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The physics of the second-order gyrokinetic MHD Hamiltonian:

µ conservation, Galilean invariance, and ponderomotive potential
J. A. Krommes

1, a)

Plasma Physics Laboratory, Princeton University, MS 28, P.O. Box 451, Princeton,

NJ 08543–0451

Some physical interpretations are given of the well-known second-order gyrokinetic Hamiltonian in the MHD
limit. Its relations to the conservation of the true (Galilean-invariant) magnetic moment and fluid nonlin-
earities are described. Subtleties about its derivation as a cold-ion limit are explained; it is important to
take that limit in the frame moving with the E × B velocity. The discussion also provides some geometric
understanding of certain well-known Lie generating functions, and it makes contact with general discussions
of ponderomotive potentials and the thermodynamics of dielectric media.

It is well known that gyrokinetics (see the review by
Krommes1 and references therein, as well as the ped-
agogical material in Ref. 2) can be described as a La-
grangian field theory.3,4 In full generality, including gra-
dients of the background magnetic field B and finite-
Larmor-radius (FLR) effects, the gyrocenter Hamilto-
nian H is quite complicated, even at second order5 in the
gyrokinetic expansion parameter ǫ. However, in the ab-
sence of gradients ofB and FLR effects, the second-order
Hamiltonian simplifies dramatically to the well-known
form6–8

H2 = −
1

2
Mu2

E, (1)

where M ≡ mi is the ion mass and uE

.
= cb̂×∇φ/B is

the E ×B velocity. (I consider only electrostatics, with
φ being the electrostatic potential such that E = −∇φ;

the constant magnetic field is written as B = Bb̂.) Au-
thors such as Scott & Smirnov9 have used this ‘MHD
Hamiltonian’ to good advantage in order to illustrate var-
ious aspects of gyrokinetics such as conservation proper-
ties. Clearly H2 is the negative of the kinetic energy
associated with the E × B motion of the gyrocenters;
the reason for the minus sign may not be immediately
apparent. In this note I give several relatively elemen-
tary derivations of H2 and discuss some subtleties that
may not be generally appreciated.
In particular, note that the MHD Hamiltonian (1)

does not involve the ion temperature Ti; it remains
nonzero in the cold-ion limit Ti → 0. Frequently the
program for obtaining a gyrokinetic Hamiltonian is de-
scribed as a systematic, order-by-order elimination of
gyrophase ζ, which inevitably conjures up the idea of
an average over a rapidly rotating gyroradius vector ρ,

where ρ
.
= b̂× v⊥/ωc = ρâ is the gyroradius vector and

ωc
.
= qB/Mc is the gyrofrequency. (The symbol

.
= is

used for definitions.) It may seem that ‘cold ions’ implies
ρ → 0 (v⊥ → 0). If that were true, one could inquire
whether in the limit there is anything left to rotate and
whether the gyrokinetic expansion is valid.
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One of the difficulties with such discussion is an impre-
cision about exactly to which coordinates one is referring
and what quantities are held fixed as the limit Ti → 0 is
taken. In order to explain this further, let me note that
the conceptual advance in the development of gyrokinet-
ics was to shift the focus from rapidly gyrating particles
to slowly drifting gyrocenters. (An important early pa-
per was by Catto10; for more references, see Ref. 1.) Let
us define the ‘lowest-order’ gyrocenter X by X ≈ x−ρ,
where x is the particle position; gyrophase is defined in
terms of ρ (or, equivalently, in terms of v⊥ = v⊥ĉ; note

that â, b̂, and ĉ form an orthonormal basis). This defi-
nition is natural, and the approximation becomes exact
for purely circular motion. However, in the presence of
an electrostatic potential φ, X of course moves with (at
least) the E × B velocity, so the particle motion is not
precisely circular. Relative to the instantaneous center of
gyration, defined in some systematic way, one can intro-
duce a ‘true’ gyrophase ζ 6= ζ and a true magnetic mo-
ment µ 6= µ

.
= 1

2Mv2
⊥
/ωc.

11 One must be careful about
the meaning of the ‘zero-gyroradius limit’; at fixed ωc,
does one mean ρ(µ, ζ) → 0 or ρ(µ, ζ) → 0? The answer
is the latter, as I will demonstrate.
The definitions of the new, barred variables are not

unique in the absence of a further constraint (which
amounts to giving a precise meaning to ‘instantaneous
center of gyration’). That constraint is the adiabatic con-
servation of the true magnetic moment µ. To guess the
form of µ, one can invoke the idea of Galilean invariance.
The lowest-order quantity µ is not Galilean-invariant; it
changes its value under a shift in velocity. Galilean invari-
ance is restored if v⊥ is referred to a reference velocity,
which is naturally chosen to be uE. Thus, one guesses

µ ≈
1

2

M |v⊥ − uE(x)|
2

ωc(x)
. (2)

Indeed, it is easy to demonstrate from the equation of
motion

dv

dt
=

q

M
(E + c−1v ×B) (3)

that µ is exactly conserved when uE and B are constant.
Putting that another way, if one makes the transforma-
tion v⊥ = uE + δv⊥, one finds for constant uE and B
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that the equation of motion reduces to

dδv⊥

dt
− ωcδv⊥ × b̂ = 0, (4)

the solution of which is purely circular motion. That is,
the motion is purely circular in a frame moving with a
constant uE.
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FIG. 1. Illustration of the relation between the original gyro-

radius ρ and the transformed gyroradius ρ, and the geometry

that determines the first-order corrections to magnetic mo-

ment µ and gyrophase ζ. Here it is assumed that a constant

magnetic fieldB is out of the page and that a constant electric

field E points up, so that the E×B drift uE is to the right;

λ
.
= ρ/v⊥ = ω−1

c
. Left-hand dotted path: circular motion in

the unshifted frame; right-hand dotted path: motion around

the instantaneous center of gyration in the moving frame.

To discuss the cold-ion limit, one usually invokes the
idea of an equilibrium Maxwellian distribution. An equi-
librium solution of the gyrokinetic equation should be a
function of the constants of motion. Indeed, a perpen-
dicular ion Maxwellian shifted by uE is proportional to

exp

(
−
1

2
|v⊥ − uE|

2/v2ti

)
= e−µωc/Ti . (5)

Thus the limit Ti → 0 constrains µ to vanish [the dis-
tribution function is proportional to δ(µ)]. With gyrora-
dius defined by ρ

.
= v⊥/ωc = (2µ/Mωc)

1/2 and similarly
ρ

.
= (2µ/Mωc)

1/2, one sees that ρ → 0 in the cold-ion
limit. ρ, however, does not vanish, since µ = 0 con-
strains v⊥ to be equal to uE, or ρ = uE/ωc. This length
is not associated with circular motion.
Thus it is crucial to understand the distinction between

the barred and unbarred variables, and the definitions of
each. At first order, it is not hard to use geometric rea-
soning to obtain the barred quantities; see Fig. 1. That
figure illustrates that the transformed gyroradius is based
on the perpendicular velocity relative to the drift motion

(E ×B here); thus

ρ = ω−1
c b̂× v⊥, v⊥

.
= v⊥ − uE. (6)

This relation can be used to determine the first-order
corrections ∆µ and ∆ζ (later to be identified with the

first-order ‘Lie generating functions’ wµ
1 and wζ

1) as fol-
lows. From the figure, one sees that approximately

∆ρ/ρ = −ĉ · uE/v⊥; (7)

from ∆ρ/ρ = 1
2∆µ/µ and the definition µ

.
= 1

2Mv2
⊥
/ωc,

one obtains

∆µ = −Mρĉ · uE. (8)

Similarly, one sees that ρ∆ζ = λâ·uE , where λ
.
= ρ/v⊥ =

ω−1
c is the scale factor relating gyroradius to velocity;

thus

∆ζ = â · uE/v⊥. (9)

More formally, one has

ρ = ρ(µ)â(ζ) (10a)

≈ ρ(µ+∆µ)â(ζ +∆ζ) (10b)

≈ ρ+∆µ
∂ρ

∂µ
â(ζ) + ∆ζρ(µ)ĉ(ζ), (10c)

where ∂ζâ = ĉ was used. From µ
.
= 1

2Mv2
⊥
/ωc, one

has ∂ρ/∂µ = (Mv⊥)
−1. One can therefore determine

the corrections by resolving the uE term in Eq. (6) onto
the â and ĉ directions:

(−ω−1
c b̂× uE) · (â â+ ĉ ĉ) (11a)

= −(ω−1
c ĉ · uE)â+ (ω−1

c â · uE)ĉ. (11b)

Upon comparing with the form (10c), one once again
obtains Eqs. (8) and (9).
To proceed to higher order, one requires a system-

atic procedure. Thus one changes variables from the
particle phase-space variables z to gyrocenter variables
z

.
= {X, U, µ, ζ}, where X is the gyrocenter position,

U is the effective parallel velocity of the gyrocenter, µ is
the (adiabatically conserved) magnetic moment, and ζ is
the transformed gyrophase. One standard way of deriv-
ing the transformation z = Tz is via a Lie transforma-
tion T = exp(Lw), where Lw

.
= wν∂ν). For asymptotic,

order-by-order expansion, one can use either the original
Deprit series8,12 for w or the compound transformation
advocated by Dragt & Finn8,13:

T = . . . eL2eL1 = 1 + L1 + (L2 +
1

2
L2
1) + · · · , (12)

where Ln
.
= ǫnLwn

. The first-order generating functions
are recorded in the review article by Brizard & Hahm.14

Specialized to the case of constant magnetic field, they
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are

wx

1⊥ = −ρ, (13a)

wU
1 = 0, (13b)

wµ
1 = ω−1

c ρ ·∇φ̂, (13c)

wζ
1 = (ωcv⊥)

−1ĉ ·∇φ̂, (13d)

where φ̂
.
= qφ/M (having dimensions of velocity

squared). Upon noting that uE = ω−1
c b̂×∇φ̂ and that

∆µ = L1µ = wµ
1 and similarly for ∆ζ, one can readily

verify that Eqs. (8) and (13c) are in agreement, as are
Eqs. (9) and (13d). It is also not difficult to find that

wx

2⊥ =
1

2
ω−2
c ∇⊥φ̂, (14a)

wU
2 = 0, (14b)

wµ
2 = 0; (14c)

wζ
2 will not be needed here.
Upon using Eq. (12) to calculate µ = Tµ, one finds

that

µ = µ+ wµ
1 + wµ

2 +
1

2
L1w

µ
1 + · · · . (15)

Simple algebra using Eqs. (13a) and (14a) leads to

L1w
µ
1 = (wµ

1 ∂µ + wζ
1∂ζ)(ω

−1
c ρ · ∇φ̂) = ω−2

c |∇⊥φ̂|
2 and

finally to

µ =
1

2

M |v⊥ − uE|
2

ωc
+O(ǫ3), (16)

which agrees with the heuristic result (2). I will not re-
view the Lie-theoretic derivation of H2, but it follows
immediately once wx

2 is known.
Because the variable transformation was chosen to pre-

serve the symplectic structure,14 the Poisson brackets re-
tain their guiding-center forms.14 In particular,

M
dX

dt
= {X, H} =

c

B
b̂×∇H(z) + · · · . (17)

The contribution from H1 = qφ gives the usual E × B

drift uE . From H2, one obtains a ponderomotive correc-
tion

∆u =
c

B
b̂×∇

(
−
1

2
Mu2

E

)
(18)

stemming from the ponderomotive potential
q−1[− 1

2Mu2
E(x)]. To interpret that potential, one

may turn to the equation of motion

M
dv

dt
= qE(x) +Mωcv × b̂, (19)

which is written in terms of particle variables. Now

E(x) = E(X + ρ) = E(X) + ρ(z) ·∇E + · · · . (20)

Here ρ(z) = ρ(µ)â(ζ), again written in terms of particle
variables. We encounter here the same paradox alluded
to earlier, which is that if one were to equate the cold-
ion limit with the limit ρ(z) → 0, the gyroradius cor-
rection (which will ultimately lead to the ponderomotive
effect) would vanish. We know, however, that is incor-
rect because v⊥ contains a uE part. What one must do
is write ρ(z) in terms of the barred variables (in terms of
which the conservation of µ is manifest), then take the
limit. One has

ρ(z) = ρ(µ)â(ζ) (21a)

≈ ρ(µ−∆µ)â(ζ −∆ζ) (21b)

≈ ρ(µ)â(ζ)−∆µ∂µρ(µ)â(ζ)−∆ζ ρ(µ)∂ζâ(ζ) + · · ·

(21c)

= ρ− wµ
1 (ωcv⊥)

−1â(ζ)− wζ
1ρ(µ)ĉ(ζ) +O(ǫ3)

(21d)

= ρ− ω−2
c ∇⊥φ̂(X) +O(ǫ3). (21e)

(The operations are the same as those involved in the cal-
culation of L1w

x

1 .) In the cold-ion limit, ρ → 0 and the
ρ correction in Eq. (20) is at second order proportional
to −∇⊥φ · ∇(−∇φ) = 1

2∇|∇⊥φ|
2. Upon comparing

with Eq. (18), one sees that this gives rise exactly to the
force arising from the ponderomotive potential q−1H2:
q∆E = q[ρ(z) ·∇(−∇φ)] = · · · = −∇H2.
So far I have interpreted the gyrokinetic Hamilto-

nian H2 by using detailed considerations about the mo-
tion of a particle gyrating in a strong magnetic field, since
I wished to emphasize that the cold-ion limit must be
taken in the moving frame. However, there is a both
simpler and more general route to the answer. Dodin
& Fisch have shown,15 by using considerations relating
to action conservation, that in a system of weakly inter-
acting waves the ponderomotive potential energy Φ can
be written to lowest (dipole–field interaction) order as

Φ2 = − 1
4E

∗ · Â ·E, where Â
.
= 1

4π δX̂/δn, X̂ is the suscep-
tibility tensor, n is the density, a species label is omitted,
and only one mode is considered. The applicability of
this wave-based formula to the physics of a gyrating par-
ticle requires further discussion, but can be heuristically
justified by drawing an analogy between (i) time averag-
ing over the fast quiver of a particle in a wave field, and
(ii) averaging over the rapidly changing gyration phase
of a particle in a magnetic field; cf. the general discussion
in Sec. 2.1 of Ref. 15. In electrostatic gyrokinetics, the
cold-ion permittivity, which describes the crucial process
of ion polarization, is1,2

χ⊥ =
ω2
pi

ω2
ci

=
4πnMc2

B2
. (22)

After allowing for the fact that a field in real space in-
volves both positive and negative wave numbers, which
introduces a factor of 2, one finds that the previous for-
mulas reduce to

Φ2 = −
1

2

Mc2

B2
|∇⊥φ|

2 = −
1

2
Mu2

E = H2, (23)
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in agreement with the previous results. That an interac-
tion potential can be negative is, of course, well known:
an elementary discussion in the context of gravitational
energy is given in Ref. 16; the general formula for the
interaction of a dipole with an external field, which con-
tains an explicit minus sign, is derived in Ref. 17; and
the fact that a ponderomotive potential in the presence
of a magnetic field can be negative has been known since
at least 1958.18

Although the ponderomotive potential is negative, the
energy constant of the gyrokinetic–Poisson system is pos-
itive, consisting of the zeroth-order gyrocenter kinetic
energy plus a polarization energy whose value in the
present limit is19 Epol =

∫
dxn(12Mu2

E). This coin-
cides with the well-known expression for the polariza-
tion free-energy density of a linear dielectric medium,
Epol =

1
8π

∫
dxχE2, when formula (22) is used. This re-

sult is frequently derived20 by calculating the incremen-
tal energy E · ∆P [P ≈ (4π)−1χE is the polarization)
of a small amount of additional free charge added to an
existing dielectric configuration that is frozen so no me-
chanical work is done, then summing the increments to
obtain the final result. This corresponds to the proce-
dure followed by Dubin et al.,7 who obtained their en-
ergy constant by transforming the particle Hamiltonian.
The alternate possible expression E · P ≈ Mu2

E
, which

is written in terms of the fields of the final state, includes
the contribution of the mechanical work that was used
to achieve that state, so to obtain the proper free energy
one must add the (negative) interaction potential. In this
limit, that turns out to mean subtracting the guiding-
center kinetic energy associated with the final configura-
tion: Mu2

E
− 1

2Mu2
E

= 1
2Mu2

E
. This is a special case

of the general expression for gyrokinetic energy that was
given by Brizard3: E =

∫
dz F (z, t)[H − q〈(T∗gy)

−1φgc〉],

where F is the gyrocenter distribution function and T∗ is
the pullback transformation2,14,21 such that the particle
distribution f is f = T∗F ; see Ref. 3 for further defini-
tions. The last term corresponds to E ·P ; the term in H
contains the negative H2 that must be added to give the
correct conserved quantity for the entire system, which
contains both free (gyrocenter) and bound (polarization)
charge. The thermodynamics associated with the various
equivalent procedures are spelled out clearly in §10 and
§11 of Ref. 20. In particular, H2 represents the polariza-
tion free energy relative to the state in which polarization
does not occur (the hypothetical state that would pertain
“if the body were absent”).

These calculations show, in the simplest possible con-
text, how ponderomotive nonlinearities and the second-
order gyrokinetic Hamiltonian are intimately related to
each other, to the thermodynamics of a gyrokinetic
plasma, which behaves as a polarizable medium, and to
conservation of the magnetic moment µ; they also pro-
vide a physical interpretation of the somewhat abstract
Lie generating functions. In general, ponderomotive ef-

fects to higher order are most easily obtained by system-
atic calculation of gyrokinetic µ-conserving variables, but
the effects are physical and the ponderomotive force will
show up as well in a calculation based on particle, not
gyrocenter, variables, as we have seen. (A related calcu-
lation is by Scott,22 who discussed the relationship be-
tween gyrofluid equations and the Braginskii equations.)
The last observation has implications for recent dis-

cussions of gyrokinetic momentum conservation laws. In
numerous papers (many of which are referenced and dis-
cussed in Ref. 2), Parra & Catto have considered aspects
of momentum conservation in the laboratory (particle)
frame. Scott & Smirnov9 and Brizard & Tronko23 have
instead considered the momentum conservation law for
the gyrokinetic–Maxwell system. There are definite ad-
vantages of simplicity for the latter approach. However,
since f = T∗F , the same physics results relating to mo-
mentum conservation will follow from either the particle-
based or the gyrocenter-based moment equations pro-
vided that one deals properly with the ponderomotive
nonlinearities. The present calculations provide the sim-
plest example of this fact.
I am grateful for informative discussions about gyroki-

netics with A. Brizard, G. Hammett, and W. W. Lee, and
about ponderomotive potentials with I. Dodin. Useful
comments on the manuscript were received from I. Dodin,
G. Hammett, and J. Squire. This work was supported
by the U. S. Department of Energy Contract DE-AC02-
09CH11466.
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