
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL- 

Pamela Hampton
Text Box
PPPL-

gczechow
Typewritten Text



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

 

Trademark Disclaimer 

Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors.  

 
 

PPPL Report Availability 
 

Princeton Plasma Physics Laboratory: 
 

 http://www.pppl.gov/techreports.cfm  
 
Office of Scientific and Technical Information (OSTI): 

http://www.osti.gov/bridge 

 

Related Links: 
 

U.S. Department of Energy 
 
Office of Scientific and Technical Information 
 
Fusion Links 



On the nature of kinetic electrostatic electron nonlinear (KEEN) waves

I. Y. Dodin and N. J. Fisch
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

An analytical theory is proposed for the kinetic electrostatic electron nonlinear (KEEN) waves
originally found in simulations by Afeyan et al [arXiv:1210.8105]. We suggest that KEEN waves
represent saturated states of the negative mass instability (NMI) reported recently by Dodin et al
[Phys. Rev. Lett. 110, 215006 (2013)]. Due to the NMI, trapped electrons form macroparticles that
produce field oscillations at harmonics of the bounce frequency. At large enough amplitudes, these
harmonics can phase-lock to the main wave and form stable nonlinear dissipationless structures that
are nonstationary but otherwise similar to Bernstein-Greene-Kruskal modes. The theory explains
why the formation of KEEN modes is sensitive to the excitation scenario and yields estimates that
agree with the numerical results of Afeyan et al. A new type of KEEN wave may be possible at
even larger amplitudes of the driving field than those used in simulations so far.

PACS numbers: 52.35.Mw, 52.35.Sb, 52.35.Fp

Introduction. — As originally shown in Ref. [1], colli-
sionless plasmas can support stationary nonlinear waves,
commonly known today as Bernstein-Greene-Kruskal
(BGK) modes. Resonant particles in such modes are
trapped and phase-mixed, so Landau damping is sup-
pressed [2]. On the other hand, trapped particles are
known to be responsible for a number of instabilities [3],
so BGK waves are not necessarily attractor states, and,
as such, are not always easily accessible [4]. It was shown
in Refs. [5, 6] that, when excited by a strong enough force,
plasma oscillations can instead saturate in the form of
structures that, unlike BGK modes, are nonstationary in
any frame of reference and yet are undamped too. Such
modes are believed to have no fluid or linear analogs and,
in one-dimensional electron plasmas (to which our dis-
cussion will be limited for clarity), were termed kinetic
electrostatic electron nonlinear (KEEN) waves [5, 6].

KEEN waves were numerically observed near the
branch of the dispersion relation corresponding to the
electron-acoustic waves (EAW), i.e., at frequencies close
to ωEAW ≈ 1.31kvT ; here k is the wave number, and vT
is the electron thermal speed [7–10]. (Albeit strongly
damped in Maxwellian plasma, and thus rarely taken
into account, EAW can be nondissipative if the particle
distribution is flat at velocities close to ωEAW/k. This
occurs naturally when plasma is driven externally at fre-
quency ω ≈ ωEAW for a long enough time.) However,
KEEN modes are qualitatively different from EAW, as
they contain multiple pronounced phase-locked harmon-
ics. The advanced numerical modeling reported recently
in Refs. [11–13] corroborate that such a spectrum is a
robust feature of KEEN waves. In particular, it was pro-
posed in Ref. [11] that KEEN waves represent essentially
a superposition of BGK-like structures. However, the
physical nature of these structures, as well as the sensi-
tivity of KEEN waves to the excitation scenario and the
driver amplitude [5], are yet to be understood in detail.

The purpose of this brief note is to offer a qualitative
explanation of these issues by pointing to the connection

between KEEN waves and the negative mass instability
(NMI) that was recently identified for BGK-like waves
in Ref. [14]. In essence, the NMI causes trapped elec-
trons to bunch into macroparticles, which then produce
sideband oscillations of the wave field, shifted from the
main wave by, roughly, integers of the bounce frequency.
These sidebands survive in the long run only if they are
phase-locked to the main wave. This requires, for param-
eters at which KEEN waves have been studied yet, that
the bounce frequency be somewhat higher than half of
ωEAW. Below, we explain this in detail.
Physical mechanism. — Suppose, as in Ref. [5], that

electron oscillations are excited by an external driving
force with some frequency ω, wave number k, and ampli-
tude that is spatially homogeneous. Assuming that the
driver is turned on slowly, both trapped and passing par-
ticles conserve certain adiabatic invariants that can be
expressed in terms of their actions, J . The action is de-
fined as the appropriately normalized [15] phase space
area encircled by the particle trajectory in the frame
traveling at the driver phase velocity, u = ω/k, termed
here the driver rest frame. For a trapped particle, the
invariant is J itself, whereas for a passing particle the
invariant is the oscillation-center canonical momentum,
P = mu+ kJ sgn (v − u), where m is the electron mass,
and v is the electron velocity [16, 17].

Let us assume that both ω and k are constant; then
conservation of P implies conservation of J for passing
particles too [18]. But J , if normalized appropriately
[15], is conserved also when a particle crosses the sepa-
ratrix, albeit with worse-than-exponential accuracy [19–
21]. Therefore, the action distribution, F (J), is con-
served throughout the entire process of the wave exci-
tation. This gives [15, 22]

F (J) = (k/m)[f0(u+ kJ/m) + f0(u− kJ/m)], (1)

where f0(v) is the initial velocity distribution. The sep-
aratrix action is J = (4/π)mΩ0/k

2 [15], where Ω0 =
(eEk/m)1/2 is the characteristic bounce frequency, and
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E is the amplitude of the total electric field, including
both the driver and the induced field. (We assume, for
clarity, that eE > 0 and k > 0.) Hence, assuming E is
small enough, the trapped distribution can be approxi-
mated with the second-order Taylor expansion of Eq. (1),

Ft(J) ≈ 2kf0(u)/m+ J2kf ′′0 (u)/m. (2)

For ω ≈ ωEAW in Maxwellian plasma assumed here, one
has f ′′0 (u) > 0, so the action distribution of trapped par-
ticles is inverted, F ′t (J) > 0. (This is also seen directly
in simulations. In addition to the already mentioned pa-
pers, see, e.g., Refs. [23, 24].) As shown in Ref. [14], such
distributions can be unstable due to the particle bounce
frequency Ω(J) being a decreasing function of J .

The instability is explained as follows. Consider a
pair of electrons bouncing in the wave potential, i.e.,
rotating in phase space around a local equilibrium.
Through Coulomb repulsion (strictly speaking, via col-
lective fields), the leading particle increases its energy;
then it moves to an outer phase orbit and slows down
its phase space rotation (as Ω′ < 0), whereas the trail-
ing particle moves to a lower orbit and speeds up, cor-
respondingly. This way, mutually repelling electrons can
undergo phase-bunching, or condensation, as if they had
negative masses. The condensation may or may not even-
tually saturate in the form of a stable macroparticle, but
its very formation constitutes a fundamental instability
in itself. By analogy with similar effects in accelerators
[25] and ion traps [26, 27], the term NMI was coined for
this instability in Ref. [14].

Now consider the effect of macroparticles as produc-
tion of sidebands of the wave field. As the driver con-
tinues to feed the instability, these sidebands grow and
initiate stochastization of electron orbits in the resonance
region. (One can view this as an effect akin, if not
identical, to quasilinear diffusion.) This stochastization
tends to flatten the trapped distribution and thus eventu-
ally suppresses the NMI. Most particles then phase-mix
(cf. Ref. [28]), so a standard, albeit non-sinusoidal [29],
BGK mode is formed. However, the scenario is different
when the sidebands are in approximate resonance with
the main wave (and, thus, with the driver too). In that
case, the system is close to periodic, so one can expect
formation of invariant tori in the particle phase space,
even for a relatively strong driver. Then the system can
sustain large stable macroparticles and the correspond-
ing well-pronounced sidebands phase-locked to the main
wave; cf. Refs. [28, 30, 31]. Once phase-locked, the wave
should also be able to tolerate moderate variations of the
wave amplitude from the exact resonance, as in a typical
autoresonance [32], without abrupt modifications of the
spectrum; i.e., one can expect that its nonlinear features
are robust. (But, of course, large enough variations of the
wave parameters destroy the resonance.)

Phase-locking conditions. — To figure out when the
phase-locking occurs, suppose that, in each trapping is-

land, N macroparticles are formed with about the same J
and are distributed equidistantly in bounce phases. They
will hence experience rotation in phase space at the same
bounce frequency, Ω(J). On the other hand, assuming all
macroparticles are identical, their induced field oscillates
at frequency ±NΩ in the driver rest frame. Let us also
assume that these oscillations are in phase for all trap-
ping islands (as can be dictated also by specific bound-
ary conditions adopted for simulations [14]), so the side-
bands have the same wave number as the main wave and
the driver. For the laboratory frame, this gives sideband
harmonics with frequencies `ω ±NΩ, where ` = 1, 2 . . ..
Phase-locking is hence possible if Ω = N ′ω/N , where N ′

is any natural number. On the other hand, interactions
at resonances with N ′ > 1 are weak, so actually matter-
ing are only those resonances that correspond to N ′ = 1.

This suggests the following picture for wave excitation
in initially-quiescent plasma. There, Ω grows from zero,
so it passes infinitely many resonances of the type

Ω = ω/N. (3)

As the bounce frequency is J-dependent, Eq. (3) can be
satisfied for more than one N for a given driver. On the
other hand, resonances unavoidably compete when they
enter the nonlinear stage. What survives is always the
strongest resonance, i.e., the one that has the lowest order
allowed by Eq. (3), Nm = ω/Ω0. Using the dimensionless
variables κ = kvT /ωp and a = eE/(mωpvT ), where ωp is
the plasma frequency, one can express Nm as follows:

Nm = (u/vT )(κ/a)1/2. (4)

For u/vT = 1.31 and κ = 0.26, which are typical
for KEEN-wave simulations, Eq. (4) becomes Nm =
2(a/ac)

−1/2, where ac ≈ 0.11. This shows that, at
a > ac, phase-locking is possible into a resonance with
N = 2, which corresponds to two macroparticles per is-
land. In contrast, at a < ac, phase-locking is possible
only at N = 3, which corresponds to three macroparti-
cles per island. In the latter case, the macroparticle size
is much smaller, so one can expect an abrupt modifica-
tion of the wave spectrum at a ≈ ac. This is indeed what
is seen in simulations [5]. Moreover, the typical KEEN
mode shown in Fig. 1 of Ref. [5] clearly shows the pres-
ence of exactly two macroparticles in a trapping island.

One can also anticipate a similar threshold at a ∼ 0.5,
when Eq. (4) predicts Nm = 1. A single macroparticle
can form then and bounce resonantly to the main wave.
At such large amplitudes, however, the electron quiver
speed becomes comparable to vT , so the above estimates
(which rely on the weak-interaction model and the EAW
dispersion being linear) may lack quantitative accuracy.

Conclusions. — In this brief note, we propose, for
the first time, a basic semi-quantitative theory of KEEN
waves. We argue that key to the KEEN mode forma-
tion is a specific instability, the NMI [14], that pro-
duces macroparticles out of trapped electrons. These
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macroparticles can, under certain conditions, become
phase-locked to the main wave. For parameters typical
for KEEN-wave simulations reported in literature, this
requires that the bounce frequency be higher than half
of ωEAW, imposing a lower limit on the driver ampli-
tude. This picture readily explains why the formation of
KEEN modes is sensitive to the excitation scenario; e.g.,
pre-flattening of the resonant distribution would elimi-
nate the source of the NMI, so macroparticles would not
form, and the wave would remain in the linear regime.
We also propose numerical estimates that agree with ex-
isting simulation results and argue that a new type of
KEEN waves may be possible at even larger amplitudes
of the driving field than those tried in simulations so far.

The work was supported by the U.S. DOE through
Contract No. DE-AC02-09CH11466, by the NNSA SSAA
Program through DOE Research Grant No. DE274-
FG52-08NA28553, and by the U.S. DTRA through Re-
search Grant No. HDTRA1-11-1-0037.
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