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Abstract

Systematic verification and numerical benchmarking have been success-

fully carried out among three different approaches of neoclassical toroidal

viscosity (NTV) theory and the corresponding codes: IPEC-PENT is devel-

oped based on the combined NTV theory but without geometric simplifi-

cations [1]; MARS-Q includes smoothly connected NTV formula [2] based

on Shaing’s analytic formulation in various collisionality regimes; MARS-

K, originally computing the drift kinetic energy, is upgraded to compute

the NTV torque based on the equivalence between drift kinetic energy and

NTV torque [3]. The derivation and numerical results both indicate that the

imaginary part of drift kinetic energy computed by MARS-K is equivalent to

the NTV torque in IPEC-PENT. In the benchmark of precession resonance

between MARS-Q and MARS-K/IPEC-PENT, the agreement and correla-

tion between the connected NTV formula and the combined NTV theory

in different collisionality regimes is shown for the first time. Additionally,

both IPEC-PENT and MARS-K indicate the importance of the bounce har-

monic resonance which can greatly enhance the NTV torque when E × B

drift frequency reaches the bounce resonance condition.
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1 Introduction

It is known that the toroidal asymmetry produced by non-axisymmetric magnetic

perturbations in tokamaks can cause a substantial damping of toroidal flow through

the neoclassical toroidal viscosity (NTV) torque. Therefore, the NTV torque can

provide a promising way to externally optimize plasma rotation and rotation shear

thereby improving plasma instabilities and performance, as has been highlighted

by recent experiments [4–8]. In order to increase the predictability for NTV and

the controllability for plasma rotation in tokamaks, it is important to understand

the different approaches of NTV theory with proper cross-benchmark.

To study the NTV physics, various semi-analytic methods have been devel-

oped in recent years. In general, the methods find the NTV torque by solving

the bounce averaged drift kinetic equation with approximations which depend on

the approaches. There are mainly three different approaches with corresponding

codes established. In the first approach, following the combined NTV theory [1]

but without the geometric simplification, the IPEC-PENT code [9] is developed to

perform the NTV computation with an effective Krook collisional operator, where

the torque caused by the resonance with the precession motion (l = 0) and the par-

ticle bounce motion (l 6= 0) of trapped particles are considered. Here l denotes the

Fourier harmonic number of bounce motion. The effects due to different particle

motions are combined by a generalized equation. The second approach, extensively

developed by Shaing [2], focuses on the precession motion of trapped particles. A

simple connection formula is used to smoothly connect the formulations in differ-

ent collisionality regimes - the so called smoothly connected NTV formula. The

analytic formulation with an appropriate simplification of toroidal geometry has

been derived by considering the separation of collisionality regimes. Particularly,

in this approach, the full pitch angle scattering collisional operator is included,

which can be more accurate and important in the low collisionality regime. This

semi-analytic approach has been implemented in MARS-Q [22,23]. The third ap-

proach is based on the equivalence between the drift kinetic energy and the NTV

torque due to trapped particles as shown in Ref. [3]. Similar to the NTV torque

caused by magnetic perturbations, the drift kinetic theory in the study of the ideal

MHD stability of modes, such as the resistive wall mode (RWM) [10–17], takes

into account the mode-particle interaction derived from the perturbed drift kinetic
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equation. The MARS-K code [18], which has been applied to the RWM studies, is

upgraded to compute the NTV torque following this approach. The NTV torque

due to precession and bounce resonances of trapped particles are included in the

code.

In the present work, a systematic verification of these three different NTV

approaches, as well as a numerical benchmarking among IPEC-PENT and MARS-

K/Q, is carried out. This paper is organized as follows. Section 2 describes the

model of ideal perturbed equilibrium and the neoclassical toroidal viscosity models

in IPEC-PENT and MARS-K/Q. The equivalence between the combined NTV

torque and drift kinetic energy in MARS-K is demonstrated. Section 3 reports the

benchmark results of perturbed equilibrium, as well as the NTV torques computed

by IPEC-PENT, MARS-K/Q with respect to the three different approaches. The

NTV torques due to the precession resonance (l = 0) and bounce resonance (l 6= 0)

of trapped ions are investigated. Section 4 summarizes the work.

2 Models and formulations

2.1 Ideal Perturbed equilibrium model

The IPEC-PENT code solves the ideal perturbed equilibrium (1) based on the

perturbed force balance [24] in toroidal system. The force balance equation is

linearized in the presence of the external perturbed field,

~j × ~B + ~J ×~b−∇p = 0, (1a)

p = −~ξ · ∇P − ΓP∇ · ~ξ, (1b)

~b = ∇× (~ξ × ~B), (1c)

~j = ∇×~b. (1d)

The perturbed quantities ~ξ, ~b, ~j, and p denote the plasma displacement, mag-

netic field, current and pressure, respectively. ~B, ~J , P and ρ represent the equi-
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librium variables of magnetic filed, current, fluid pressure and plasma density on

the unperturbed flux surface. Γ = 5/3 is the ratio of specific heats.

Since the perturbed equilibrium is a linear problem and unperturbed equilibria

are axisymmetric in tokamaks, the toroidal harmonic numbers n are decoupled

and can be treated separately. Therefore, only a single toroidal mode number

n needs to be considered at one time. The external perturbation is assumed to

have an exp(inφ) dependence along the torodial angle φ in both IPEC-PENT and

MARS-K/Q.

MARS-K and MARS-Q are the two versions of MARS code with different

modules dedicated to the computation of drift kinetic energy and NTV torque

respectively, therefore the fluid part of MARS-K/Q solves the same linearized

MHD equations in the toroidal geometry,

(
∂

∂t
+ inΩ)~ξ = ~v + (~ξ · ∇Ω)R2∇φ, (2a)

ρ(
∂

∂t
+inΩ)~v = −∇p+~j× ~B+ ~J×~b−ρ[2Ω~Z×~v+(~v·∇Ω)Rφ̂]−∇·(ρ~ξ)Ω~Z×~V0, (2b)

(
∂

∂t
+ inΩ)~b = ∇× (~v × ~B) + (~b · ∇Ω)Rφ̂−∇× (η~j), (2c)

(
∂

∂t
+ inΩ)p = −~v · ∇P − ΓP∇ · ~v, (2d)

~j = ∇×~b, (2e)

where ~v is the perturbed velocity of the plasma, R is the plasma major radius, φ̂

is the unit vector along the geometric toroidal angle φ of the torus, ~Z is the unit

vector in the vertical direction in the poloidal plane. ~V0 is the plasma equilibrium

flow ~V0 = RΩφ̂, with Ω being the angular frequency of the toroidal rotation. A

conventional unit system is assumed with the vacuum permeability µ0 = 1. On the

right hand side of equation (2b), the fourth and fifth terms represent the Coriolis

force and the centrifugal force respectively.

For the purpose of plasma response modeling to the external perturbation in

MARS-K/Q, the vacuum field equations outside the plasma, the thin resistive wall
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equation (when applicable), and the coil equations [19] are solved together with

the MHD equations for the plasma in MARS-K/Q.

It is noted that when ∂/∂t → 0 and ignoring the plasma flow, inertia and

resistivity, MARS-K/Q can physically recover equation (1) to solve the perturbed

equilibrium.

To compare the perturbed equilibrium computed by IPEC-PENT and MARS-

K/Q, the external magnetic perturbation is generated by a source current ~jcoil

flowing in the coil located in the vacuum region satisfying,

∇×~b = ~jcoil, ∇ ·~jcoil = 0.

2.2 NTV models

2.2.1 Combined NTV model in IPEC-PENT

IPEC-PENT computes the NTV torque derived from the volume integral of the

general relation,

Tφ =

∫
dx3

(
∂~xL
∂φ
· ∇ ·

↔
Π

)
, (3)

where ~xL is the Lagrangian displacement,
↔
Π = p⊥

↔
I +(p‖−p⊥)~b~b is the anisotropic

perturbed pressure tensor, ~b = ~B/B is the unit vector of the equilibrium magnetic

field, and B is the strength of the equilibrium field. The parallel and perpendicular

components of the kinetic pressure p‖ and p⊥ are defined by

p‖ =
∑
α=e,i

∫
dΓMαv

2
‖f

1
L, (4)

p⊥ =
∑
α=e,i

∫
dΓ

1

2
Mαv

2
⊥f

1
L. (5)

The summation in equation (4) and (5) is over the electron and ion components.

The integral is carried out over the velocity space of trapped particles, where

dΓ =
2π

M2
α

∑
σ

dεkdµ
B

|v‖|
. (6)
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Here Mα is the particle mass of ions or electrons, v‖ and v⊥ are the parallel and per-

pendicular velocity components of the particle, and σ=sign(v‖). The perturbed

particle distribution function f 1
L is derived by solving the bounce averaged per-

turbed drift kinetic equation [3] for each particle species. The neoclassical toroidal

torque in terms of the kinetic pressure can be written as

Tφ = −
∫
dx3

[(
p‖ − p⊥

) 1

B

∂δBL

∂φ
+ p‖

∂

∂φ
(∇ · ~ξ)

]
, (7)

where δBL = QL‖ + ∇B · ~ξ⊥ as the Lagrangian quantity is the variation of the

field strength measured on the perturbed field lines, QL‖ = ~b · ∇ × (~ξ⊥ × ~B) is

the magnetic perturbation in parallel direction of the equilibrium magnetic field,

and ~ξ⊥ is the plasma displacement perpendicular to the equilibrium field line.

Following the derivation in [3], the neoclassical toroidal torque of IPEC-PENT in

the approximation of zero banana orbit width can be further written as

Tφ = −n2
∑
α=e,i

1

ZeM2
α

∫
dψpdφ

∫
dεkdµ

∑
l

Rl |δJl|2
∂f0
∂ψp

, (8)

where f0 is the Maxwellian equilibrium distribution function of thermal particles.

εk = ε − ZeΦ, where ε is the particle’s total energy, εk the kinetic energy of

the particle, Φ the equilibrium electrostatic potential, and Ze the species charge

(positive for ions and negative for electrons). The bounce-average action for the

l-class of trapped particles is

δJl = τb

〈[
(2εk − 3µB)

δBL

B
+ 2(εk − µB)∇ · ~ξ⊥

]
Pl
〉
, (9)

with an appropriate phase factor of trapped particles Pl = e−ilωbt [3]. l is the

number of bounce harmonics. The resonant operator of trapped particles is defined

as

Rl =
ωbνDlε̂

−3/2
k

[lωb − n(ωE + ωd)]2 + ν2Dlε̂
−3
k

, (10)

where ωd is the magnetic precession frequency of trapped particles (ions or elec-

trons) averaged over the bounce orbit, and ωb is the bounce frequency of trapped

particles. νDl = να/(2ε)[1 + (l/2)2], with α = i, e defined in [1, 3] is the effective

ion and electron collision frequency, νi = νii and νe ∼ νei, νee. νii,νei and νee are
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ion-ion, electron-ion and electron-electron collision frequencies respectively in [27].

ε ≈ r/R, where r is the minor radius. ωE is the E×B drift due to the equilibrium

electrostatic potential. ε̂k = εk/T is the particle kinetic energy normalized by

the temperature T . When l = 0, the precession motion of trapped particles can

resonate with plasma E×B flow, ωd ∼ ωE, the so-called precession resonance. As

for l 6= 0, the bounce resonance can occur when nωE is comparable with lωb.

2.2.2 The equivalence between Kinetic energy in MARS-K and NTV

in IPEC-PENT

MARS-K computes the drift kinetic energy δWk through the kinetic pressure,

p‖ and p⊥. In MARS-K, f 1
L in equation (4) and (5) is derived by solving the

perturbed drift kinetic equation following approaches by Porcelli [20]. Though

Porcelli’s approach allows MARS-K to include the finite banana orbit width effects,

they are neglected here for benchmarking with IPEC-PENT. Particularly, in the

derivation of f 1
L, it is important to note that the second term in equation (22)

from [20] is equivalent to the third term of LHS in equation (1) from [1]. This

term is responsible for the radial drift of trapped particle banana orbits in a 3D

field. This radial drift of banana orbits eventually creates the equivalent radial

current that generates toroidal torque in NTV theory. f 1
L in MARS-K is written

as

f 1
L = −f 0

ε εke
−iωt−inφ

∑
m,l

XmHmlλle
inφ̃(t)+im<χ̇>t+ilωbt, (11)

where f 0
ε is the energy derivative of the thermal particle equilibrium distribution

function (Maxwellian). φ̃(t) = φ(t)− < φ̇ > t, where < · > denotes the average

over the particle bounce period. m corresponds to the Fourier harmonic number

along poloidal angle. Xm and Hml, defined in [18], are related to the perturbed

particle Lagrangian HL

HL =
1

εk
[Mv2‖~κ · ~ξ⊥ + µ( ~QL‖ +∇B · ~ξ⊥)], (12)

where ~κ = (~b · ∇)~b is the magnetic curvature, and µ = Mv2⊥/2B the particle

magnetic moment.

The factor λl represents the mode-particle resonance operator,
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λl =
n[ω∗N + (ε̂k − 3/2)ω∗T + ωE] + ω

nωd − lωb + nωE + ω + iνDlε̂
−3/2
k

, (13)

where ω∗N and ω∗T are the diamagnetic drift frequencies associated with the plasma

density and temperature gradients, respectively.

With the anisotropic kinetic pressure tensor, the drift kinetic energy of trapped

particles is obtained,

δWk =
1

2

∫
dx3

[
p⊥

1

B
( ~QL‖ +∇B · ~ξ⊥) + p‖~κ · ~ξ⊥

]
. (14)

Substituting equations (4),(5), and (11)-(13) into (14), the drift kinetic energy

contributed by the trapped particles in MARS-K can be further written as

δWk = −π
2

∑
α=e,i

1

M2
α

∫
dψpdφ

∫
dεkdµ

∑
l

∂f0
∂ε

λlτb
∣∣〈εkHLe

−ilωbt
〉
l

∣∣2 . (15)

Considering the perturbed equilibrium, ω → 0, one gets

∂f0
∂ψp

= Ze [ω∗N + (ε̂k − 3/2)ω∗T + ωE]
∂f0
∂ε

. (16)

The relation of the resonant operators between λl in MARS-K and Rl in IPEC-

PENT is,

Im (λl)
∂f0
∂ε

= − n

Zeωb

∂f0
∂ψp
Rl. (17)

Substituting equations (12) and (17) into (15) with ω = 0, the equivalence

between the imaginary part of δWk in MARS-K and Tφ by combining equations

(8)-(10) in IPEC-PENT can be established

Tφ = −2nIm(δWk), (18)

which agrees with the conclusion in [3]. It indicates that MARS-K has the capa-

bility to perform the computation of neoclassical toroidal viscosity torque based

on equation (18). Note that the NTV torque computed by IPEC-PENT can also

be converted to δWk based on Ref [3].
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2.2.3 Connected NTV in MARS-Q

MARS-Q is a version of MARS that computes NTV torque based on the connected

NTV formula in Hamada coordinate [22,23,26]. In this model, the precession reso-

nance (l = 0) of trapped particles and a pitch angle scattering collisional operator

are taken into account but no bounce resonance (l 6= 0) of trapped particles is

included. The form of the torque density used in MARS-Q can be written as

TNTV = −τ−1NTV

〈
R2
〉
ψp
ρiωφ, (19)

τ−1NTV =
R2

0

〈R2〉ψp

∑
α=i,e

√
εq2ω2

ti

2
√

2π3/2

∣∣∣∣ ZiZα
∣∣∣∣× λ1, n(1− ωnc,n

ωφ

)
, (20)

λl,n =
1

2

∫ ∞
0

Iκn(ε̂k)(ε̂k − 5/2)l−1ε̂
5/2
k e−ε̂kdε̂k, (21)

where R0 is the plasma major radius at plasma center, ρi is the ion mass density,

ωφ = ~V · ∇φ is the ion flow in toroidal direction, < · >ψp denotes the flux surface

average, q is the safety factor, and Zα is the charge number of α species. The ion

transit frequency ωti, and ωnc,n, related to diamagnetic frequencies, are defined

in [26].

The analytic solutions of Iκn in 1/ν, ν−
√
ν and super-banana plateau regimes

(SBP) are defined as Iκn,1/ν , Iκn,ν−√ν and Iκn,sbp respectively in [2, 26]. The fol-

lowing smoothly connected formula of Iκn, in these regimes is considered when

MARS-Q solves the NTV torque.

Iκn,C(ε̂k) =


Iκn,ν−

√
ν

1+Iκn,ν−
√
ν/Iκn,1/ν

(ε̂k < xmin),
Iκn,sp

1+Iκn,sp/Iκn,1/ν
(ε̂k ≥ xmin),

(22)

where xmin = |ωE/ωB0|, ωB0 is the magnetic drift of the deeply trapped particles

with ε̂k = 1.

It is known that the electron collisionality νe and the bounce frequency of

electrons are normally larger than E × B drift frequency and νi. Therefore, the

NTV torque is usually dominated by the contribution of ions, particularly in the

bounce resonance case. However, when the collisionality is low, the NTV torque

due to the precession resonance of trapped electrons can also be important [26].

In order to simplify the comparison and show a clear correlation among the three
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approaches, the following discussion will only focus on the ion contributed NTV

torque.

3 Numerical results

3.1 Perturbed Equilibrium

We consider a simple tokamak equilibrium with a circular cross-section which is

stable to the ideal kink mode. The toroidal field at the magnetic axis R0 = 2m

is assumed to be B0 = 1.0T. The aspect ratio is R/a = 10, where a is the minor

radius of plasma. The safety factor profile is shown in figure 1, where q0 = 1.1

and qa = 2.52. The ion and electron density have ni = ne, the ion density ni0 and

electron density ne0 at plasma center vary from 1018 m−3 to 1021 m−3. The plasma

pressure profile P = niTi + neTe is fixed. Therefore, the ion temperature Ti and

electron temperature Te, with Ti = Te, are varied from 6.05 keV to 3 × 10−2 keV

correspondingly, where only the thermal particles are considered. IPEC-PENT

and MARS-K/Q use this equilibrium to compute the perturbed equilibrium and

to numerically verify the equivalence between the NTV torque and the drift kinetic

energy. For the sake of simplicity, a uniform profile of E × B drift frequency is

considered in this work.

In order to compute the NTV torque and the drift kinetic energy, the equi-

librium needs to be perturbed by the external field. The same external magnetic

perturbations are applied in IPEC-PENT and MARS-K/Q to obtain the perturbed

equilibrium. A continuous coil is located close to plasma, bc = 1.10a. By assuming

a coil current with a single helical component (3, 1), the coil can generate radial

magnetic perturbations dominated by the (m,n) = (3, 1) harmonic at the plasma

edge. Figure 2 shows the perturbed quantities (the normal displacement and the

normal magnetic perturbation) computed by MARS-K/Q and IPEC-PENT re-

spectively. Each poloidal harmonic of the perturbations in the plasma has a very

good agreement between IPEC-PENT and MARS-K/Q. This ensures that the

three codes are using the same perturbed equilibrium while computing the NTV

torque. Since the generated external field is dominated by the (3, 1) harmonic

having a strength of 1 gauss at the plasma edge where qa < 3, the (3,1) perturba-

tion inside the plasma has the strongest response and penetrates into the plasma
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Figure 1: The safety factor q (a), the equilibrium pressure (b), ion density (c) and

ion temperature (d) profiles are plotted as functions of s = ψ
1/2
p . The pressure

is normalized by B2
0/µ0. The plasma density and the temperature profiles are

normalized to unity at the magnetic axis.
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Figure 2: Comparison of radial profiles of the normal displacement (a) and the

normal magnetic perturbation (b) in the presence of an external radial field dom-

inated by (m,n) = (3, 1). The poloidal harmonics of plasma response computed

by MARS-K/Q (solid lines) and IPEC-PENT (dashed lines) get a excellent quan-

titative agreement. PEST coordinates are adopted.

without the screening effect. The toroidal coupling enhanced by the finite equilib-

rium pressure leads to the finite value of other harmonics, e.g m = 1 and m = 2

perturbations.

3.2 Numerical results of NTV torque

3.2.1 NTV due to precession resonance of trapped ions

In this section, we first compare the NTV torque contributed solely by the pre-

cession motion of trapped ions, based on the perturbed equilibrium described in

section 3.1. In order to better understand the behavior of NTV torque in different

collisionality regimes, figure 3 plots the profiles of magnetic precession frequency

ωd and bounce frequency ωb of trapped ions which are averaged over the velocity

space and the flux surface. The averaged ion magnetic precession frequency is

about 10−3ωA. Since ωd ∼ 1/r, the magnetic precession frequency increases near

the plasma center. The averaged ion bounce frequency is around 5× 10−3ωA.

In figure 4, two cases, with ωE = 10−3ωA ∼ < ωd >, and ωE = 0.1ωA � <

ωd >, are chosen to study the collisionality dependence of NTV torque contributed

12



Figure 3: Radial profiles of magnetic precession frequency (ωd) and bounce fre-

quency (ωb) of trapped ions averaged over the velocity space and over the flux

surface. The frequencies are normalized by the Alfvén frequency ωA at the plasma

center.

by the precession resonance. The effective ion collisionality profile used in MARS-

K (solid), MARS-Q(o) and IPEC-PENT(+) is varied by changing the ion density

profile ni. νi(0) denotes the effective ion collision frequency at the plasma center.

The NTV torque TMARS−K
φ computed by MARS-K and T IPECφ by IPEC-PENT

shows a very good quantitative agreement. In super-banana plateau (SBP) regime,

we note that TMARS−K
φ and T IPECφ are almost independent of the collisionality

which is consistent with the analytical result in [21]. As for the torque TMARS−Q
φ

computed by MARS-Q, the tendency of TMARS−Q
φ also agrees with TMARS−K

φ and

T IPECφ qualitatively. The plateau connecting the ν and 1/ν regimes is found by

the three codes. In fact, the two cases with low and high ωE correspond to the

resonant and non-resonant cases in [25] respectively. Since the Krook operator

is used in MARS-K and IPEC-PENT, the two codes can recover the ν and 1/ν

regimes. The connected NTV theory includes the physics of boundary layer due

to the pitch angle scattering effect. Therefore, MARS-Q can resolve the ν −
√
ν

and 1/ν regimes. Figure 4 shows that TMARS−Q
φ ’s torque is larger in the ν −

√
ν

regime where MARS-Q can be more accurate than the other two codes. In the 1/ν
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Figure 4: The comparison of the collisionality dependence of NTV torque con-

tributed by the magnetic precession resonance of trapped ions with (a) ωE = 0.1ωA

and (b) ωE = 10−3ωA. νi(0) is the ion effective collision frequency at plasma center.

regime, MARS-Q computes a smaller torque than TMARS−K
φ and T IPECφ . While

further increasing νi(0) → ∞, the factor of 2 difference [25] of the torque due to

the difference between the pitch angle scattering operator and Krook operator can

be recovered by MARS-Q and IPEC-PENT/MARS-K.

Figure 5 shows the comparison of the torques computed by MARS-K/Q and

IPEC-PENT while scanning E × B rotation frequency ωE. MARS-K and IPEC-

PENT again agree well. The tendency of the torque computed by MARS-Q also

agrees with MARS-K and IPEC-PENT results. Figure 5(a) with low collisionality

νi(0) = 4.2× 10−5ωA shows that the torque Tφ decreases monotonically while the

value of ωE increases. In the high collisionality case, figure 5(b) indicates that,

when ωE ∼ 10−3ωA which is much smaller than the effective collision frequency

νi(0) = 0.23ωA, the variation of NTV torque Tφ becomes less sensitive to the

change of ωE. When ωE ∼ ωA is much larger than νi(0), similar to figure 5(a), Tφ

monotonically decreases. These two types of behavior at ωE � νi, ωd and νi �
ωE, ωd can be understood by the following simple analysis. In the rotation scan

of ωE, the torque is approximately proportional to the resonant operator Im(λl)

with ω = 0. When ωE � νi, ωd, it has Tφ ∼ νiε̂
−3/2/ωE which is monotonically

decreased while increasing the value of ωE. For the case νi � ωE, ωd, Tφ ∼

14



Figure 5: NTV torque due to the magnetic precession motion of trapped ions is

plotted as the function of ωE. The comparison of torque among MARS-K (solid),

MARS-Q (’o’) and IPEC-PENT (’+’) is made with (a) νi(0) = 4.2× 10−5 and (b)

νi(0) = 0.23.

[ω∗N + (ε̂k − 3/2)ω∗T ] ε̂
3/2
k /νi indicates the torque is independent of E × B drift

frequency.

Figure 6 compares the torque density profiles computed by MARS-K, MARS-

Q and IPEC-PENT with ωE = 10−3 and νi(0) = 4.2 × 10−5. It shows that

the torque profile computed by MARS-K is very close to IPEC-PENT’s result.

MARS-Q, which takes into account the different collisionality model and certain

geometric simplifications, also presents a similar torque density profile. The above

benchmarking results present a good validation of all three codes for the NTV

computations contributed by the precession resonance of trapped particles.

3.2.2 NTV due to bounce motion of trapped ions

Since both the combined NTV theory and the drift kinetic energy can further

include the effect of bounce motion of trapped particles (so called bounce reso-

nance (l 6= 0) in NTV calculation), these effects in IPEC-PENT and MARS-K are

compared in this section. To better understand the effect of bounce resonance,

the conventional regimes of collisionality in terms of precession resonance are still

used in the following discussion. Figure 7 compares the computed torque by IPEC-
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Figure 6: The torque density profiles computed by MARS-K (solid), MARS-Q

(dashed) and IPEC-PENT (dotted) are compared, where ωE = 10−3ωA and νi(0) =

4.2× 10−5ωA. Only the precession resonance of trapped ions is considered.

PENT and MARS-K while varying the collisionality νi. It shows that the NTV

torque computed by the two codes agree very well while including both precession

and bounce resonances (total l case). Moreover, comparing with the precession

resonance, it is noted that the bounce resonance can enhance the torque in the ν

regime and also slightly increase the torque in the SBP regime. But the torque in

the 1/ν regime is dominated by the precession resonance.

The rotation scan of torque with low collisionality νi(0) = 4.2×10−5ωA in figure

8 clearly shows that the bounce resonance starts to play a major role when the

ωE rotation is comparable with the averaged ion bounce frequency < ωb >∼ 5 ×
10−3ωA. However, when ωE �< ωb >, the contribution due to bounce resonance

becomes smaller. The torque is mainly contributed by the precession resonance,

when E×B drift frequency is far from the bounce frequency.

In the presence of precession and bounce resonances, figure 9 also shows a

quantitative agreement of torque profiles computed by IPEC-NTV and MARS-K.

The different numerical treatment in the two codes causes the slight discrepancy

of torque profile near plasma edge but does not affect the agreement between

TMARS−K
φ and T IPECφ . In this case with ωE = 10−2ωA and νi(0) = 4.2 × 10−5ωA,

the bounce resonance has a significant contribution to NTV toque. The torque
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Figure 7: The collisionality dependence of NTV torque with (a) ωE = 0.1ωA and

(b) ωE = 10−3ωA. MARS-K (solid and ’o’) and IPEC-PENT (dashed and ’+’)

computes two cases respectively: 1) total l case, both precession resonance (l = 0)

and bounce resonance (l 6= 0) are included; 2) l = 0 case, only the precession

resonance is considered.

Figure 8: NTV torque is plotted as the function of ωE with νi(0) = 4.2 × 10−5.

MARS-K (solid and ’o’) and IPEC-PENT (dashed and ’+’) computes two cases re-

spectively: 1) total l case, both precession resonance (l = 0) and bounce resonance

(l 6= 0) are included; 2) l = 0 case, only the precession resonance is considered.

17



Figure 9: The torque density profiles computed by MARS-K (solid and dashed)

and IPEC-PENT (dotted and dotted dash) are compared for the total l case and

l=0 case denoted in figure 7, where ωE = 10−2ωA and νi(0) = 4.2× 10−5ωA.

profile shows that the contribution of bounce resonance is dominant everywhere

along the radial direction.

Finally, to clarify in which regime the precession resonance and the bounce

resonance can be important, we perform 2D scans of the NTV torque in terms

of ωE and νi. Figure 10(a) presents the distribution of torque only including

precession resonance. A large torque due to precession resonance mainly occurs

in the SBP regime, the ν regime with low ωE and 1/ν regime with low νi. Figure

10(a) shows that the precession resonance contributes a large plateau between ν

and 1/ν regimes.

Figure 10(b), only considering the bounce resonance, shows that the bounce

resonance can induce a strong torque in similar regimes as the precession reso-

nance except the plateau regime. Particularly, in the ν regime where ωE can be

comparable with < ωb >, the bounce resonance presents a wider ωE range having

a significant contribution to torque than the precession resonance. In the 1/ν and

plateau regime, the bounce resonance induced torque decreases more quickly than

the torque contributed by the precession resonance, since the bounce motion of

trapped particles can be strongly affected by the collisionality. The relation be-

tween the precession resonance and the bounce resonance of trapped ions is clearly
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Figure 10: The ωE and νi(0) dependence of NTV torque with (a) only precession

resonance T l=0
NTV and (b) the bounce resonance T l 6=0

NTV . MARS-K is used to perform

the computation. IPEC-PENT agrees with these results.

shown in figure 11. The ratio T total lNTV /T l=0
NTV has the maximum value in the ν re-

gion with relatively small ωE, where T total lNTV includes both precession and bounce

resonances, and T l=0
NTV denotes the torque due to the precession resonance. The

maximum value of T total lNTV can be about 40 times larger then T l=0
NTV in the per-

turbed equilibrium considered here. It indicates that the bounce resonance can

significantly enhance the NTV torque in the ν regime when ωE enters the range

of ion bounce frequencies with low collisionality. Similar results are also observed

in experiments [4] and in particle simulations [28]. The ν regime could be impor-

tant to many present tokamaks as well as ITER, particularly in the presence of

sufficient momentum input.

4 Summary

In summary, we have shown the equivalence between the drift kinetic energy equa-

tion (15) used in MARS-K and the torque expression (8) in the combined NTV the-

ory. This agrees with Tφ = 2inδWk as in [3]. A successful numerical benchmarking

among three different approaches of NTV theory has been carried out by applying

IPEC-PENT, MARS-K and MARS-Q to the identical equilibrium. In the case of
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Figure 11: The ratio of torque T total lNTV /T l=0
NTV is plotted as the function of ωE and

νi(0). MARS-K is used to perform the computation. IPEC-PENT agrees with

these results.

considering the precession resonance (l = 0) alone, IPEC-PENT (combined NTV)

and MARS-K (equivalence between NTV torque and drift kinetic energy) show an

excellent agreement as expected from our analytical derivations. The NTV torque

computed by MARS-Q (connected NTV formula) also qualitatively agrees with

the results of IPEC-PENT and MARS-K in different collisionality regimes. The

difference is mainly due to the geometric simplification and the more complicated

collisionality model used in MARS-Q. However, it is important that the tendency

of torque computed by the three codes agrees well when we scan the collisional-

ity νi and the E × B drift frequency ωE. The NTV torque further including the

bounce resonance (l 6= 0) is also compared between IPEC-PENT and MARS-K.

Again, IPEC-PENT and MARS-K show a very good agreement. Comparing with

the precession resonance case, the rotation ωE and collisionality νi scan indicates

that the bounce resonance can significantly enhance the NTV toruqe in the low

collisionality regime (∼ ν regime) when ωE reaches the bounce resonance condi-

tion. Although a simple equilibrium and a uniform flow have been assumed here,

numerical results clearly show the importance of including the bounce resonance

in NTV computation.

We point out that each of the three NTV approaches/codes considered in this
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work has its own advantages and disadvantages when used for the NTV computa-

tions. In particular, IPEC-PENT and MARS-K employ full toroidal geometry, and

can include both precession and bounce resonances for trapped particles. But so

far only the simple Krook collisional operator has been implemented in both codes.

On the other hand, the semi-analytic theory that smoothly connects various NTV

regimes (as implemented in MARS-Q) includes the pitch angle scattering operator

which is probably more capable of describing the particle collisions, in particular

towards the lower collisionality regime (e.g. in the ν −
√
ν regime). The semi-

analytic theory has to make certain geometric simplifications. Also the present

theory does not treat the particle bounce resonance. In the future, it is desirable

to further advance the IPEC-PENT/MARS-K models, to include the pitch angle

scattering collision. We also remark that it appears the latter may not always be

important for the NTV computations. One recent example is shown in Ref. [4],

where the IPEC-PENT results, with only the Krook collision but including the

bounce resonances, match well with the measured NTV torque, both amplitude

and profile, in KSTAR experiments.

IPEC-PENT and MARS-K both can include the kinetic effect due to passing

particles, which may be important when the plasma rotation reaches above the

ion acoustic speed. If the NTV torque calculation could be treated appropriately

for passing particles, IPEC-PENT and MARS-K would be applied to investigate

this effect. In a future study, the possibility of including the passing particle

induced NTV torque will be investigated. NTV calculation is usually based on

the perturbed equilibrium calculated by the fluid MHD equation (the perturba-

tive approach). MARS-K can also include kinetic pressures p‖ and p⊥ into MHD

equations self-consistently to study the MHD instability [14, 18]. Since we have

demonstrated that MARS-K has the capability to perform both perturbed equi-

librium and NTV torque computations, it is possible to use MAR-K to solve the

perturbed equilibrium and NTV torque in a non-perturbative approach. This ca-

pability can help us to understand the interaction between the NTV torque and

the plasma response particularly when β is high [29, 30]. This subject will be

studied in the future work.
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