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Zonal Flow as Pattern Formation
Jeffrey B. Parker1, a) and John A. Krommes1, b)

Princeton University, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543,
USA

(Dated: 7 August 2013)

Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged
equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows and inho-
mogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the
zonal flow wavelength is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain
continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband
are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as
merging jets.

Zonal flows — azimuthally symmetric, generally
banded, shear flows — are spontaneously generated from
turbulence and have been reported in atmospheric1 and
laboratory plasma2 contexts. Recently, they have also
been observed in astrophysical simulations.3 In magnet-
ically confined plasmas, zonal flows are thought to play
a crucial role in regulation of turbulence and turbulent
transport.4,5 A greater understanding of zonal flow be-
havior is valuable for untangling a host of nonlinear pro-
cesses in plasmas, including details of transitions between
modes of low and high confinement.

Zonal flows remain incompletely understood, even re-
garding the basic question of the jet width. In the plasma
literature, one finds modulational or secondary instabil-
ity calculations of zonal flow generation,5,6 but these can-
not provide information on a saturated state. Other the-
ories typically make an assumption of long wavelength
zonal flows and leave the zonal flow scale as an undeter-
mined parameter.7 Within geophysical contexts, various
authors have attempted to relate the jet width or spacing
to length scales that emerge from the vorticity equation
by heuristically balancing the magnitudes of the Rossby
wave term and the nonlinear advection. Those scales in-
clude the Rhines scale and other, similar scales.8–10 A
Rhines-like length scale is also obtained from arguments
based on potential vorticity staircases.11,12 However, nei-
ther the heuristic Rhines estimates nor the paradigm
of potential vorticity inversion and mixing generalize to
more complex situations involving realistic plasma mod-
els. We are therefore motivated to seek a more systematic
approach to determining the zonal flow width that may
offer such a generalization.

A related topic is the merging of jets. Coales-
cence of two or more jets is ubiquitous in numerical
simulations.13–15 The merging process occurs during the
initial transient period before a statistically steady state
is reached. It is clear that the merging is part of a dy-
namical process through which the zonal flow reaches its
preferred length scale, but there has been little theoreti-

a)Electronic mail: jbparker@princeton.edu
b)Electronic mail: krommes@princeton.edu

cal understanding of the merging phenomenon.
Our present work addresses these questions in the con-

text of the stochastically forced generalized Hasegawa-
Mima (GHM) equation16,17 for electrostatic potential, a
model for magnetized plasma turbulence in the presence
of a background density gradient. This model is math-
ematically very similar to the barotropic vorticity equa-
tion on a β plane.9 Our analysis is related to several re-
cent works that focused on that equation in the geophysi-
cal context.15,18–23 Importantly, numerical simulations of
both models can display emergence of steady zonal flows.
The GHM equation and the parameterizations of forcing
and dissipation that we use are not realistic descriptions
of plasma; however, the simplicity is an asset in under-
standing the qualitative behavior of these systems.

We study a statistical average of the flow. Statistical
approaches enable one to gain physical insight by aver-
aging away the details of the turbulent fluctuations and
working with smoothly varying quantities. Sometimes,
statistical turbulence theories strive for quantitative ac-
curacy, which requires rather complicated methods.24 In
contrast, our investigation is at a more basic level and
concerns the fundamental nature of zonal flows interact-
ing self-consistently with inhomogeneous turbulence.

We discover that from the statistical point of view,
steady zonal flows emerge from homogeneous turbulence
in a symmetry-breaking bifurcation. The bifurcation
that generates these zonal flows obeys a classic amplitude
equation, and therefore zonal flows can be understood
as pattern formation.25–29 Two important results follow
from the general properties of pattern-forming systems.
First, the zonal flow wavelength is not unique. Indeed,
in an idealized, infinite system, any wavelength within a
certain continuous band corresponds to a steady-state so-
lution. Second, of these wavelengths, only those within
a smaller subband are linearly stable. Unstable wave-
lengths must evolve to reach a stable wavelength. For
short (long) wavelength unstable jets, this process man-
ifests as merging (branching) jets.

Our basic model is the GHM equation in a uniform
magnetic field in 2D,

∂tw(x, y) +v ·∇w−κ∂yφ = ξ−µw− ν(−1)h∇2hw, (1)

where φ = (Ln/ρs)eϕ/Te is the normalized electrostatic
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potential, Ln is the density gradient scale length, ρs
is the sound radius, Te is the electron temperature,
w = ∇2φ − α̂φ is the generalized vorticity and is re-
lated to ion gyrocenter density fluctuations δnGi by w =
−(Ln/ρs)δn

G
i /n0 where n0 is the background density, α̂

is an operator that is zero when acting on zonal flows and
unity when acting on drift waves which respects within
this 2D model the lack of adiabatic electron response
to zonal flows, the magnetic field is in the ẑ direction,
v = ẑ × ∇φ is the E × B velocity, µ is a constant fric-
tional drag, ν is the viscosity with hyperviscosity factor
h, ξ is white-noise forcing, and κ is related to the density
scale length. Lengths are normalized to the sound radius
ρs and times are normalized to the drift wave period
ω−1∗ = (Ln/ρs)Ω

−1
i . These normalizations and scalings

are convenient to make w, φ, and the active length and
time scales of order unity, and additionally they allow us
to set κ = 1.

The zonal flow behavior in numerical simulations of
Eq. (1) is shown in Fig. 1(a). During the transient pe-
riod, merging jets are observed, while in the late time, a
statistically steady state is reached with stable unwaver-
ing jets.

We restrict ourselves to the quasilinear (QL) approxi-
mation of this system. To obtain the QL equations, we
perform an eddy–mean decomposition, given by decom-
posing all fields into a zonal mean and a deviation from
the zonal mean, then neglect the eddy–eddy nonlineari-
ties within the eddy equation.15 The QL approximation
is not expected to be physically and quantitatively cor-
rect in detail (though it may be in certain regimes30);
for example, material conservation of potential vorticity
(in the undamped, undriven case) is lost. However, the
QL model is useful because it exhibits the same basic
zonal jet features as the full model, namely merging jets
and the formation of stable jets. Therefore, analysis of
the QL model can provide a mathematical foundation for
understanding and interpreting the physical behavior.

We consider a statistical average of the QL system.
In the presence of steady zonal flows, a statistical homo-
geneity assumption is clearly invalid. Therefore, we allow
the turbulence to be inhomogeneous in the direction (x)
of zonal flow variation. The averaged equations, referred
to as the second-order cumulant expansion (CE2), are15

∂tW + (U+ − U−)∂yW − (U ′′+ − U ′′−)

(
∇2

+
1

4
∂2x

)
∂yC

+ [2κ+ (U ′′+ + U ′′−)]∂x∂x∂yC

= F − 2µW − 2νDhW, (2a)

∂tU + ∂x∂x∂yC(0, 0, x, t) = −µU − ν(−1)h∂2hx U, (2b)

where x and y represent two-point separations, x repre-
sents the two-point average position (if the turbulence
were homogeneous, there would be no x dependence),
W (x, y | x, t) and C(x, y | x, t) are the one-time, two-
space-point correlation functions of vorticity and poten-
tial, U(x, t) is the zonal flow velocity, U± = U(x±y/2, t),
∇2

= ∂2x+∂2y−1, F (x, y) is chosen to be isotropic, homo-
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FIG. 1. (a) Merging jets during the transient regime of equa-
tion (1) (zonal-mean velocity is shown). (b) Merging behavior
in the amplitude equation (3) [ReA(x, t) is shown].

geneous ring forcing, and Dh is a hyperviscosity operator.
There is a linear relation between W and C.15

Given the assumption that the stochastic forcing ξ is
white (delta-correlated) noise, the only further assump-
tions necessary for CE2 to be an exact description of the
QL model are statistical homogeneity and ergodicity in
the zonal (x) direction. This is because the QL model
neglects the nonlinear eddy–eddy term that would give
rise to a closure problem. Alternatively, CE2 can be re-
garded as a drastically truncated statistical closure of
the full model.18,19,22,23 However, for present purposes
we prefer the former interpretation.

The CE2 equations exhibit several important symme-
tries of translation and reflection, given by x → x + δx,
(x, x) → (−x,−x), (y, x) → (−y,−x), and (x, y) →
(−x,−y).

Many studies of CE2 have been performed
previously.18,19,22,23,31,32 Numerical simulations of
CE2 also exhibit merging jets.19

For Eq. (2) there always exists a homogeneous equilib-
rium, which arises from a simple balance between forc-
ing and dissipation: W = (2µ + 2νDh)−1F , U = 0.
This equilibrium is stable in a certain regime of param-
eters. As a control parameter such as the friction µ is
varied, this homogeneous state becomes zonostrophically
unstable.15,19 Physically, zonostrophic instability occurs
when dissipation is overcome by the mutually reinforcing
processes of eddy tilting by zonal flows and production
of Reynolds stress forces by tilted eddies. The instability
eigenmode consists of perturbations spatially periodic in
x with zero real frequency,15 so that zonostrophic insta-
bility arises as a Type Is instability25 of homogeneous
turbulence. Zonostrophic instability within CE2 may be
thought of as a variant of the modulational instability
calculations of zonal flow generation.

Just beyond the instability threshold, a bifurcation
analysis yields a perturbative amplitude equation for
the bifurcating mode. This amplitude equation is con-
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strained by the translation and reflection symmetries to
take a universal form.25 The amplitude equation, some-
times referred to as the real Ginzburg-Landau equation,
is

∂tA(x, t) = A+ ∂2xA− |A|2A, (3)

where all coefficients have been rescaled to unity. Here, A
is the complex, spatially varying amplitude of the eigen-
vector that is neutrally stable at the bifurcation point.
Equation (3) also describes the bifurcation of Rayleigh-
Bénard convection rolls,33 so the zonal flows are mathe-
matically analogous to convection rolls. The derivation
of Eq. (3) from Eq. (2) will be reported elsewhere.

The amplitude equation (3) is well understood.25–27

First, a steady-state solution exists for any wave num-
ber within the continuous band −1 < k < 1 (to see
this, observe that A = αeikx with |α|2 = 1 − k2 is a
solution). Second, only solutions with k2 < 1/3 are lin-
early stable.26 This is demonstrated in Fig. 1(b), where
an unstable solution that has been slightly perturbed un-
dergoes merging behavior until a stable wave number is
reached. These qualitative behaviors are also exhibited
by the CE2 system, as we now show.

We proceed to find the steady-state solutions of
Eq. (2). In the context of an infinite domain with no
boundaries, these solutions are referred to as ideal states.
Let q denote the basic zonal flow wave number of an ideal
state. For a given q, we solve the time-independent form
of Eq. (2) directly. This approach is distinct from time
integration of Eq. (2) to a steady state. Our procedure
has two advantages, both related to the fact that ideal
states exist for any q within a continuous band. First,
we can specify precisely the q of the desired solution.
Second, we can solve directly for all solutions, including
unstable ones, rather than find only those which develop
from time evolution.

An ideal state is represented as a Fourier-Galerkin se-
ries with coefficients to be determined.26,28,29 We expand
as follows:

U(x) =
P∑

p=−P
Upe

ipqx, (4a)

W (x, y | x) =
M∑

m=−M

N∑
n=−N

P∑
p=−P

Wmnpe
imaxeinbyeipqx.

(4b)

While the periodicity in x is desired, the correlation func-
tion should decay in x and y; periodicity in x and y is a
consequence of using the convenient Fourier basis. Thus,
a and b, unlike q, are numerical parameters. They rep-
resent the spectral resolution of the correlation function
and should be small enough to obtain an accurate solu-
tion.

The CE2 symmetries allow us to seek a solution where
U(x) = U(−x) and W (x, y | x) = W (−x,−y | x) =
W (x,−y | −x) = W (−x, y | −x). These constraints,
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FIG. 2. Zonal flow amplitude U1, U2 as a function of ideal
state wave number q at (a) µ = 0.21 (Rβ = 1.48) and (b)
µ = 0.19 (Rβ = 1.51). In the unshaded region, ideal states are
stable. The vertical lines correspond to various instabilities
which separate the regions (see Fig. 3).

along with reality conditions, force Up to be real, Up =
U−p, and Wmnp = W ∗−m,n,p = W ∗m,−n,p = W ∗m,n,−p.

We obtain a system of nonlinear algebraic equations for
the coefficients Up,Wmnp by substituting the Galerkin
series into Eq. (2) and projecting onto the basis func-
tions. To demonstrate the projection for Eq. (2a), let
φmnp = eimaxeinbyeipqx. We project Eq. (2a) onto φrst
by operating with

(
2π

a

2π

b

2π

q

)−1 ∫ π/a

−π/a
dx

∫ π/b

−π/b
dy

∫ π/q

−π/q
dxφ∗rst. (5)

For instance, the term (U+ − U−)∂xW projects to

I
(1)
rstp′mnpUp′Wmnp, where repeated indices are summed

over, I
(1)
rstp′mnp = imaδm,rδp′+p−t,0(σ+ − σ−), σ± =

sinc(α±π/b), and α± = nb− sb± p′q/2. The other terms
of Eq. (2a), as well as Eq. (2b), are handled similarly. In
total, we generate as many equations as there are coeffi-
cients.

The system of nonlinear algebraic equations is solved
with a Newton’s method.34 Figure 2 shows the zonal flow
amplitude coefficients Up as functions of q at µ = 0.21
and µ = 0.19. Near the instability threshold, ideal states
exist at all q for which the homogeneous equilibrium is
zonostrophically unstable [between the two lines labeled
N in Fig. 2(a)]. Farther from threshold, there is a region
of q where the ideal state solution seems to disappear
[between the lines N and D in Fig. 2(b); see also Fig.
3]. The values of the other parameters used are κ = 1,
ν = 10−3, and h = 4. The forcing F (k) = 2πεkf/δk for
kf − δk < |k| < kf + δk, and zero otherwise. We take
kf = 1, δk = 1/8, and ε, which acts like a total energy
input rate, to be equal to 1.

To investigate stability of the ideal states, we consider
perturbations δW (x, y | x, t) and δU(x, t) about an equi-
librium W,U and linearize Eq. (2). Since the underlying
equilibrium is periodic in x, the perturbations can be
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FIG. 3. Stability diagram for the CE2 equations. Above
the neutral curve (N), the homogeneous turbulent state is
zonostrophically unstable. Ideal states are stable within the
marginal stability curve S. The stability curve is consistent
with the dominant zonal flow wavenumber from independent
QL simulations (crosses). The stationary ideal states vanish
to the left of D. Here, a = 0.06, b = 0.08, M = 20, N = 33,
P = 5, and other parameters are given in the text. γ is varied
by changing µ while holding other parameters fixed.

expanded as a Bloch state:26,28

δW (x, y | x, t) = eσteiQx
∑
mnp

δWmnpe
imaxeinbyeipqx,

(6a)

δU(x, t) = eσteiQx
∑
p

δUpe
ipqx, (6b)

where Q is the Bloch wave number and can be taken to
lie within the first Brillouin zone −q/2 < Q ≤ q/2. We
do not use a Qx or Qy because as previously mentioned
the periodicity in x and y is artificial. The perturbation
equations are projected onto the basis functions in the
same way as in the ideal state calculation. This projec-
tion results in a linear system at each Q for the coef-
ficients δWmnp and δUp; this determines an eigenvalue
problem for σ. The equilibrium is unstable if for any Q
there are any eigenvalues with Reσ > 0.

The stability diagram is shown in Fig. 3. As the con-
trol parameter we adopt γ = ε1/4β1/2µ−5/4, an impor-
tant dimensionless parameter controlling the zonal flow
dynamics.35,36 To vary γ, we change µ and hold other pa-
rameters fixed at their previous values. The stable ideal
states exist inside of the marginal stability curve marked
S. Near the threshold, marginal stability is governed
by the Eckhaus instability, a long-wavelength universal
instability.25 Farther from threshold, the instability tran-
sitions into new, nonuniversal instabilities; details will be
reported elsewhere. The zonal flows are spontaneously
generated for γ > 6.53. For γ > 6.53, the stability curve
is consistent with the dominant zonal flow wavenumber
observed in QL simulations.

Numerical simulations typically occur within a finite
domain. When periodic boundary conditions are used,
our infinite-domain results are modified merely by the
discretization of wave numbers. This affects not only the

possible equilibria, but also any perturbations and hence
the stability boundaries too.

For a time-evolving system, the exact q that is ulti-
mately chosen within the stability balloon results from a
dynamical process and is not addressed in a systematic
way by the present study.

While the CE2 equations exhibit spontaneously gener-
ated zonal flows, it is true that they neglect many phys-
ical effects. An important piece of physics missing from
the CE2 equations is the nonlinear eddy self-interaction,
which clearly cannot be ignored in general. Furthermore,
the CE2 equations involve one-time correlation functions
rather than the more general two-time functions. The
lack of time-history information means that most of the
effects of wave propagation are discarded.37 At least one
particular instance of the qualitative failure of CE2 has
been noted.32

Yet, the basic mathematical structure of the theory
presented here arises only from symmetry arguments and
general properties of the zonostrophic instability. If one
were to include the important physics neglected in CE2,
those general symmetries and properties should remain
intact. Therefore, we expect our qualitative conclusions
to likewise remain valid.

In summary, by analyzing a second-order statistical
model of an ensemble of interacting zonal flows and tur-
bulence, we have shown that zonal flows constitute pat-
tern formation amid a turbulent bath. This continues
previous work15 to provide a firm analytic understand-
ing of zonal flow generation and equilibrium within CE2.
We calculated the stability diagram of steady zonal jets
and explained the merging of jets as a means of attaining
a stable wave number. In general, the use of statistically
averaged equations, perhaps with more sophisticated clo-
sures, and the pattern formation methodology provide
a path forward for further systematic investigations of
zonal flows and their interactions with turbulence.
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Henry Greenside, Petros Ioannou, and Brad Marston.
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Graduate Research Fellowship and a US DOE Fusion En-
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by US DOE Contract DE-AC02-09CH11466.
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