
Prepared for the U.S. Department of Energy under Contract DE-AC02-09CH11466.

Princeton Plasma Physics Laboratory

PPPL- 

Pamela Hampton
Text Box
PPPL-

gczechow
Typewritten Text



Princeton Plasma Physics Laboratory 
Report Disclaimers 

 

Full Legal Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof. 

 

Trademark Disclaimer 

Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof or its 
contractors or subcontractors.  

 
 

PPPL Report Availability 
 

Princeton Plasma Physics Laboratory: 
 

 http://www.pppl.gov/techreports.cfm  
 
Office of Scientific and Technical Information (OSTI): 

http://www.osti.gov/bridge 

 

Related Links: 
 

U.S. Department of Energy 
 
Office of Scientific and Technical Information 
 
Fusion Links 



Generation of zonal flows through symmetry

breaking of statistical homogeneity

Jeffrey B. Parker

John A. Krommes

Princeton University, Princeton Plasma Physics Laboratory, Princeton, New Jersey

08543, USA

E-mail: jbparker@princeton.edu, krommes@princeton.edu

Abstract. In geophysical and plasma contexts, zonal flows are well known to arise

out of turbulence. We elucidate the transition from homogeneous turbulence without

zonal flows to inhomogeneous turbulence with steady zonal flows. Starting from

the equation for barotropic flow on a beta plane, we employ both the quasilinear

approximation and a statistical average, which retains a great deal of the qualitative

behavior of the full system. Within the resulting framework known as CE2, we

extend recent understanding of the symmetry-breaking zonostrophic instability and

show that it is an example of a Type Is instability within the pattern formation

literature. The broken symmetry is statistical homogeneity. Near the bifurcation

point, the slow dynamics of CE2 are governed by a well-known amplitude equation.

The important features of this amplitude equation, and therefore of the CE2 system,

are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite

system, there is a continuous band of zonal flow wavelengths that allow a nonlinear

equilibrium. Second, of these wavelengths, only those within a smaller subband are

stable. Unstable wavelengths must evolve to reach a stable wavelength; this process

manifests as merging jets. These behaviors are shown numerically to hold in the CE2

system. We also conclude that the stability of the equilibria near the bifurcation

point, which is governed by the Eckhaus instability, is independent of the Rayleigh–

Kuo criterion.
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1. Introduction

Zonal flows (ZFs) are azimuthally symmetric, banded, shear flows that can be

spontaneously generated from turbulence. Their prominent geophysical manifestations

have inspired study for decades [1–3]. Zonal flows have also been discovered in

magnetized plasmas, and these flows are believed to play an important role in regulation

of turbulence and turbulent transport [4, 5]. Further cementing their universality, ZFs

as well as zonal magnetic fields have been seen in astrophysical simulations, specifically

of accretion disc turbulence driven by the magnetorotational instability [6, 7].

Zonal flows remain incompletely understood, even regarding the basic question of

the jet width. Various attempts have been made to relate the jet width or spacing

to length scales that emerge from the vorticity equation by heuristically balancing

the magnitudes of the Rossby wave term and the nonlinear advection term. Those

scales include the Rhines scale LR = (U/β)1/2, where U is the rms velocity and β is

the northward gradient of the Coriolis parameter [1], and a related transitional scale,

Lε = (ε/β3)1/5 [8–10], where ε is the energy input. In simple situations, the total energy

can be estimated as E = ε/2µ, where µ is the friction. By using 1
2
U2 = E, one can

write the Rhines scale in terms of external parameters, which often gives good agreement

with the ZF length scale. A Rhines-like length scale is also obtained from arguments

based on potential vorticity staircases [11, 12]. Despite these advances, there has not

yet been a theory for how one would determine the ZF length scale systematically from

the equations of motion, nor even a framework of what such a theory might look like.

The question of jet length scale is clearly related to the phenomenon of merging

jets. Coalescence of two or more jets is ubiquitous in numerical simulations [13–15]. The

merging process typically occurs during the initial transient period before a statistically

steady state is reached, although in some cases occasional merging and branching may

persist. Merging occurs as part of a dynamical process through which the ZF reaches

its preferred length scale, but there has been limited theoretical understanding of it so

far [16, 17].

Our present work addresses these questions in the context of stochastically forced

barotropic flow on a β plane, a model for fluid turbulence in a rotating system [8].

This rather simple model excludes a myriad of physics that arises in realistic situations.

The simplicity is an advantage as it allows us to focus on the elements it does retain,

in particular, the emergence of steady ZFs driven by turbulence. It is known that

the barotropic vorticity equation is mathematically very similar to the generalized

Hasegawa–Mima equation [18, 19] for electrostatic potential, a model for magnetized

plasma turbulence in the presence of a background density gradient. The methodology

used here is equally applicable to the Hasegawa–Mima equation [20].

Our paper extends the work of Srinivasan and Young [15] in providing a firm

analytic understanding of ZF generation and equilibrium. Our study employs the

quasilinear approximation, which neglects nonlinear self-interactions. The use of

this approximation is motivated by the fact that it retains much of the generic ZF



Generation of zonal flows through symmetry breaking of statistical homogeneity 3

behavior. A statistical average yields the CE2 (second-order cumulant) framework.

Within CE2, it was discovered that homogeneous turbulence can undergo a symmetry-

breaking instability leading to ZF generation [21], which was then explained in detail

analytically [15]. This instability has been named zonostrophic instability (ZI). CE2 is

mathematically equivalent to SSST or S3T (stochastic structural stability theory), which

is the name used by Farrell, Ioannou, Bakas, and Constantinou [21–24]. Additionally,

CE2 has been used for numerical simulations by Marston, Tobias, Conover, Schneider,

and Dagon [25–27].

Using CE2, we show that from the statistical point of view that the bifurcation

that generates steady ZFs is an example of what is called a Type Is instability within

the pattern formation literature [28–32]. Therefore, many of the general properties

of pattern-forming systems apply to these ZFs. Near the point of bifurcation the

system obeys a classic amplitude equation, sometimes called the real Ginzburg–Landau

equation. Two important analytic results about ZFs follow from the properties of the

amplitude equation. First, the ZF wavelength is not unique. Indeed, in an idealized,

infinite system, any wavelength within a certain continuous band corresponds to a

steady-state solution. Nonuniqueness of the number of jets or the jet wavelength has

in fact been observed numerically in direct numerical simulations [33] and in CE2

simulations [21]. Second, of these wavelengths, only those within a smaller subband

are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength. For

short (long) wavelength unstable jets, this process manifests as merging (branching)

jets.

A fundamental dimensionless parameter controlling the ZF dynamics is γ =

ε1/4β1/2µ−5/4 [33]. This parameter is related to the zonostrophy parameter Rβ by

γ = R5
β [34]. Also, if one were to modify the definition of the small parameter α

of [35] such that the normalization length scale is the Rhines scale LR rather than the

size of the domain, then γ = α−1. Since it has been shown in [35] that it is α (and α1/2)

that naturally appear in the normalized equations, we opt to use γ instead of Rβ as the

descriptive parameter.

This paper is structured as follows. Section 2 introduces a phenomenological model

of the bifurcation. As a zero-dimensional model, it orients the reader before the plunge

into the full problem with its complexity of spatial dependence. Section 3 introduces

the fundamental equation of motion, the (equivalent) barotropic vorticity equation,

followed by the quasilinear approximation and the statistical formulation known as

CE2. A review of zonostrophic instability is provided in section 4. Then, in section

5 (with some details in the appendix), we perform a full bifurcation analysis into the

regime of nonlinearly interacting eddies and ZFs. A number of important phenomena

appear even though the bifurcation calculation is strictly valid only in a limited domain

of parameter space. To build on this understanding, we numerically solve for the CE2

steady states in section 6 and their stability in section 7. Section 8 explores the ZF wave

number selection problem. Finally, section 9 contains discussion of the results and our

conclusions.
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2. Phenomenological bifurcation model of zonostrophic instability

A zero-dimensional phenomenological model illustrates some of the key features of

ZI and the bifurcation to a state with ZFs. The system is a variant of another

treatment which models the appearance of shear flows in the L-H transition in plasmas

[36]. However, the model we present more closely mirrors the structure and behavior

of the CE2 equations. The model includes three interacting degrees of freedom:

the homogeneous, or spatial average, part of the fluctuation covariance Wh; the

inhomogeneous, or deviation from the spatial average, part of the fluctuation covariance

Wi; and the ZF amplitude (not covariance) z. Both Wi and z may be positive or

negative. The model is given by

Ẇh = −µWh − αWiz + F, (1a)

Ẇi = −µWi + ηWhz, (1b)

ż = −νz + αWi. (1c)

The model’s structure reflects that of the CE2 equations (6) in several ways.

To affect the homogeneous part of the turbulence, the ZF interacts only with the

inhomogeneous part. Similarly, the ZF interacts with the homogeneous part to affect

the inhomogeneous part (CE2 also contains an interaction between the ZFs and the

inhomogeneous part to affect the inhomogeneous part; this is neglected here, as in ZI

analysis). Finally, it is the inhomogeneous part of the turbulence that is responsible for

driving steady ZFs. The above model neglects the eddy self-nonlinearities as in CE2.

The appearance of the same coefficient α in Ẇh and in ż reflects the conservation by the

nonlinear interactions of an energy-like quantityWh+
1
2
z2. We take all of the coefficients

µ, ν, α, η, F to be positive.

There is a homogeneous equilibrium, in which forcing F is balanced by dissipation

µ, and for which Wi and z are zero. The homogeneous equilibrium is unstable if

Fηα/µ2ν > 1. Increasing the forcing or decreasing the dissipation tends to make the

homogeneous equilibrium more zonostrophically unstable, which is characteristic of the

more rigorous analysis.

When the homogeneous equilibrium goes unstable, it connects to the stable

inhomogeneous equilibrium at Wh = µν/ηα, W 2
i = (ν/α2)(F − µ2ν/ηα), z = αWi/ν.

Furthermore, there are actually two symmetric solutions, with either sign of z and Wi.

There is thus a supercritical pitchfork bifurcation; this feature is also present in the

complete model, but the discrete z → −z symmetry becomes a continuous symmetry

associated with translational invariance.

The model demonstrates some of the qualitative features of ZI, although in

simplifying it we have tossed out spatial dependence. Spatial dependence makes the

problem both immensely more complicated and immensely more interesting. The CE2

equations contain the full spatial dependence and will be introduced in section 3.4.
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3. Equations of motion

3.1. Barotropic vorticity equation

Our starting point is the (equivalent) barotropic vorticity equation on a β plane. We

focus on results for the infinite deformation radius case, though we allow for finite

deformation radius (the case of finite deformation radius is treated in a plasma context

in [20]). The equation is

∂tw + v · ∇w + β∂xψ = ξ − µw − ν(−1)h∇2hw, (2)

where

w = ∇2ψ − L−2
D ψ ≡ ∇2

ψ (3)

Here w is the vorticity, ψ is the streamfunction, v = ẑ×∇ψ is the horizontal velocity,

LD is the deformation radius, ξ is white-noise forcing, µ is the constant friction, and ν is

the viscosity with hyperviscosity factor h. The ZF behavior in numerical simulations of

(2) is shown in Fig. 1(b). Here and the rest of the paper, unless otherwise specified, the

parameters take the values β = 1, LD = ∞, ν = 10−3, and h = 4. The covariance of the

forcing is taken to be F (k) = 2πεkf/δk for kf − δk < |k| < kf + δk, and zero otherwise.

We take kf = 1, δk = 1
8
, and ε = 1. Periodic boundary conditions are used. During the

transient period, merging jets are observed, while in the late time, a statistically steady

state is reached with steady jets. Although the jets may not be completely unwavering,

this is a useful idealization that we make.

3.2. Quasilinear approximation

We restrict ourselves to the quasilinear (QL) approximation of this system. To obtain

the QL equations, one performs an eddy–mean decomposition, given by decomposing

all fields into a zonal mean and a deviation from the zonal mean, then neglects the

eddy–eddy nonlinearities within the eddy equation [15]. Put another way, the QL

approximation neglects all triad interactions except those containing a ZF mode. The

QL system is given by

∂tw
′ + {U∇2

+ β − [(∂2y − L−2
D )U ]}∂xψ′ = ξ − µw′ − ν(−1)h∇2hw′, (4a)

∂t(1− L−2
D ∂−2

y )U(y) + ∂y〈v′xv′y〉x = −[µU + ν(−1)h∂2hy ]U, (4b)

where 〈·〉x denotes a zonal average, w′ = w − 〈w〉x, and U(y) = −〈∂yψ〉x is the zonal-

mean zonal velocity.

3.3. Motivation for using the QL approximation

Srinivasan and Young [15] have shown that the QL system exhibits many of the same

basic zonal jet features as the full nonlinear (NL) system, including the formation

of stable jets and merging jets. With periodic boundary conditions, the equation of

motion enjoys translational symmetry in both the x and y directions. As a parameter
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is varied, the simulations suggest a spontaneous breaking of statistical homogeneity in

the y direction. At large µ (small γ), the NL system in figure 1(a) and the QL system in

figure 1(d) do not exhibit steady ZFs, so the behavior is statistically homogeneous. At

small µ (large γ), both the NL system in figure 1(b) and the QL system in figure 1(e)

do exhibit steady ZFs, implying a breaking of statistical homogeneity in the y direction.

We also observe that, in both the NL and QL systems, simulations that differ only in

initial conditions and realizations of the random forcing can display different numbers

of jets [figure 1(b,c,e,f)]. In addition to these features, both NL and QL exhibit merging

jets, evident in figure 1(c,f).

Our motivation in adopting the QL approximation is not because we believe it

to be quantitatively correct, but rather because the QL system apparently retains the

necessary ingredients that lead to the rich behavior of ZF formation. The QL system

may provide insight into the more realistic models, and the advantage, of course, is

that the QL system is far more tractable. The phenomena described above will all be

explained analytically within the QL approximation.

Separate from our motivations for using the QL approximation, Bouchet et al. have

argued that in the regime of large γ the flow becomes predominantly zonal and the QL

approximation becomes rigorously valid [35]. Our present study examines the regime in

parameter space where γ is not asymptotically large, for it is in this regime where ZFs

are born at low amplitudes from turbulence.

The QL approximation has also been used by Herring in the study of thermal

convection [37], where the only nonlinear interaction retained was between a

horizontally-averaged temperature and the fluctuating temperature and velocity;

nonlinear interactions between the fluctuating quantities were discarded. At large

Rayleigh number, this approximation was able to reproduce some of the qualitative

features observed in experiments.

3.4. CE2 equation

The eddy quantity w′ fluctuates rapidly in space and time. Averaging over these

turbulent fluctuations enables one to work with smoothly varying functions. Such

statistical approaches provide one path to gaining physical insight. Sometimes statistical

turbulence theories strive for quantitative accuracy, which requires rather complicated

methods [38], but we eschew those methods here because they are not required for

investigation of the QL system.

We consider an average of the QL system (4). Derivations can be found in [22, 25]

though we follow [15] because there are advantages to its formulation. The full derivation

can be found there, but we give a brief overview of the procedure. One defines the two-

point, one-time correlation function of vorticity using a zonal average as

W (x, y1, y2, t) ≡
1

Lx

∫ Lx

0

dx|xw′(x1, y1, t)w
′(x2, y2, t), (5)

where Lx is some averaging length, the integration is over the sum coordinate x =
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Figure 1. Hovmöller diagrams of zonal flow. Top: NL simulations at (a) µ = 0.08 (no

steady jets), (b) µ = 0.02 (8 jets), and (c) µ = 0.02 (7 jets). Bottom: QL simulations

at (d) µ = 0.29 (no steady jets), (e) µ = 0.08 (7 jets), and (f) µ = 0.08 (6 jets). The

only differences between (b) and (c) and between (e) and (f) are the choice of initial

conditions and the realization of the random forcing. Merging jets can be seen in (c)

at t ≈ 200 and in (f) at t ≈ 30.
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Figure 2. Merging behavior in the amplitude equation (16) [Re A(y, t) is shown].

1
2
(x1 + x2), and the difference coordinate x = x1 − x2 is held fixed. The correlation

function Ψ of streamfunction can be defined similarly. One finds an evolution equation

forW by taking a time derivative of (5), substituting the expression for ẇ′ from (4a), and

performing the average. Under an ergodic assumption, the zonal average is equivalent

to a statistical ensemble average, and the stochastic forcing can be averaged to a

deterministic quantity. Then one performs a linear coordinate transform to the sum

and difference variables y = 1
2
(y1 + y2) and y = y1 − y2. In the ZF equation (4b), the

Reynolds stress term can be related to Ψ. The final equations are

∂tW (x, y | y, t) + (U+ − U−)∂xW − (U
′′

+ − U
′′

−
)(∇2

+
1

4
∂2y)∂xΨ
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−[2β − (U
′′

+ + U
′′

−
)]∂y∂y∂xΨ = F (x, y)− 2µZ − 2νDhW, (6a)

∂tIU(y, t) + ∂y∂y∂xΨ(0, 0 | y, t) = −µU − ν(−1)h∂2hy U, (6b)

where U(y, t) is the ZF velocity, U± = U(y± 1
2
y, t), U

′′

±
= U ′′

±
−L−2

D U±, I = 1−L−2
D ∂−2

y ,

F (x, y) is the covariance of the external forcing, and Dh is the hyperviscosity operator,

given by

Dh = (−1)h
1

2







[

∂2x +

(

∂y +
1

2
∂y

)2
]h

+

[

∂2x +

(

∂y −
1

2
∂y

)2
]h






. (7)

It can be shown from the definitions that W and Ψ are related by

W (x, y | y, t) = (∇2
+ ∂y∂y +

1

4
∂2y)(∇

2 − ∂y∂y +
1

4
∂2y)Ψ(x, y | y, t). (8)

The use of the sum and difference coordinates x, y, y allows the structure of the

theory and especially of the bifurcation to be more easily understood than in the original

coordinates. In the new coordinates x and y represent two-point separations and y

represents the two-point average position. If the turbulence were homogeneous, there

would be no dependence on y.

The only assumption necessary for CE2 to be an exact description of the QL model

is ergodicity in the zonal (x) direction, such that a zonal average is equivalent to an

ensemble average. No other assumptions are required because the QL model neglects

the nonlinear eddy–eddy term that would give rise to a closure problem. Alternatively,

instead of coming from the QL point of view, CE2 can be regarded as a drastically

truncated statistical closure of the NL model [21, 22, 25–27]. However, for present

purposes we prefer the former interpretation.

CE2, like the QL system, exhibits merging jets [21]. Since CE2 is deterministic,

if the system approaches a stable steady state then merging and branching of jets can

only occur transiently. Once the stable equilibrium is reached, the system is stuck there

and no more dynamical behavior can occur. However, if the QL system is not fully

ergodic, then CE2 is not an exact description of it and dynamical behavior like merging

or branching can persist even in a statistically steady state [22,35]. Though ergodicity is

often a useful idealization, lack of complete ergodicity is to be expected in any physical

system.

The CE2 equations exhibit important symmetries of translation and reflection,

given by

y → y + δy, (9a)

x, y → −x,−y, (9b)

y, y → −y,−y, (9c)

x, y → −x,−y. (9d)

In other words, if {W (x, y | y, t), U(y, t)} is a solution, then so are {W (x, y |
y+ δy, t), U(y+ δy, t)}, {W (−x, y | −y, t), U(−y, t)}, and {W (x,−y | −y, t), U(−y, t)},
where δy is some constant translational shift. The symmetry (9d), dubbed the exchange
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symmetry, is always obeyed by the correlation function such that W (x, y | y, t) =

W (−x,−y | y, t) [15].

4. Zonostrophic instability

In this section we review ZI, for which substantial understanding has been recently

obtained [15, 23]. A homogeneous, steady-state solution of the CE2 equations always

exists, arising from a simple balance between forcing and dissipation. This solution is

WH = (2µ+ 2νDh)
−1F, (10a)

U = 0. (10b)

This equilibrium is linearly stable in a certain regime of parameters. As a control

parameter ρ is varied, this homogeneous state becomes zonostrophically unstable [15,21].

Physically, ZI occurs when dissipation is overcome by the mutually reinforcing processes

of eddy tilting by ZFs and production of Reynolds stress forces by tilted eddies. The

instability eigenmode consists of perturbations spatially periodic in y with zero real

frequency [15], so ZI arises as a Type Is instability [28] of homogeneous turbulence.

To calculate the dispersion relation corresponding to ZI, one considers perturbations

about the equilibrium (10). Because the equilibrium is independent of y and t, the y and

t dependence of the perturbations can be Fourier transformed. The fields are written as

W (x, y | y, t) = WH(x, y) + δW (x, y)eλteiqy, (11a)

U(y, t) = δUeλteiqy, (11b)

where q is the ZF wave number. It is convenient to Fourier transform in both x and y

as well. One is able to obtain a single nonlinear equation for the eigenvalue λ by solving

for δW (kx, ky) in terms of δU , then substituting into the equation for δU [15]. The

dispersion relation is

λ+ µ+ νq2h = qΛ− − qΛ+, (12)

where

Λ± =

∫

dkxdky
(2π)2

k2xky(1− q2/h
2

±
)WH(kx, ky ± 1

2
q)

[λ+ 2µ+ ν(h2h+ + h2h− )]h
2

+h
2

−
+ 2iβqkxky

, (13)

h2
±
= k2x + (ky ± 1

2
q)2, and h

2

±
= h2

±
+ L−2

D . Some algebraic manipulation shows that

Λ+ = −Λ− [15]. One can calculate λ(q) numerically, plots of which can be seen in figure

4 of [15]. The equilibrium is unstable to ZI if λ(q) > 0 anywhere.

The equilibrium transitions from being ZI stable to unstable at a critical value ρc
called the instability threshold. At ρc there is a single marginally stable mode at wave

number qc (and at −qc). Beyond ρc there is a band of unstable modes.

5. Beyond zonostrophic instability: bifurcation and the amplitude equation

The existence of ZI indicates that a homogeneous equilibrium without zonal flow is

unstable. Perturbations to this equilibrium grow exponentially, with wave number
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dependencies and growth rates that can be calculated. However, the ZI calculation

alone does not predict how the system saturates.

To understand the behavior in the regime of nonlinearly interacting eddies and

ZFs, we turn to a bifurcation analysis. Near the instability threshold, the distance from

the threshold serves as a small parameter to facilitate analytic progress. It has been

demonstrated numerically that the bifurcation is supercritical [21], which we confirm

with our analytical calculations in the appendix. Thus only lowest-order terms in the

bifurcation analysis are needed to provide saturation of the instability.

The bifurcation analysis follows a standard procedure and involves a multiscale

perturbation expansion about the threshold [28,29]. A normalized parameter is defined

as ǫ = (ρ − ρc)/ρc. If we denote u as the state vector relative to the homogeneous

equilibrium, i.e., u = {W −WH , U}, then the expansion proceeds as

u = ǫ1/2u1 + ǫu2 + ǫ3/2u3 + · · · . (14)

At first order, one finds

u1 = A(y, t)r + c.c., (15)

where c.c. denotes complex conjugate. Here u1 is proportional to the eigenmode

r ∼ eiqcy{δW, δU} that undergoes bifurcation, and A is its amplitude. The amplitude

is an envelope that slowly varies in space and time. The slow variation represents the

effect of the infinity of wave numbers nearby qc that also go unstable when ǫ > 0. The

object is to determine A, as then u1 will be fully specified. Here, one determines a

PDE for A as a solvability condition at third order in the perturbation expansion. One

eventually finds

c0∂tA(y, t) = ǫc1A + c2∂
2
yA− c3|A|2A, (16)

where the ci are order unity, real, positive constants to be calculated. Equation (16)

is referred to as the amplitude equation, or sometimes as the real Ginzburg–Landau

equation.

It turns out that, in order to understand the qualitative behavior of A, one does not

need to carry out the calculation of the ci explicitly [29]. This is because the translation

and reflection symmetries (9) constrain the lowest-order PDE for A to consist generically

of the form in (16). The qualitative behavior of (16) is independent of its parameters

since they can be transformed to unity by simple rescaling.

Even if the qualitative behavior is understood, it is still worthwhile to carry out

the calculation of the coefficients ci. First, computing these and verifying the results

numerically provides a concrete check on our overall understanding. Second, the

perturbation solution is convenient for certain numerical methods where it is useful to

start with a good approximation to the true solution. In the appendix, we calculate the

ci and verify the results. This computation has also been carried out independently [39].

The amplitude equation (16) is well understood [28–30], and much of its qualitative

behavior is seen generically in pattern-forming systems. First, with all the parameters

ci and ǫ set to unity, a steady-state solution exists for any wave number within the
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continuous band −1 < k < 1. To see this, observe that A = αeiky with |α|2 = 1− k2 is

a solution. Second, only solutions with k2 < 1
3
are stable; those with k2 > 1

3
suffer the

Eckhaus instability [29]. This is demonstrated in figure 2, where an unstable solution

that has been slightly perturbed undergoes merging behavior until a stable wave number

is reached.

The CE2 system is described by this bifurcation, so near the threshold, and more

generally, it exhibits solutions existing with a range of ZF wave numbers having a certain

stability region. In the following sections we calculate the equilibria and stability of CE2.

6. Calculation of ideal states

We proceed to find the steady-state solutions of (6). In the context of an infinite

domain with no boundaries, these solutions are referred to as ideal states. Let q denote

the fundamental ZF wave number of an ideal state. For a given q, we solve the time-

independent form of (6) directly. This approach is distinct from time integration of

(6) to a steady state, which is done in [21, 22, 27] within a finite spatial domain. Our

procedure has two advantages, both related to the fact that ideal states exist for any q

within a continuous band. First, we can specify precisely the q of the desired solution.

Second, we can solve directly for all solutions, including unstable ones, rather than find

only those that develop from time evolution.

Another difference between the time-evolving simulations and the method employed

here is that in the time-evolving simulations the dominant ZF wave number is not chosen

in advance, so it typically does not occupy the lowest mode. In that case there can be

excited subharmonics of the dominant mode. In the method used here, solutions are

chosen so that the lowest ZF mode is generally the dominant one. This requires fewer

resolved modes. It also excludes subharmonics (although that is not a limitation in

principle).

An ideal state is represented as a Fourier-Galerkin series with coefficients to be

determined [29, 31, 32]. We expand as follows:

W (x, y | y) =
M
∑

m=−M

N
∑

n=−N

P
∑

p=−P

Wmnpe
imaxeinbyeipqy, (17a)

U(y) =

P
∑

p=−P

Upe
ipqy. (17b)

While the periodicity in y is desired, the correlation function should decay in x and y;

periodicity in x and y is a consequence of using the convenient Fourier basis. Thus, a

and b, unlike q, are numerical parameters. They represent the spectral resolution of the

correlation function and should be small enough to obtain an accurate solution.

Because the CE2 equations have translational symmetry in y, there is an infinite

number of solutions, all equivalent, corresponding to displacements along y. In order

to obtain a well-posed numerical problem, one must restrict the set of solutions. To
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this end, we again look to the symmetries (9). The CE2 symmetries allow us to seek a

solution where

W (x, y | y) = W (x,−y | −y) =W (−x, y | −y) =W (−x,−y | y), (18a)

U(y) = U(−y). (18b)

In other words, we choose the origin of y such that the reflection symmetries hold for the

solution itself. We find that such solutions do exist. It turns out that this restriction does

not uniquely specify the solution, as shifting a solution by a half wavelength δy = π/q

yields a distinct but equivalent solution. Still, this restriction is sufficient to make the

problem well-posed numerically. The above constraints, along with the conditions that

U(y) and W (x, y | y) are real, force Up to be real, and

Wmnp = W ∗

−m,n,p =W ∗

m,−n,p = W ∗

m,n,−p, (19a)

Up = U−p. (19b)

Furthermore we take U0 = 0, as that would merely represent a static uniform

velocity. With these constraints the number of independent, real degrees of freedom

is (M + 1)(N + 1)(P + 1) +MNP + P .

Aside from the previous statements, there is still no guarantee that there is a

physically unique solution. Indeed, in the zonostrophically unstable regime, once the

above ansatz with a specific q has been substituted there are at least two solutions: the

equilibrium with ZFs, and the unstable homogeneous solution without ZFs. In some

instances we also find other unstable solutions, which may be unphysical artifacts of the

numerical discretization.

We obtain a system of nonlinear algebraic equations for the coefficients Wmnp and

Up by substituting the Galerkin series into (6) and projecting onto the basis functions.

To demonstrate the projection for (6a), let φmnp = eimaxeinbyeipqy. We project (6a)

onto φrst by operating with
(

2π

a

2π

b

2π

q

)−1 ∫ π/a

−π/a

dx

∫ π/b

−π/b

dy

∫ π/q

−π/q

dy φ∗

rst. (20)

For instance, the term (U+ − U−)∂xW projects to I
(1)
rstp′mnpUp′Wmnp, where repeated

indices are summed over, I
(1)
rstp′mnp = imaδm,rδp′+p−t,0(σ+ − σ−), σ± = sinc(α±π/b), and

α± = nb− sb± 1
2
p′q. The other terms of (6a), as well as (6b), are handled similarly. In

total, we generate as many equations as there are coefficients.

The system of nonlinear algebraic equations is solved with a Newton’s method [40].

In practice we separate Wmnp into real and imaginary parts. The Jacobian matrix is

sparse and is easy to specify analytically. We note that because the ZF equation is

linear, it is possible to eliminate the ZF degrees of freedom analytically. This is avoided,

however, because the reduction of only P degrees of freedom is negligible and this step

incurs the major disadvantage of making the Jacobian no longer sparse. A Newton’s

method requires a good initial guess. An accurate initial guess near the instability

threshold is provided by the bifurcation calculation (see the appendix). To find other
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Figure 3. Zonal flow amplitude U1, U2 as a function of ideal state wave number q at

(a) µ = 0.21 (γ = 7.03) and (b) µ = 0.19 (γ = 7.97). In the unshaded region, ideal

states are stable. The vertical lines correspond to various instabilities which separate

the regions (see figure 4).

solutions we employ simple numerical continuation, where the solution at one value of a

parameter is used as the initial guess for the solution at the next value of the parameter.

Figure 3 shows the ZF amplitude coefficients Up as functions of q at µ = 0.21

and µ = 0.19. Near the instability threshold, ideal states exist at all q for which the

homogeneous equilibrium is zonostrophically unstable [between the two lines labeled

N in figure 3(a)]. Farther from threshold, there is a region of q where the ideal state

solution disappears [between the lines N and D in figure 3(b); see also figure 4].

The computational method as described above works very well near the threshold

µc = 0.237 (γc = 6.02). However, far from the threshold, for µ < 0.12 (γ & 14.2),

the numerical method breaks down. This appears to be related to the existence of

multiple solutions at a given parameter value, of which some are unphysical or unstable.

Far from threshold the Newton’s method seems to inevitably get stuck on one of these

undesirable solutions. However, the time-evolving simulations previously mentioned do

not have these problems, because the CE2 equations are statistically realizable and will

only approach physical, stable solutions.

7. Stability of the ideal states

We now turn to calculate the stability of the ideal states. Ideal state stability is a

consideration distinct from ZI, which is a property of the homogeneous equilibrium. We

consider perturbations δW (x, y | y, t) and δU(y, t) about an equilibrium {W,U}. The

linearized CE2 equations are

∂tδW = −(δU+ − δU−)∂xW − (U+ − U−)∂xδW

+(δU
′′

+ − δU
′′

−
)(∇2

+ 1
4
∂2y)∂xΨ+ (U

′′

+ − U
′′

−
)(∇2

+ 1
4
∂2y)∂xδΨ

−(δU
′′

+ + δU
′′

−
)∂y∂y∂xΨ− (U

′′

+ + U
′′

−
)∂y∂y∂xδΨ

+2β∂y∂y∂xδΨ− 2(µ+ νDh)δW, (21a)

∂tIδU = −[µ+ ν(−1)h∂2hy ]δU − ∂y∂y∂xδΨ(0, 0 | y, t). (21b)
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Since the underlying equilibrium is periodic in y, the perturbations can be expanded

as a Bloch state [29, 31]:

δW (x, y | y, t) = eσteiQy
∑

mnp

δWmnpe
imaxeinbyeipqy, (22)

δU(y, t) = eσteiQy
∑

p

δUpe
ipqy, (23)

where Q is the Bloch wave number and can be taken to lie within the first Brillouin

zone −1
2
q < Q ≤ 1

2
q. We do not use a Qx or Qy associated with the periodicities

in x and y because, as previously mentioned, those periodicities are artificial. A

separate argument also suggests taking Qx and Qy to be zero. The correlation

function exchange symmetry, which we continue to enforce in the perturbations, requires

δW (x, y | y) = δW (−x,−y | y). This forces Qx to be either zero or 1
2
a and Qy to be

either zero or 1
2
b.

The exchange symmetry requires that

δWmnp = δW−m,−n,p. (24)

There are no symmetry restrictions on δUp. A careful counting of the number of

independent degrees of freedom yields [M+1+N(2M+1)](2P +1) complex coefficients

from the δWmnp and 2P + 1 complex coefficients from the δUp.

Equation (21) is projected onto the basis functions in the same way as in the ideal

state calculation. The projection results in a linear system at each Q for the coefficients

δWmnp and δUp; this determines an eigenvalue problem for σ. The equilibrium is

unstable if for any Q there are any eigenvalues with Re σ > 0. The eigenvalues are

computed using Arnoldi iteration. The resulting equations contain ZI as a special case,

for which the equilibrium is the homogeneous one and Q takes on the role of the wave

number q.

It is possible to show the following two symmetries regarding the eigenvalue, which

result from the symmetry of the ideal state equilibrium. First, for arbitrary Q, suppose

(δW
(1)
mnp, δU

(1)
p′ ) is an eigenvector with eigenvalue σ. Then the vector (δW

(2)
mnp, δU

(2)
p′ ) is

also an eigenvector, with eigenvalue σ∗, and

δW (2)
mnp = δW

(1)∗
m,−n,p, (25a)

δU
(2)
p′ = δU

(1)∗
p′ . (25b)

This guarantees that every complex eigenvalue comes in a conjugate pair. Second,

suppose at some Q that (δW
(Q)
mnp, δU

(Q)
p′ ) is an eigenvector with eigenvalue σ. Then

when the Bloch wave number is −Q, the vector (δW (−Q)
mnp , δU

(−Q)
p′ ) is an eigenvector with

eigenvalue σ∗, and

δW (−Q)
mnp = δW

(Q)∗
m,n,−p, (26a)

δU
(−Q)
p′ = δU

(Q)∗
−p′ . (26b)

Thus, for determining stability one needs to check only 0 ≤ Q ≤ 1
2
q because the

eigenvalues for negative Q are symmetric.
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Figure 4. Stability diagram for the CE2 equations. Above the neutral curve (N),

the homogeneous turbulent state is zonostrophically unstable. Ideal states are stable

within the marginal stability curvesE,L1, R1. The stability curve is consistent with the

dominant ZF wave number from independent QL simulations (crosses). The stationary

ideal states vanish to the left of curve D. Interior curves: Rhines wave number (black

dashed line), wave number of maximum growth rate for zonostrophic instability (blue

dotted line), wave numbers of minimum eddy energy (red line), minimum total energy

(black line), minimum eddy enstrophy (red dotted line), and minimum total enstrophy

(black dotted line). Here, a = 0.06, b = 0.08, M = 20, N = 27, P = 4, and other

parameters are given in the text. γ is varied by changing µ while holding the other

parameters fixed.

The stability diagram is shown in figure 4. To vary γ, we change µ and hold other

parameters fixed at their previous values. The stable ideal states exist inside of the

marginal stability curves marked E, L1, and R1, which represent different instabilities.

The Eckhaus instability (E) is a long-wavelength universal instability, present even in

the amplitude equation (16). The L1 and R1 curves represent novel short-wavelength

instabilities. The zonal jets are spontaneously generated by ZI for γ > γc = 6.02. For

6.02 < γ < 14.2, the stability curve is consistent with the dominant ZF wave number

observed in QL simulations. For γ > 14.2, we could not calculate the stability diagram

with this approach due to the aforementioned numerical issues of finding the steady

state.

This stability calculation differs from the Rayleigh–Kuo criterion [21, 22]. That

criterion, which states that a necessary condition for inviscid instability is that β−U ′′(y)
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changes sign, is derived assuming laminar flow with a fixed mean zonal velocity profile

U(y) [41]. Such an assumption is relevant to the case where external heating and

frictional forces directly determine the laminar flow profile [42]. In practice, it is almost

always observed that the Rayleigh–Kuo criterion, or its appropriate generalizations for

more complicated situations, has the sufficient condition for stability satisfied. However,

this does not imply that the Kuo criterion is the only important governing principle.

In the present case, the ZF is directly driven by turbulence. Fundamentally, there is

no reason a priori to neglect the turbulence in a stability calculation. Especially in

the regime we have focused on, just above threshold where the ZF is weak relative to

the turbulence, a stability criterion that is based on laminar flow without turbulence is

inapplicable.

One consequence of retaining the turbulence in an equilibrium is that in a linear

stability analysis the ZF profile is allowed to change, as in (21b) [21]. These ZF

perturbations are absent in the Rayleigh–Kuo criterion. In fact, near threshold the

instability eigenvectors are found numerically to have a nontrivial component in the ZF

perturbation. This numerical result is also evident from analytic consideration of the

Eckhaus instability in the amplitude equation (16).

It is also important to note that because the Rayleigh–Kuo criterion is based on

a linearization around laminar flow, the turbulent self-interaction is ignored. This

interaction is exactly what is neglected by the QL approximation. Therefore, the Kuo

criterion may be found just as well from the QL approximation. In other words, the QL

approximation cannot be blamed on its face for the inapplicability of the Rayleigh–Kuo

criterion.

Figure 5(a) shows, at µ = 0.15 (γ = 10.7) and q = 0.6, a comparison of β and U ′′.

For the same value of µ, figure 5(b) shows the minimum value of β−U ′′ at each q along

with the actual stability boundaries that have been computed directly. At large q, the

curve approaches β because the ZF amplitude goes to zero. For this value of µ, at no q

does β − U ′′ change sign.

From the above theoretical considerations and numerical evidence, we conclude

that in the QL or CE2 system near threshold, the operative instabilities determining

the ZF length scale are independent of the Kuo criterion. This conclusion has been

offered previously [21]; we have provided further analysis to support it.

8. Wave number selection

As evident from figure 4, we are presented with the theoretical quandary of having a wide

range of allowed, stable solutions and yet a narrow preferred region where QL realizations

tend to appear. This is common to pattern-forming systems, and the problem of wave

number selection is difficult [29]. The Rhines scale kR = β1/2µ1/4ε−1/4 works remarkably

well in giving the preferred ZF wave number. In this section we explore what features

of the equilibrium might correlate with the preferred wave number, in an attempt to

achieve a greater understanding of what determines wave number selection.
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Figure 5. (a) Comparison of β and U ′′(y) at µ = 0.15 and q = 0.6. (b) Minimum

value of β −U ′′ over y, as q is varied at µ = 0.15. For all q, β −U ′′ is always positive.

The stable ideal states lie in the unshaded region.

One might naturally inquire as to whether the preferred mode is the fastest growing

mode in the ZI about the homogeneous equilibrium. This does not appear to be the

case away from the threshold at larger γ [15,21], as seen in figure 4. There is, however, a

plausible scenario that emerges which may explain the merging of jets often observed in

the beginning stages of simulations, especially those which initialize everything at low

amplitudes. At large γ, it appears that the fastest growing mode may be to the right of

the stability region. In a simulation, the turbulence quickly comes to a quasi-equilibrium

on a short time scale and begins to drive the ZF. The growing ZF mode cannot stably

saturate, for its wavelength is too small to coexist with the turbulence. As the system

evolves through the subsequent instability to drive the jets toward larger wavelength, a

Hovmöller visualization displays merging jets.

Another possibility is that some kind of variational principle applies. The amplitude

equation, by which CE2 is governed near threshold, is a gradient system. The ideal states

of varying wave number q have varying values of the effective free energy. However,

the minimum of the effective free energy is not necessarily dynamically preferred [43].

In any case, away from threshold CE2 is not a gradient system and there is no

rigorous theoretical basis for expecting variational behavior to occur. From a different

perspective, for certain 2D turbulent systems, variational principles have long been

discussed theoretically. Some of these principles are based on the nonlinearly conserved

quadratic quantities, the energy and the enstrophy. For instance, in freely decaying

turbulence where viscosity provides the dissipation, the enstrophy is expected to decay

more quickly than the energy. One might expect the decaying turbulence to reach a state

of minimum enstrophy subject to the constraint of constant energy. Other principles

exist based on minimum dissipation or maximum entropy or entropy production [44].

Although these principles do not directly apply to the damped, driven CE2 system, they

at least motivate a numerical exploration to try to discover any correlation between the



Generation of zonal flows through symmetry breaking of statistical homogeneity 18

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Wave Number q

2.8

2.9

3.0

3.1

3.2

3.3
Total Energy

Total Enstrophy

Eddy Energy

Eddy Enstrophy

Figure 6. The energy and enstrophy, both total and that of just the eddies, for ideal

states of varying wave number q at µ = 0.15.

preferred wave numbers and other properties.

As a simple starting point for our exploration, we examine the energy and enstrophy

of the ideal states. Plots of the energy and enstrophy, for both the total and just the

eddies, are shown in figure 6 for µ = 0.15. For each quantity a distinct minimum is

present. We find at each µ the minimum of all four quantities; the resulting curves

are shown in figure 4. While the minima of the total energy and total enstrophy are

consistent with the QL realizations, there is no clear indication that either is especially

preferred. On the other hand, the accessible regime investigated here is not too far from

threshold, so this is not in the asymptotic regime of large γ.

9. Discussion

The averaging procedure to obtain the CE2 equations from the QL equations merits

further discussion. Under appropriate assumptions, which always include some kind of

ergodicity assumption, multiple choices of average will lead to the same final equations.

For instance, zonal [15], short-time [23], and coarse-graining [45] averages have been

discussed. The ergodicity assumption allows one to transform the average over the

random forcing into a deterministic quantity. One can also discuss things in terms of an

ensemble average, in which case an assumption of statistical homogeneity in the zonal

(x) direction is made, but inhomogeneity is allowed in the nonzonal (y) direction. In

this case, ergodicity is not required in order to derive the CE2 equations, but it becomes

necessary if one wants to interpret the solutions of the equations as having anything to

do with the behavior of an individual realization.

When using the ensemble average, Kraichnan pointed out in the context of

thermal convection that the definition of the statistical ensemble is somewhat subtle

for the situation of spontaneous symmetry breaking [46]. Because of the translational

symmetry, the zonal jets have no preferred location and are presumably equally likely

to form with any particular phase. One choice of the statistical ensemble is that it may
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encompass all possible realizations consistent only with the prescribed parameters, in

which case the ensemble itself is statistically homogeneous and any ensemble-averaged

quantity must be homogeneous also. Therefore the average yields zero mean ZF (and

then the ZF must be described as a fluctuation), despite the fact that each individual

realization has a nonzero ZF. This was the procedure followed in [19]. Another possibility

is that the ensemble might consist only of the realizations for which the zonal jets have

a particular phase. The latter interpretation is the one that yields the CE2 equations

identical to those obtained by zonal averaging. With the former ensemble, the ergodic

assumption is invalid, since an individual realization is no longer mixing throughout

the full set of realizations of this ensemble. This is consistent with the fact that the

ensemble-averaged behavior is not equivalent to the behavior of an individual realization.

Quantitatively, CE2 is not expected to be accurate in all situations (although it

may be in some cases [45]). Not only are the eddy self-nonlinearities entirely ignored,

which neglects the traditional cascades, but CE2 involves one-time correlation functions

rather than the more general two-time functions. The lack of time-history information

means that most of the effects of wave propagation are discarded [47]. To achieve

greater quantitative accuracy, the effect of eddy self-nonlinearities must be retained in

some way. One way this could be done is by incorporating the spectrum from nonlinear

simulations [24]. Another way is to go beyond CE2 and use third-order cumulants in

a CE3 framework [27]. Yet another alternative is to use inhomogeneous second-order

statistical closures such as the direct interaction approximation (DIA) [46]. Progress

developing inhomogeneous closures has been limited. A simpler DIA variant called the

quasi-diagonal DIA exists [48–50], but it approximates the interaction between the mean

field and the fluctuation. That approximation would affect the stability properties of the

ZF in ways currently unknown. Additionally, an inhomogeneous Markovianized closure

exists in the test-field model [51], but it is not statistically realizable in the presence of

waves [52,53]. A homogeneous realizable test-field model exists [53], but as of yet there

is no version that is both realizable and inhomogeneous. More work along these lines

needs to be done.

There is an important situation for which it is crucial to have the eddy self-

nonlinearities retained in a statistical sense, at least to describe the bifurcation from

homogeneous to inhomogeneous turbulence: a system with linear instability. The

oceans are baroclinically unstable and linear instabilities in plasmas are common. Some

plasma models have clearly demonstrated the symmetry-breaking bifurcation of ZF

generation [54]. In order to describe this transition, a model must have an equilibrium

of homogeneous turbulence to begin with. But in a QL or CE2 description, if no

ZFs are present then there are no nonlinear interactions, and it is impossible for a

linear instability to saturate. With linear instability present, a QL description has no

homogeneous equilibrium.

It is important to understand to how our analysis, which has been carried out on

an infinite β plane, pertains to a more geophysically realistic setting such as the surface

of a rotating sphere. In that case, because of the variation of the Coriolis parameter, the
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turbulence is always inhomogeneous with respect to latitude and there is no latitudinal

symmetry to be broken. However, there can still be spontaneous formation of a mean

field, in which case the ZF continues to play the role of an order parameter. As some

control parameter is varied, a statistical steady state without ZFs can go unstable in a

bifurcation at which ZFs are generated. This scenario appears to have been observed in

numerical simulations when the rotation rate is increased from zero [55]. Recently

CE2 on the rotating sphere has been studied and ZFs have been observed within

that framework [25, 26]. One avenue for future investigation is to use CE2 to study

zonostrophic instability on the sphere. Qualitative insight could be gained into the

structure of the unstable eigenfunction, including the direction of the equatorial jet.

In conclusion, we have examined in detail the transition from statistically

homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence

with steady zonal flows. Our study has been carried out within the QL approximation

using the CE2 statistical framework, which appears to contain much of the essential

physics of zonal flow generation yet is amenable to analysis. We believe, and numerical

evidence supports, that many of the features identified and examined here, including

the spontaneous symmetry breaking of statistical homogeneity and nonuniqueness of the

zonal flow wave number, are present in the full system as well as the QL system. We have

shown analytically within CE2 that multiple steady-state solutions exist with varying

zonal flow wavelengths, and that only those wavelengths within a certain subband are

linearly stable. Unstable wavelengths must evolve to reach a stable wavelength, and

this process manifests as merging jets. The simplest realization of the phenomenon of

merging jets appears in the well-known PDE (16), which governs the CE2 system near

threshold.
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Appendix

Here we derive the amplitude equation (16) directly from the CE2 equations (6) and

verify the results numerically. First, we review the procedure for the perturbation

expansion [29]. Then we fill in the algebraic details. We limit ourselves to quadratic

nonlinearity. Let φ be an abstract vector, Λ be a linear operator, N be a symmetric,

bilinear operator, and F be external forcing. Any of Λ, N , and F may depend explicitly

on the small parameter ǫ. The basic equation is taken to be

0 = Λφ+N(φ, φ) + F. (A.1)
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Given a nonzero equilibrium φe, we change variables by letting φ = φe + u to obtain

0 = Lu+N(u, u), (A.2)

where Lu = Λu + 2N(φe, u). In performing the perturbation procedure, we use a

multiple-scale expansion with slowly varying space and time scales. This is accomplished

by introducing the slow scales Y = ǫ1/2y and T = ǫt, then letting ∂y → ∂y + ǫ1/2∂Y
and ∂t → ∂t + ǫ∂T . Using these, we expand L = L0 + ǫ1/2L1 + ǫL2 + ǫ3/2L3 + · · ·,
N = N0 + ǫ1/2N1 + · · ·, and u = ǫ1/2u1 + ǫu2 + · · · . Then at O(ǫ1/2), O(ǫ), and O(ǫ3/2),

the equations are

0 = L0u1, (A.3)

0 = L0u2 + L1u1 +N0(u1, u1), (A.4)

0 = L0u3 + L1u2 + L2u1 + 2N0(u1, u2) +N1(u1, u1), (A.5)

respectively.

At O(ǫ1/2), the condition L0u1 = 0 states that u1 is an eigenvector with a zero

eigenvalue. Then u1 can be a linear combination of null eigenvectors with a to-be-

determined amplitude. The reality condition on u restricts the form to be

u1 = A(Y, T )r + A(Y, T )∗r∗, (A.6)

where r ∼ eiqcy (and its complex conjugate) are the right null eigenvectors. Here, qc
is the critical wave number that first goes unstable as the parameter ǫ crosses zero.

Given an inner product (·, ·), then associated with the right null eigenvector is a left

null eigenvector l of L0, such that (l, L0u) = 0 for any u. The y dependence of l will

also be eiqcy. The amplitude A will be determined by nonlinearities occurring at higher

order.

At O(ǫ), we first note that L1u1 = 0 automatically. This is because qc is marginally

stable at the instability threshold: given a dispersion relation λ(q, ǫ) as a function of

wavenumber q and control parameter ǫ, then both λ(qc, 0) = 0 and λ′(qc, 0) = 0. The

latter equality yields the condition L1u1 = 0. In order to ensure that a solution for

u2 exists, a solvability condition obtained by taking the inner product with the left

null eigenvector must be satisfied. This solvability condition is (l, L0u2 +N0(u1, u1)) =

(l, N0(u1, u1)) = 0. Because l ∼ eiqcy and N0(u1, u1) ∼ 1 or e±2iqcy due to the quadratic

nonlinearity, this solvability condition is always satisfied. Thus, given that a solution

exists, one may write u2 as a linear combination of homogeneous and particular solutions:

u2 = u2h + u2p, (A.7)

where

u2h = A2(Y, T )r + A2(Y, T )
∗r∗, (A.8)

L0u2p = −N0(u1, u1). (A.9)

We have introduced another unknown parameter A2, but we will not need it in order to

solve for A.
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At O(ǫ3/2), note that L1u2h = 0 for the same reason that L1u1 = 0. Upon writing

the solvability condition, one finds that several terms vanish, leaving

0 = (l1, L2u1) + (l1, 2N0(u1, u2p)). (A.10)

This is the desired partial differential equation which determines the amplitude A.

Observe that one never explicitly needs L1 or N1.

We now apply this procedure to (6). For simplicity, we set the viscosity to zero, take

infinite deformation radius, and cross the instability threshold by varying the strength

of the forcing (rather than by varying the friction as in the main text); modification

for other scenarios is obvious. Let the forcing be given by F (x, y) = (1 + ǫ)F0(x, y),

where instability threshold is at ǫ = 0. We shift variables relative to the equilibrium

at Weqb = (1 + ǫ)F0/2µ, Ueqb = 0. Explicitly, the abstract vector u consists of two

components, u = {W,U}. Then we have the basic structure of (A.2) with

[Lu]W = −∂tW (x, y | y) + 2β∂y∂x∂yD
−1W (x, y | y)− 2µW (x, y | y)

−1 + ǫ

2µ
{[U(y + 1

2
y)− U(y − 1

2
y)]∂xF0(x, y)

−∂2y [U(y + 1
2
y)− U(y − 1

2
y)]∂x∇−2F0(x, y)}, (A.11a)

[Lu]U = −∂tU(y)− ∂y∂x∂yD
−1W (0, 0 | y)− µU(y), (A.11b)

where

D = ∇4 +
1

2
∂2x∂

2
y −

1

2
∂2y∂

2
y +

1

16
∂4y . (A.12)

Note that D−1 commutes with ∂x, ∂y, and ∂y.

For the nonlinear operator N(v, z), with v = {vW , vU} and z = {zW , zU}, we have

the unsymmetrized version Nun,

[Nun(v, z)]W = −[vU (y +
1
2
y)− vU(y − 1

2
y)]∂xzW

+[∂2yvU(y +
1
2
y)− ∂2yvU(y − 1

2
y)](∇2 + 1

4
∂2y)∂xD

−1zW

−[∂2yvU(y +
1
2
y) + ∂2yvU(y − 1

2
y)]∂y∂x∂yD

−1zW , (A.13a)

[Nun(v, z)]U = 0. (A.13b)

The symmetrized operator is then given by

N(v, z) =
1

2
[Nun(v, z) +Nun(z, v)]. (A.14)

We now introduce the slow space and time scales. One subtlety that was not

mentioned in the general procedure described above is that the ui may need to be

expanded in ǫ. This occurs for two reasons. First, because the U(y ± 1
2
y) terms lead to

A(ǫ1/2[y ± 1

2
y]) = A(Y ± 1

2
ǫ1/2y) = A(Y )± 1

2
yǫ1/2∂YA+

1

8
y2ǫ∂2YA+ · · · . (A.15)

Second, the eigenvector r itself contains the differential operator ∂y, which must be

expanded in the multiple-scales procedure. It is extremely convenient to introduce

these expansions at the outset so as to keep all of the ǫ expansion in a single place. This

procedure is even more motivated when we absorb these extra terms into L1 and L2, for
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these terms are necessary in order to satisfy L1u1 = 0. If instead we kept separate the

ǫ expansion of u1, the result would be an awkward expression like L0u1;1 + L1u1;0 = 0.

To introduce our convenient shortcut, first recall that since N1 is never needed, we only

need to perform this within L. Then, for the places where U(y ± 1
2
y) occurs within L,

we substitute, keeping only to the order required,

U(y ± 1

2
y) → [1± 1

2
yǫ1/2∂Y +

1

8
y2ǫ∂2Y ]U(y ±

1

2
y), (A.16)

and then later on when we substitute the specific form of u1, we substitute A(Y ) rather

than A(Y + 1
2
ǫ1/2y). The second place we introduce the expansion is that since r depends

on ∂y, we have

r(∂y) → r(∂y + ǫ1/2∂Y ) = r(∂y) + ǫ1/2∂Y
∂

∂(∂y)
r(∂y) +

1

2
ǫ∂2Y

∂2

∂(∂y)2
r(∂y). (A.17)

Then, letting ∂y → iq (which we can do because we will only need to perform this

expansion on a term eiqcy and not other harmonics), we see that

r(q) → [1− iǫ1/2∂Y
∂

∂q
− 1

2
ǫ∂2Y

∂2

∂q2
]r(q). (A.18)

To implement this, one can set, in L,

W (y) → [1− iǫ1/2∂Y “∂q”−
1

2
ǫ∂2Y “∂

2
q”]W (y), (A.19)

where the “∂q” means that the derivative acts only on r(q), not on the eiqy part of u1.

We need only make this replacement inW , not U , because the U component of the right

null eigenvector does not contain any derivatives ∂y. One can verify that this shortcut

gives the same results as if one proceeded more straightforwardly.

The problem is most conveniently expressed in terms of the Fourier transform of

the difference variables x, y. We use the convention

f(kx, ky) =

∫

dx dy e−ikxxe−ikyyf(x, y). (A.20)

After the Fourier transform, the required linear operators are given by

[L0u]W =

(

− 2βkxky∂y
g0(kx, ky, y)

− 2µ

)

W (kx, ky | y)−
∫

dk′y e
ik′

y
yh0(kx, ky, k

′

y)
Û(k′y)

2π
, (A.21a)

[L0u]U = ∂y
1

(2π)2

∫

dkxdky
kxky

g0(kx, ky, y)
W (kx, ky | y)− µU(y), (A.21b)

[L2u]W = −∂TW (kx, ky | y)−
∫

dk′y e
ik′yyh0(kx, ky, k

′

y)
Û(k′y)

2π

−2β∂2Y

(

s0(kx, ky, y)−
ikxky∂

2
yg1(kx, ky, y)

g0(kx, ky, y)
“∂q” +

kxky∂y
2g0(kx, ky, y)

“∂2q”

)

W (kx, ky | y)

+∂2Y µ“∂
2
q”W (kx, ky | y), (A.22a)

[L2u]U = −∂TU(y) + ∂2Y
1

(2π)2

∫

dkx dky

×
(

s0(kx, ky, y)−
ikxky∂

2
yg1(kx, ky, y)

g0(kx, ky, y)
“∂q” +

kxky∂y
2g0(kx, ky, y)

“∂2q”

)

W (kx, ky | y). (A.22b)
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And the nonlinear operator is given by

[Nun
0 (v, z)]W =

∫

dk′y e
ik′

y
y[s1(kx, ky, k

′

y, y)zW (kx, ky − 1
2
k′y | y)

−s1(kx, ky,−k′y,−y)zW (kx, ky +
1
2
k′y | y)]

v̂U(k
′

y)

2π
, (A.23a)

[Nun
0 (v, z)]U = 0, (A.23b)

where again the symmetrized version is N0(v, z) =
1
2
[Nun

0 (v, z) +Nun
0 (z, v)].

Here, Û is the Fourier transform of U . Our expressions for U(y) will always consist

of periodic exponentials, and so Û contains delta functions and the convolution integral

can be immediately performed. We also have defined

k2 = k2x + k2y , (A.24)

g0(kx, ky, y) = k4 − 1

2
k2x∂

2
y +

1

2
k2y∂

2
y +

1

16
∂4y , (A.25)

g1(kx, ky, y) = −k2x + k2y +
1

4
∂2y , (A.26)

g2(kx, ky, y) = −1

2
k2x +

1

2
k2y +

3

8
∂2y , (A.27)

h0(kx, ky, k
′

y) =
ikx
2µ

[(

1−
k′2y

k2x + (ky − 1
2
k′y)

2

)

F0(kx, ky −
1

2
k′y)

−
(

1−
k′2y

k2x + (ky +
1
2
k′y)

2

)

F0(kx, ky +
1

2
k′y)

]

, (A.28)

s0(kx, ky, y) = kxky∂y

(

∂2yg1(kx, ky, y)
2 − g0(kx, ky, y)g2(kx, ky, y)

g0(kx, ky, y)3
− g1(kx, ky, y)

g0(kx, ky, y)2

)

,(A.29)

s1(kx, ky, k
′

y, y) = −ikx
(

1 +
k′2y [−k2x − (ky − 1

2
k′y)

2 + 1
4
∂2y ]− ik′2y ∂y(ky − 1

2
k′y)

g0(kx, ky − 1
2
k′y, y)

)

. (A.30)

We also define ĝ0(kx, ky, ky) as g0(kx, ky, y) with ∂y → iky, and similarly for ĝ1, ĝ2, ŝ0,

and ŝ1.

We define an inner product

(v, z) =

∫

dy v∗U(y)zU(y)+

∫

dy dkx dky v
∗

W (kx, ky | y)zW (kx, ky | y).(A.31)

At O(ǫ1/2), we find that u1 is given by (A.6) with the right null eigenvector given

by r = eiqcy{rW (kx, ky, q), U0}, where

rW (kx, ky, q) = −h0(kx, ky, q)U0

ĝ3(kx, ky, q)
, (A.32)

ĝ3(kx, ky, q) = 2µ+
i2βkxkyq

ĝ0(kx, ky, q)
, (A.33)

and U0 is a constant with dimension of velocity and a value of unity, whose purpose is

to help keep track of dimensional consistency. The complex conjugate of the left null

eigenvector is found to be l∗ = e−iqcy[l∗W (kx, ky, q), 1], where

l∗W (kx, ky, q) =
iqkxky

(2π)2ĝ0(kx, ky, q)ĝ3(kx, ky, q)
. (A.34)
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The q dependence of rW and lW is now suppressed except for where it matters in (A.45);

they should be evaluated at q = qc.

At O(ǫ), we need to solve the particular solution of (A.9). Take an ansatz

u2pW = aW (kx, ky)A
2ei2qcy + aW (kx, ky)

∗A∗2e−i2qcy + bW (kx, ky)AA
∗, (A.35a)

u2pU = aUA
2ei2qcy + a∗UA

∗2e−i2qcy + bUAA
∗. (A.35b)

After some algebra we find

aW (kx, ky) = −h0(kx, ky, 2qc)
ĝ3(kx, ky, 2qc)

aU

+
U0[ŝ1(kx, ky, qc, qc)rW (kx, ky − 1

2
qc)− ŝ1(kx, ky,−qc,−qc)rW (kx, ky +

1
2
qc)]

ĝ3(kx, ky, 2qc)
, (A.36)

aU =
Na

Da

, (A.37)

Na =
i2qcU0

(2π)2

∫

dkxdky
kxky[ŝ1(kx, ky, qc, qc)rW (kx, ky − 1

2
qc)− ŝ1(kx, ky,−qc,−qc)rW (kx, ky +

1
2
qc)]

g0(kx, ky, 2qc)ĝ3(kx, ky, 2qc)
,(A.38)

Da = µ+
i2qc
(2π)2

∫

dkxdky
kxkyh0(kx, ky, 2qc)

g0(kx, ky, 2qc)ĝ3(kx, ky, 2qc)
, (A.39)

bW (kx, ky) =
U0

2µ
[ŝ1(kx, ky, qc,−qc)rW (kx, ky −

1

2
qc)

∗ − ŝ1(kx, ky,−qc, qc)rW (kx, ky +
1

2
qc)

∗

−ŝ1(kx, ky, qc,−qc)rW (kx, ky −
1

2
qc) + ŝ1(kx, ky,−qc, qc)rW (kx, ky +

1

2
qc)], (A.40)

bU = 0. (A.41)

At O(ǫ3/2), the solvability condition (A.10) becomes

c0∂TA(y, t) = c1A + c2∂
2
YA− c3|A|2A, (A.42)

where

c0 = U0 +

∫

dkxdky l
∗

W (kx, ky)rW (kx, ky)|q=qc, (A.43)

c1 = −U0

∫

dkxdky l
∗

W (kx, ky)h0(kx, ky)|q=qc, (A.44)

c2 =
∂2

∂q2

∣

∣

∣

∣

q=qc

1

2

∫

dkxdky l
∗

W (kx, ky, q)U0h0(kx, ky, q), (A.45)

c3 = −
∫

dkxdky l
∗

W (kx, ky){U0[ŝ1(kx, ky, q, 0)bW (kx, ky −
1

2
q)− ŝ1(kx, ky,−q, 0)bW (kx, ky +

1

2
q)]

+U0[ŝ1(kx, ky,−q, 2q)aW (kx, ky +
1

2
q)− ŝ1(kx, ky, q,−2q)aW (kx, ky −

1

2
q)]

+aU [ŝ1(kx, ky, 2q,−q)rW (kx, ky − q)∗ − ŝ1(kx, ky,−2q, q)rW (kx, ky + q)∗]}|q=qc. (A.46)

After returning to the unscaled variables by letting T → ǫt, Y → ǫ1/2y, and

A → A/ǫ1/2, we recover (16). The coefficients ci involve integrals over the forcing

spectrum, which is here presented in a form where the wave numbers are shifted, i.e.,

contain terms like ky − 1
2
q. It is also possible to shift the integration variable so all
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integrals contain just the unshifted forcing F0(kx, ky), after which the q derivatives in c2
can be explicitly computed [39].

It is also possible to obtain c0, c1, and c2, which govern the linear behavior, via

the alternate and much simpler route of using the analytic dispersion relation (12).

The dispersion relation can be put into the form D(λ, ǫ, q) = 0. The conditions of the

instability threshold require D(0, 0, qc) = 0 and ∂D/∂q(0, 0, qc) = 0. Upon expanding

D to lowest order about (0, 0, qc), one finds

−∂D
∂λ

(0, 0, qc) λ = ǫ
∂D

∂ǫ
(0, 0, qc) +

1

2

∂2D

∂q2
(0, 0, qc)(q − qc)

2. (A.47)

Then up to a constant of proportionality, we identify c0 = −∂D/∂λ(0, 0, qc), c1 =

∂D/∂ǫ(0, 0, qc), and c2 = −1
2
∂2D/∂q2(0, 0, qc). This was used to put c2 above into a

succinct form.

To numerically verify these analytic expressions, we take an example forcing

F0(kx, ky) = Ak exp[−(k − kf )
2/σ2

k], with k2 = k2x + k2y, A = 4
√
πε/σk, kf = 1, and

σk = 0.5. For the other parameters we use µ = 0.1, β = 1. Then the critical value

of the control parameter is calculated to be εc = 0.1297 with a critical wavenumber

qc = 0.676. We compute c0 = 1.10, c1 = 0.1 = µ, c2 = 0.422, and c3 = 2.28. The

analytic growth rate found from (16) is compared with that from the exact dispersion

relation (12). Similarly, the analytic ZF amplitude found from (16) is compared with

that from solving the ideal states as in section 6. The results are shown in figure A1

and are in excellent agreement. The results are also in agreement with the independent

calculation of [39].
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