(a, θ) + z′aξ. (18)

Together with the linearized GSh equation, this gives a fast Newton scheme for solving

non-linear GSh equation.

The equilibrium and stability code (ESC)[14] solves these linearized GSh equations

using Fourier representations of ψ, r(a, θ), z(a, θ).
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2.2. Finite element method for the edge equilibrium

Since the Fourier representations cannot be extended to the boundary with a

separatrix, the edge equilibrium code (EEC)[9] was developed specifically for the edge

equilibrium simulation using finite element method. The solution of the GSh equation

can be obtained by minimizing the energy functional

W =
1

2

∫ {gθθ
rD

Ψ̄′2
a − 2

gaθ
rD

Ψ̄′

aΨ̄
′

θ +
gaa
rD

Ψ̄′2
θ

−2rDp̄(Ψ̄)−
D

r
F̄ 2(Ψ̄)

}

dadθ +

∮

Γ

Ψ̄Be
pdl, (19)

e.g., using Hermite finite elements on the a, θ gird. Here, dl is the length element of

the plasma boundary contour, and Be
p is a given poloidal magnetic field at the plasma

boundary.

The Hermite elements are exceptionally suitable for the simulations of equilibrium

and TMHD: (a) the solution provides both unknown functions and their first

derivatives, and (b) the resulting matrix equations has the block diagonal structure.

For advancing the grid EEC uses the same algorithm as ESC. Both codes work as

the ESC-EEC code system, where ESC calculates the plasma core equilibrium in the

fastest manner, while EEC is applied for the boundary layer near the plasma boundary.

The codes are interfaces through a virtual boundary and provide the continuity of

magnetic flux and magnetic fields across it.

Examples of equilibrium calculations for different tokamak configurations

calculated by ESC-EEC are shown in Fig.1.

In Fig. 1 the core plasma (blue region) equilibrium is calculated by ESC using

a Fourier representation (β is the ratio of averaged plasma pressure to the pressure

of the magnetic field). The edge equilibrium (red region) is calculated by EEC using

Hermite elements. The continuity of magnetic fluxes and fields are provided through

a virtual boundary.

The ESC-EEC code system with certain modifications is also suitable for

implementation of TMHD for 2-D vertical instability and Vertical Displacement Event

(VDE), which is a frequent kind of disruptions in tokamaks.
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Figure 1. The examples equilibria of (a) EAST, (b) ITER, and NSTX high
β (c) smooth boundary, and (d) boundary with an X-point.

3. Macroscopic tokamak MHD

If understood in a straightforward manner, MHD represents a hydrodynamics of

conductive fluid with the Lorentz force ~j × ~B included into the equation of motion

together with the Ampère and Faraday laws. Such an interpretation of MHD is

consistent with dynamics of liquid metals in a magnetic field. With an appropriate

model of plasma resistivity it might be applicable for MHD problems of RFP,

Spheromaks and FRC.

The macroscopic tokamak TMHD is significantly different from MHD of liquid

metals. Plasmas in tokamaks have a very high anisotropy. Since the electrons move

much faster along the magnetic field lines than across the field lines, the electron

temperature is almost constant along the field lines, i.e.,

( ~B · ∇Te) ≃ 0, (20)

and this condition is becoming more valid at high temperature of contemporary and

future tokamaks.

Since the electric conductivity is a function of electron temperature σ = σ(Te),

( ~B · ∇σ) = 0. (21)

This condition is an adequate form for expressing the tokamak plasma anisotropy. In

contrast, the existing numerical codes, which are incapable to implement it explicitly,

introduce additional anisotropic thermal conduction equation for Te
[11, 12]. Not only
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this equation is not a part of MHD, the perpendicular thermal conductivity is one of

the major unknowns in tokamak plasma, while a realistic parallel thermal conduction

cannot be reproduced by laboratory numerical grids.

At the same time the TMHD model of resistivity does not cause problems for the

adaptive grids a, θ, ϕ, aligned with the magnetic field, in which σ = σ(a).

Unlike dynamics of liquid metals, which needs the boundary condition on normal

velocity at the solid surfaces in all existing 3-D plasma physics MHD codes,

Vnormal = 0, (22)

in reality, there is no restriction on the tokamak plasma flow to the wall. Plasma

ions can go to the wall, where they are converted into a neutral atoms, which do

not participate anymore in plasma dynamics. As a result, there is absorption of the

plasma by the wall, significant for the tokamak plasma dynamics.

The third key difference of TMHD from the present hydrodynamic interpretation

and implementation of plasma MHD is related to the inertia term in the equation of

motion

ρ
d~V

dt
= −∇p+ (~j × ~B). (23)

The inertia term, which serves as a driver of MHD dynamics in existing codes, is related

to several so far unresolved problems, preventing realistic simulations of tokamaks.

Fast magneto-sonic waves, which play a negligible role in tokamaks, require a very

small time step due to Courant condition. In fact, the macroscopic tokamak plasma

dynamics is driven by a small imbalance of forces, which are much bigger than the

plasma inertia and are reflected in time scales (5).

Instead of inertial motion, the macroscopic TMHD is, in fact, a fast equilibrium

evolution with excitation of sheet currents or islands at the resonant surfaces and

surface currents at the plasma boundary due to magnetic flux conservation (τTMHD ≪

τresistive). Because of this relation, existing numerical schemes are not suitable for

TMHD and are more relevant to much less stable RFP and spheromaks, rather than

to tokamaks.
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In TMHD, following Kadomtsev and Pogutse[19], the plasma inertia is replaced

by a displacement term, which is equivalent to a friction force ∝ −~V , opposite in sign

to velocity,

λδ~r = −∇p+ (~j × ~B), λδ~r ≡ γ~V , (24)

where γ, λ play the role of relaxation parameters in the fast evolving sequence of

equilibria.

This replacement provides an iteration algorithm relevant to TMHD for driving

the system. By eliminating plasma oscillations it removes the 4-decade old problem

with Courant limitations on the time step in MHD simulations.

Based on these considerations, the basic set of equations which can address the

nature of macroscopic TMHD is represented by

λδ~r = −∇p+ (~j × ~B), (25)

~B = (∇× ~A), µ0
~j = (∇× ~B), (26)

−
∂ ~A

∂t
−∇ϕE + (~V × ~B) =

~j

σ
, ( ~B · ∇σ) = 0 (27)

~V ≡
∂δ~r

∂t
, (∇ · ~V ) = 0 (28)

Here the notations are: ~j is the current density, p is the plasma kinetic pressure, ~B

is the magnetic field, ~A and ϕE are the magnetic and electric potential, respectively,

and ~V is the plasma velocity. These equations have to be complemented by the

conventional circuit equations for the currents in the wall.

Summarizing the distinction with the conventional MHD, in this set of equations,

the inertia term ρd~v/dt is replaced by an effective “friction”, λδ~r. The plasma

anisotropy is expressed explicitly by ( ~B · ∇σ) = 0. Plasma velocity is a secondary

variable and can be calculated by the rate of displacement. As a result, the plasma is

allowed to flow into the wall with no special restrictions.

Fig. 2 gives an example of implementation of TMHD for simulation of an instable

Wall Touching Kink Mode [20, 10] in 2-D approximation of a plasma with a circular

cross section (R ≫ a, R, a are the major and minor radii of the plasma) in a strong

magnetic field Btor ≫ Bp. The safety factor q ≡ aBtor/(RBp) in simulations is taken
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(a) (b) (c)

Figure 2. Fast phase of WTKM instability. (a) Initial small helical
perturbation of an unstable plasma; (b) Plasma boundary hits the tile
surface and generate Hiro currents; (c) Plasma reaches an equilibrium
maintained by Hiro currents.

as q = 0.75. The plasma is situated inside a super-conducting wall (green). In the

vacuum region there is a toroidal surface, which consists of conducting, but insulated

from each other, tiles. This model reflects a typical in-vessel environment of tokamaks.

The part of the tile surface, which is not touched by the plasma, is transparent to the

evolving magnetic filed. On the other hand, the zone where the plasma touches the

tiles is simulated as super-conducting.

The numerical mesh is conformal to the plasma boundary, which is well

reproduced at all stages. Under the assumptions of the model the unstable plasma

moves fast initially, but slows down after touching the tile surface without penetration

into it. Finally the new equilibrium, supported by the currents in the tile surface

(called Hiro currents), is reached (the right frame).

Fig. 3 shows the following evolution of the WTKM due to resistive decay of the

Hiro currents in the tile surface. The plasma keeps its macroscopic equilibrium by

moving into the tiles and, thus, maintaining the necessary level of Hiro currents.

Finally, the plasma disappears.

This simple illustrative 2-D model of plasma dynamics in tokamak disruptions,

which was simulated using adaptive grids, cannot be reproduced by the existing 3-D

numerical codes, which miss the most important effect of Hiro currents and plasma
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(a) (b) (c)

Figure 3. Fast equilibrium evolution due to decay of the Hiro currents.
(a) Initial plasma penetration into the wall; (b) Shrinking of the plasma
cross-section; (c) The latest stage of plasma disappearance.

disappearance in the wall.

Simple at the first glance, the TMHD equations (25-28) cannot be reproduced by

numerical schemes based on laboratory coordinate systems. New schemes, based on

adaptive coordinates aligned with the magnetic field are required by TMHD.

The next section addresses the fundamental problem of adaptive coordinates in

3-D magnetic fields, which is related to formation of islands on the resonant magnetic

surfaces and stochastic regions even by small magnetic perturbations.

4. 3-D Ergodic magnetic fields and RMC

The ESC-EEC code system addresses essentially all typical tokamak 2-D equilibrium

problems, including reconstruction and variance analysis [21, 22, 23]. Its algorithm

relies on the existence of magnetic surfaces Ψ̄ =const. On the other hand, in 3-

D configurations, there are no Ψ̄ =const-like equation, which would be useful for

generation of adaptive numerical grids. This creates difficulties in simulation of 3-D

plasma even for its equilibrium.

The conventional practices of revealing the topology of the magnetic field rely on

“line tracing” by solving the equation for magnetic field lines

d~r

dl
=

~B

| ~B|
. (29)

But this approach is very time consuming for the reconstruction of magnetic surfaces
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with the use of Poincare plots even in the cases when the magnetic surfaces do

exist. The existence of resonant surfaces makes Poincare plots not representative

for magnetic surfaces. Moreover, when the magnetic field is ergodic, the line tracing

gives no clue on designing working coordinate surfaces. Also, the line tracing cannot

resolve small islands and plasma dynamics near the resonant surfaces.

Here, we describe a different and practical method of aligning toroidal coordinates

with the ergodic magnetic field. Then these coordinates can be used for generating

numerical grids for TMHD in 3D magnetic fields.

4.1. Reference Magnetic Coordinates

In 3-D toroidal coordinates a, θ, φ, the general form of vector potential ~A has the form

~A = − η(a, θ, φ)∇a+ Φ̄(a, θ, φ)∇θ

+ Ψ̄(a, θ, φ)∇φ+∇u, (30)

where η is the radial component, depending on the choice of angles θ, φ, Φ̄ is the

toroidal flux, and u is an arbitrary function.

We introduce here useful notations for 3-D functions, e.g., u(a, θ, φ), reflecting

their dependence on angles,

u(a, θ, φ) ≡ u00(a) + u0˜
(a, φ) + u

˜̃
(a, θ, φ), (31)

where the first subscript corresponds to θ, and the second to φ, and

u00(a) =
1

4π2

∮ ∮

u(a, θ, φ)dθdφ, (32)

∮

u0˜
(a, φ)dφ = 0, (33)

∮

u
˜̃
(a, θ, φ)dθ =

∮

u
˜̃
(a, θ, φ)dφ = 0. (34)

Then in the similar representation of Φ̄

Φ̄(a, θ, φ) ≡ Φ̄(a) + ϕ(a, φ) + ϕ
˜̃
(a, θ, φ). (35)

The last term can be eliminated by choosing

uθ,˜̃
≡ −ϕ

˜̃
(a, θ, φ). (36)
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In its turn, in the representation of Ψ̄

Ψ̄(a, θ, φ) ≡ Ψ̄(a) + ψ0˜
(a, φ) + ψ

˜̃
(a, θ, φ) (37)

the second term can be eliminated by an additional term in u

uφ,0˜
≡ −ψ0˜

(a, φ). (38)

This results in the simplest representation of the vector potential in arbitrary toroidal

coordinates

~A = − η(a, θ, φ)Φ̄′(a)∇a+ [Φ̄(a) + ϕ(a, φ)]∇θ

+ [Ψ̄(a) + ψ(a, θ, φ)]∇φ. (39)

Now the goal is to massage the toroidal coordinates in order to eliminate the

normal component of magnetic field to the a = const surface. Assuming, that the

system is advanced by

a→ a+ ξ (40)

the condition of elimination of the radial magnetic field is

~B · ∇(a+ ξ) = 0. (41)

The linearized version of this equation, assuming that the oscillatory terms ϕ,ψ

in vector potential are small compared to the averaged terms Φ̄, Ψ̄ represents the

magnetic differential equation for ξ

(Ψ̄′ − Φ̄′η′φ)ξ
′

θ − Φ̄′(1− η′θ)ξ
′

φ = ψ′

θ − ϕ′

φ. (42)

This equation can be easily solved in Fourier space

ξ =
∑

ξmn(a)e
imθ̄−inφ, θ̄ = θ − η,

ψ =
∑

ψmn(a)e
imθ̄−inφ, (43)

ϕ =
∑

ϕn(a)e
−inφ.

This gives

ξ′θ =
∑

ξmne
imθ̄−inφim(1− η′θ), (44)

ξ′φ =
∑

ξmne
imθ̄−inφ(−imη′φ − in), (45)
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which after substitution into the equation (42) leads to a simple relation

(mΨ̄′ + nΦ̄′)ξmn = mψmn − δ0mnϕn, (46)

with Kronecker delta δ0m. This equation for ξmn can be resolved for all non-resonant

harmonics m′, n′ for which the factor in front of ξmn is not zero.

Now the coordinate surfaces can be advanced exclusively by non-resonant

components in ξ, which have the explicit form

ξ =
∑

m′n′

ξm′n′(a)eim
′θ̄−in′φ, (47)

ξm′n′ =
m′ψm′n′ − δ0mnϕn

m′Ψ̄′ + n′Φ̄′
, (48)

ignoring resonant terms.

As a result of successive application of this algorithm, the coordinate system is

deformed in a such way, that the vector potential acquires the simplest representation,

achievable without massaging the angles of coordinates.

~A = − η(a, θ, φ)Φ̄′(a)∇a+ Φ̄(a)∇θ

+ [Ψ̄(a) + ψ∗(a, θ, φ)]∇φ. (49)

ψ∗ =
∑

m∗n∗

ξm∗n∗(a)eim
∗θ̄−in∗φ, (50)

where ψ∗ contains only resonant terms. Note, that by changing the definition of one

of the angles, e.g., θ the η term in the vector potential can be eliminated as well, thus,

making the representation of ~A similar to the 2-D straight field coordinates form.

Typically this procedure leads to highly non-uniform distribution of θ =const lines,

which makes such “quasi-straight field” coordinates impractical for simulations.

We call the resulting coordinate system Reference Magnetic Coordinate, or RMC,

which is a proper substitution for the the flux coordinates in 3-D case.

The elimination of resonant terms is not possible without change in the topology

of coordinates. At the same time, the RMC can be optimized in an obvious way by

leaving the resonant harmonics in ψ∗ localized radially within their island size wmn.

It can be derived to be equal to

wmn = 4

√
∣
∣
∣
∣

mψ∗

mn

Φ̄′ι′

∣
∣
∣
∣
, ι ≡ −

Ψ̄′

Φ̄′
. (51)
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Although, the topology of RMC does not correspond to the topology of the

magnetic field, the magnetic topology can be easily reconstructed by the perturbation

method, using the island size as an expansion parameter. In the simple case, when

there is no radial overlapping of the resonant harmonics, it is determined near the

resonant surface similarly to the 2-D case

Ψ̄∗

nm(a, θ, φ) ≡ nΦ̄′ +mΨ̄′

+
(

ψ∗

mne
imθ̄−inφ + c.c.

)

= const, (52)

by introducing of a local flux function Ψ̄∗. It is possible to extend the perturbation

theory on either a more general case or to include higher order terms.

The size of the resulting islands gives a self-contained condition of applicability

of the perturbation theory.

The described coordinate advancing scheme, which leads to RMC, is analogous

to the 2-D scheme of ESC for the fast and explicit advancing of the numerical mesh.

It is remarkable that generation of field aligned RMC for ergodic magnetic fields has

a simple and fast Newton scheme.

Fig. 4 shows an example of calculation of an early version of the W-7X vacuum

field. Four representative toroidal cross sections of one of 5 toroidal periods are shown.

The black points in the figure are Poincare points from the line tracing. The red lines

are 3-D reference magnetic coordinates generated within 1 sec on an early (1998) Sun

workstation.

5. Summary

After 62 years (since 1951 and Shafranov’s stability criterion[24], q > 1), there are still

no numerical codes addressing properly the macroscopic tokamak MHD. For decades,

the existing 3-D numerical codes have been suffering from Courant restrictions on the

time step, and are not capable to reproduce the exceptionally high tokamak plasma

anisotropy, while relying on extensions of MHD model by introducing the unreliable

heat conduction equation, essentially to hide the problem. In addition, the boundary

condition Vnormal = 0on solid surfaces, irrelevant to high temperature plasma does
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Figure 4. Vacuum magnetic surfaces of a 3-D magnetic configuration with
5 toroidal periods (as in W7X stellarator).

not allow to simulate disruption events in tokamaks.

Instead, this paper introduces the specific Tokamak MHD, which describes well

the plasma anisotropy within the MHD model. It does not require its unjustified

extension for simulating macroscopic instabilities and disruptions. TMHD requires

adaptive grids, aligned with the magnetic field. For 2-D cases, including the

vertical instability and disruptions, such a scheme is already developed and tested

in equilibrium calculations.

For 3-D plasma dynamics, which involves ergodic magnetic fields, this paper has

introduced the Reference Magnetic Coordinates, with the best possible alignment of

simple nested toroidal surfaces to the 3-D magnetic field. RMC give a fast Newton

scheme for the generation of adaptive grids in the case of 3-D TMHD.

TMHD also covers the stellarator needs in equilibria: up to now, the simulations

of stellarator configurations lack the implementation of the Hamada condition (1960),

which is the key confinement principle for 3-D configurations. Application of TMHD

algorithms will allow to fulfill the Hamada condition in 3-D equilibrium calculations
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in the most effective fashion.
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