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Abstract

By extending the recently developed generalized Courant-Snyder theory for coupled transverse

beam dynamics, we have constructed the Gaussian beam distribution and its projections with

arbitrary mode emittance ratios. The new formulation has been applied to a continuously-rotating

quadrupole focusing channel because the basic properties of this channel are known theoretically

and could also be investigated experimentally in a compact setup such as the linear Paul trap

configuration. The new formulation retains a remarkably similar mathematical structure to the

original Courant-Snyder theory, and thus provides a powerful theoretical tool to investigate coupled

transverse beam dynamics in general and more complex linear focusing channels.
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I. INTRODUCTION

The well-known Courant-Snyder (CS) theory [1] provides a fundamental framework for

the uncoupled transverse dynamics of charged particles in linear focusing lattices. The CS

theory has been extensively used to design and analyze alternating-gradient focusing systems

for more than 50 years. Various attempts to generalize the CS theory to the case of coupled

transverse dynamics with two or more degrees of freedom have been made in the past [2–

6]. The method recently developed by Qin and Davidson [7, 8] is particulary noteworthy

because, unlike other methods, it retains mathematical structures remarkably similar to the

original CS theory. The envelope function is generalized into an envelope matrix, and the

phase advance is generalized into a 4D symplectic rotation.

The generalized CS theory was successfully applied to describe beam envelopes of equal

emittances in two normal planes for the cases of Gaussian [9] and Kapchinskij-Vladimirskij

(KV) [10] distributions. For the equal emittance case, the beam matrix (second-order mo-

ments of the beam distribution) is independent of the phase advance, and becomes a func-

tion of the envelope matrix only. These features significantly simplify the calculations of

the beam envelopes. Recently, a new class of KV distributions were found by allowing ar-

bitrary emittance combinations [11]. In this paper, we apply the formulation introduced in

Ref. [11] for the description of the Gaussian distribution with unequal mode emittances.

The Gaussian beam distributions with unequal mode emittances occur commonly in many

accelerator systems, and thus they are of practical importance.

As an illustrative example, we apply this formulation to the analysis of continuously-

rotating quadrupole focusing channels. Rotating quadrupole focusing channels have been

investigated by many authors [12–18] as they can potentially provide stronger focusing than

conventional FODO lattices due to the dense population of the focusing elements [16]. For

example, an electrostatic version of a continuously-rotating quadrupole focusing channel has

been proposed for guiding very heavy charged particles [14]. Strong coupling in the rotating

quadrupole system often induces beam rotation and reduces the beam pulsation [18]. We

also note in this paper that beam propagation thorough a very long, continuously-rotating

quadrupole focusing channel can be studied effectively in the laboratory frame of a linear

Paul trap system with eight electrodes rather than four.
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FIG. 1: Top view of the continuously rotating quadrupole focusing channel. Initial positions of the

quadrupole magnets at z = 0 are indicated by gray blocks. As the axial position along the z−axis

increases, the initial quadrupole configuration rotates by an angle θz = 2πz/λ in the counterclock-

wise direction.

II. CONTINUOUSLY-ROTATING QUADRUPOLE FOCUSING CONFIGURA-

TIONS

In this section, we introduce the field configuration for continuously-rotating quadrupole

focusing channels, and derive the transverse orbit equations.

A. Rotating quadrupole magnetic field

Suppose near the beam axis that the quadrupole magnets generate the following field

configuration at z = 0 (see grey blocks in Fig. 1):

Bq(x, y, 0) = B′
q(yx̂+ xŷ), (1)

where B′
q is the field gradient. When the quadrupole magnets are continuously rotating

along the beam axis with an angle θz = 2πz/λ (see white blocks in Fig. 1) with respect to
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the initial configuration, the magnetic field is given by

Bq(x, y, z) = B′
q cos 2θz(yx̂+ xŷ)−B′

q sin 2θz(xx̂− yŷ). (2)

Here, λ is the periodicity of the pole configuration, which is twice the periodicity of the

focusing field L, i.e., λ = 2L. In this channel configuration, the transverse orbit equations

for a continuous beam propagating with average axial velocity Vb = βbc = const. are given

by

d2x

dz2
+ κqm cos(2πz/L)x+ κqm sin(2πz/L)y = 0, (3)

d2y

dz2
+ κqm sin(2πz/L)x− κqm cos(2πz/L)y = 0, (4)

where κqm = ebB
′
q/γbmbβbc. Here, γb = (1− β2

b )
−1/2 is the relativistic mass factor, eb(mb) is

the charge (rest mass) of a beam particle, and c is the speed of light in vacuo. In practice,

the continuously-rotating quadrupole focusing configuration can be realized by winding four

wires (by alternating the current polarity from the adjacent wires) with helical symmetry

[12].

B. Rotating quadrupole electric field

By noting the well-known analogy between an intense ion beam propagating in a periodic

focusing quadrupole magnetic field and a nonneutral single component charge bunch confined

in a linear Paul trap [19], we can also realize the continuously-rotating quadrupole focusing

configuration by means of time-varying electric fields. First, we consider an applied potential

ϕq(r, θ, t) that satisfies the boundary conditions at r = rw as follows (see black plates in Fig.

2):

ϕq(rw, θ, t) =



+V (t), 0 ≤ θ < 1
8
π,

0, 1
8
π ≤ θ < 3

8
π,

−V (t), 3
8
π ≤ θ < 5

8
π,

0, 5
8
π ≤ θ < 7

8
π,

+V (t), 7
8
π ≤ θ ≤ π.

(5)

We note that ϕq(rw, θ + π, t) = ϕq(rw, θ, t). Neglecting end effects (∂/∂z = 0), it is readily

shown that the solution to ∇2
⊥ϕq(x, y, t) = 0 with boundary conditions (5) is given by

ϕq =
4V (t)

π

∞∑
l=1

sin (lπ/2)

l
cos (lπ/4)

(
r

rw

)2l

cos (2lθ) , (6)
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FIG. 2: Top view of the long (∂/∂z = 0) linear Paul trap configuration with eight electrodes. For

the black (gray) plates, cosine (sine) voltage wavefroms are applied with alternating polarity on

adjacent black (gray) segments.

for 0 ≤ r ≤ rw and 0 ≤ θ ≤ 2π. Near the cylinder axis (r ≪ rw), Eq. (6) readily gives to

lowest order

ϕq(x, y, t) =
1

2

m

q
κqe cos

(
2πt

T

)
(x2 − y2). (7)

Here, we assume V (t) = V0 cos(2πt/T ) and the quadrupole focusing coefficient is defined by

κqe =
4
√
2qV0

mπr2w
, (8)

where T is the period of the applied voltage and q(m) is the charge (rest mass) of a trapped

ion. Now, we rotate the configuration described in Eq. (5) by an angle π/4 in the counter-

clockwise direction (see gray plates in Fig. 2), and apply V (t) = V0 sin(2πt/T ). This gives

the skew component

ϕsq(x, y, t) =
m

q
κqe sin

(
2πt

T

)
xy. (9)
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The single-particle equations of motions in the combination of both the quadrupole and

skew-quadrupole potential configurations are

d2x

dt2
+ κqe cos(2πt/T )x+ κqe sin(2πt/T )y = 0, (10)

d2y

dt2
+ κqe sin(2πt/T )x− κqe cos(2πt/T )y = 0, (11)

which are identical in functional form to the transverse orbit equations in Eqs. (3) and (4).

We note that the Paul Trap Simulator Experiment (PTSX) device [20] at the Princeton

Plasma Physics Laboratory (PPPL) could be easily converted into a dedicated experimen-

tal facility for studying coupled transverse dynamics in rotating quadrupole channels by

subdividing its four electrodes into eight.

III. GENERALIZED COURANT-SNYDER THEORY

The general form of the Hamiltonian for the coupled transverse dynamics with quadrupole

and skew-quadrupole focusing lattices is given by

Hc =
1

2
XTAcX,Ac =

 κ(s) R(s)

R(s)T I

 , (12)

where X = (x, y, px, py)
T . Here, the 2×2 matrix κ(s) is time-dependent and symmetric, and

I is the 2× 2 unit matrix. The variable s plays the role of a time-like variable. For a beam

propagating in a quadrupole magnetic focusing channel, we set s = z, while for the trapped

single-component plasma confined in a linear Paul trap we set s = t. The prime denotes

a derivative with respect to s and the superscript “T” denotes the transpose operation of

a matrix. When there is a solenoidal field component, the 2 × 2 matrix R is non-zero and

defined by

R(s) =

 0 −Ω(s)

+Ω(s) 0

 , (13)

where Ω(s) is the normalized Larmor frequency. Indeed, configurations with both axial mag-

netic fields and rotating quadrupole fields have been investigated for the modified betatron

[21] and the spiral line induction accelerator (SLIA) [15]. In this paper, we consider only

the case with R = 0, for simplicity. Then, for the pure rotating quadrupole configuration,
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we have

κ(s) = κq0

 cos(2πs/L) sin(2πs/L)

sin(2πs/L) − cos(2πs/L)

 , (14)

where L is the periodicity of the focusing field and κq0 is the maximum quadrupole focusing

strength, which is κq0 = κqm for magnetic focusing, and κq0 = κqe for electric focusing. The

stability condition for the particle motion can be derived from an eigenvalue analysis [16],

which gives

0 ≤ κq0L
2 ≤ π2. (15)

Based on the generalized Courant-Snyder theory developed in Refs. [7, 8], we obtain

the solution for the transverse dynamics governed by the Hamiltonian (12) in the form of a

linear map:

X(s) = McX0, (16)

where X0 is the initial condition and Mc is the transfer matrix given by

Mc = Q−1P−1P0Q0. (17)

Here, P and Q are 4× 4 symplectic matrices defined by

P−1 = P T =

 P T
1 −P T

2

P T
2 P T

1

 , P0 =

 I 0

0 I

 , (18)

P ′ = Pϕ′, ϕ′ =

 0 −(wwT )−1

(wwT )−1 0

 , (19)

and

Q−1 =

 wT 0

w
′T w−1

 , Q0 =

 (w−1)T 0

−w′ w


0

, (20)

where the subscript “0” denotes initial conditions at s = 0. The symplectic matrix P

corresponds to a rotation in the 4D phase space (PP T = P TP = I and det(P ) = 1), and

thus P ⊂ Sp(4) ∩ SO(4) = U(2). The 2 × 2 envelope matrix w =
(

w1 w2

w3 w4

)
is determined

from the matrix envelope equation

w′′ + wκ = (w−1)Tw−1(w−1)T . (21)

This equation is the generalization of the familiar 1D envelope equation for an uncoupled

focusing lattice. To make Q symplectic, we require the following initial condition for w:(
w′wT − ww′T )

0
= 0. (22)
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For the uncoupled case, on the other hand, the initial condition (22) holds for any w.

By solving the matrix envelope equation (21) numerically, one can describe the coupled

transverse dynamics in a manner remarkably similar to the original Courant-Snyder theory.

IV. BEAM DISTRIBUTION WITH TWO EMITTANCES

To describe a beam distribution f(X) in 4D phase-space, we make the usual assumption

that the phase-space density is a function of an invariant of motion IC which is expressed

in the quadratic form [6, 22]:

IC = XTΞX. (23)

Here, Ξ is a real, symmetric, and positive-definite matrix. Equation (23) represents a hy-

perellipsoid in 4D phase-space. To describe two independent normal modes and their emit-

tances, it is desirable to diagonalize Ξ. Elementary linear algebra provides a simple way

to transform a symmetric matrix into a diagonal form by solving an eigenvalue problem.

However, the orthogonal matrices used in this diagonalization procedure are not generally

symplectic. Therefore, they do not contain any physics principles of Hamiltonian dynamics.

Note that the symplectic condition is a necessary and sufficient condition for a canonical

transformation [23]. On the other hand, Williamson’s theorem shows that any real, sym-

metric, and positive-definite matrix can be diagonalized in terms of a sympletic matrix S

[24] according to

Ξ = ST

 Λ 0

0 Λ

S, (24)

where

Λ =

 λ1 0

0 λ2

 , (25)

and the diagonal elements λj are calculated from the characteristic equation, det(iJΞ−1 −

λjI) = 0. The symplectic matrix S allows a canonical transformation of coordinates into

the normal forms, X̄ = SX. Using the usual convention, we define the mode emittances as

ϵ1 = 1/λ1 and ϵ2 = 1/λ2.

There are several ways to find the symplectic transformation S. One is to construct

S using eigenvectors of the transfer matrix, which is well-established, for example in Ref.

[6]. Another method, which is adopted here, is to use the generalized Courant-Snyder
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(CS) theory introduced in Sec. III. In the generalized CS theory, a remarkable canonical

transformation X̄ = SX = PQX is constructed in such a way that X̄ = X̄0 = const.

during the linear coupled motion. Therefore, for any constant and real 4×4 matrix ξ, which

is symmetric and positive definite, an invariant in quadratic form can be constructed as

X̄T ξX̄ = XTST ξSX = const.

To obtain the desired forms assumed in Eqs. (23) and (24), we consider the special case

with

ξ = ε−1 =

 ϵ−1 0

0 ϵ−1

 , ϵ =

 ϵ1 0

0 ϵ2

 = Λ−1. (26)

This choice of ξ allows X̄ = (X̄1, X̄2, X̄3, X̄4)
T to become normalized coordinates describing

a hyperellispoid in 4D phase-space with rotational symmetry in each normal plane:

IC =
X̄2

1 + X̄2
3

ϵ1
+

X̄2
2 + X̄2

4

ϵ2
. (27)

This is consistent with the basic assumption in beam physics, that due to phase mixing

caused by unavoidable nonlinearities, the beam distribution in each normal plane becomes

rotationally symmetric. For ϵ1 = ϵ2, we have a hypersphere with full rotational symmetry.

The question may arise regarding the uniqueness of the canonical transformation S giving

the same emittances. It has been proven in Ref. [24] that the symplectic matrix S diag-

onalizing Ξ in Williamson’s theorem [i.e., Eq. (24)] is unique up to a symplectic rotation.

In other words, there is another symplectic matrix S̃ = CS which satisfies Eq. (24) with

the same emittances, in which C is an arbitrary constant 4× 4 matrix in the unitary group

U(2) = Sp(4) ∩ SO(4). This property can be easily checked from Eq. (19) as well. If we

multiply by the matrix C on both sides of Eq. (19), note that P̃ = CP satisfies ˙̃P = P̃ ϕ̇

with the new initial condition P̃0 = CP0 = C. Of course, P̃ is symplectic and P̃ ⊂ SO(4).

Therefore, P̃Q = CPQ = CS becomes another canonical transformation. This is consistent

with the notion that the normalized coordinates in Eq. (27) admit the rotational symmetry

in each normal plane.

It is worthwhile to note that the matrix envelope equation (21) admits an orthogonal

symmetry. If w is a solution of the Eq. (21), then w̃ = c̃w becomes a solution as well with

c̃ being an arbitrary constant 2 × 2 orthogonal matrix, c̃T c̃ = I. With the new envelope
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matrix w̃, we obtain the corresponding P̃ and Q̃ as

P̃ = P

 c̃T 0

0 c̃T

 , Q̃ =

 c̃ 0

0 c̃

Q. (28)

Therefore, we obtain P̃ Q̃ = PQ, and thus the canonical transformation S is independent of

c̃.

Let’s consider the case of a multivariate Gausssian distribution:

f(X) =
1

(2π)2
√

det(Σ)
exp

[
−1

2
XTΣ−1X

]
, (29)

where Σ = Ξ−1 =
⟨
XXT

⟩
is a covariance matrix (or the beam matrix in beam physics) and

⟨· · · ⟩ denotes the statistical average over the distribution. We assume ⟨X⟩ = 0 for simplicity.

By comparing with Eq. (24), the expression for the beam matrix is given by

Σ−1 = QTP T ξPQ, (30)

and
√

det(Σ) =
√
det(ξ) = ϵ1ϵ2 ≡ ϵ2⊥. The distribution function f(X) is normalized accord-

ing to
∫
· · ·

∫
f(X)dX1 · · · dX4 = 1, which is a trivial result of the multivariate Gaussian

integral. Often, it is important to project the beam distribution onto the spatial plane

z = (X1, X2)
T = (x, y)T . To perform the partial Gaussian integral, we express Eq. (30) in

the following block form:

QTP T ξPQ =

 U0 V

V T W0

 . (31)

Based on the procedure in Ref. [25], it follows that

1

(2π)2
√
det(Σ)

∫ ∫
exp

[
−1

2
XTΣ−1X

]
dX3dX4 =

√
det(U )

2π
exp

[
−1

2
zTUz

]
, (32)

where

U = U0 − VW−1
0 V T . (33)

Since the expression for Q is known explicitly from Eq. (20), it is sometimes more convenient

to express U in terms of the block matrix elements of P T ξP :

P T ξP =

 A B

BT D

 . (34)
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Direct matrix manipulations that make use of Eqs. (31) and (34) show that

U = w−1
[
A−BD−1BT

]
w−T ≡ w−1Rw−T . (35)

The R matrix is known as the Schur complement of D [11]. The 4D rms hyperellipsoid is

projected onto a tilted ellipse given by

zTUz = zTw−1Rw−T z = 1. (36)

For the case of the equal emittances ϵ1 = ϵ2 = ϵ⊥, the phase advance terms in Eqs. (30)

and (34) cancel out. Hence, the projection becomes

zTβ−1z = ϵ⊥, (37)

and the beam matrix becomes

Σ = ϵ⊥

 β −α

−αT γ

 , (38)

where α, β, and γ are the generalized Twiss parameters defined as

α = −wTw′, (39)

β = wTw, (40)

γ = (wTw)−1 + w
′Tw′. (41)

Note that the familiar relation between α, β, and γ holds in the matrix form:

βγ = I + α2. (42)

V. NUMERICAL EXAMPLES

In this section, we present numerical solutions of the matched beam envelopes in a

continuously-rotating quadrupole focusing channel. Matched solutions are found by im-

posing periodic boundary conditions. First, we consider the case of equal mode emittances.

As mentioned in the previous sections, in this case we don’t need to solve the phase advance

equation (19). Plotted in Fig. 3 is the evolution of the matched beam cross-section as a

function of the time-like variable s for several different normalized focusing strengths κq0L
2.
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The beam cross-section is the projection of the 4D rms hyperellipsoid, which is determined

by the exp [−1/2] contour of the Gaussian beam distribution. It is clear that the matched

beam cross-section rotates with the same periodicity as the focusing channel. This result is

indeed the limiting case (N → ∞) of our previous work on the N−rolling lattice, which is a

configuration with N equally spaced quadrupole magnets, each of which rotates by an angle

π/N relative to its preceding magnet configuration [18]. As the values of κq0L
2 increases,

the beam cross-section becomes more elongated. Obviously, the rotation direction of the

beam cross-section will reverse when the quadrupole configuration rotates in the opposite

direction. Here, all the transverse dimensions are normalized by
√
ϵ⊥L.

The elongation, which is the ratio between the major axis (a) and the minor axis (b) of

the beam cross-section, can be expressed analytically for the case with equal emittances as

[16]

a/b =

[
(2π/L)2 + 4κq0

(2π/L)2 − 4κq0

]1/4
, (43)

which is independent of s. This expression is derived from the eigenvalue analysis given in

Ref. [16]. It is clear in Fig. 4 that the numerical values calculated from the generalized

CS theory match almost perfectly with the analytical expression given in Eq. (43), which

confirms the validity of the generalized CS theory.

Now we consider the cases of unequal mode emittances. Maintaining the 4D emittance

ϵ2⊥ constant, we vary the ratio between the two mode emittances ϵ1/ϵ2. This means that the

volume of a hyperellispoid in 4D phase-space remains the same, whereas the shape changes

according to the emittance ratio. As depicted in Figs. 5 and 6, the evolution of the matched

beam cross-section become more complicated when the two mode emittances are different.

The dynamics of the beam is not a simple rotation, but exhibits pulsation (periodic change

in a and b) as well. This results in a nonlinear increase of the tilt angle with time. The tilt

angle is defined as the rotation angle of the major axis with respect to its initial position at

s = 0. For the case where ϵ1/ϵ2 = 2 (Fig. 5), the beam cross-section becomes more elongated

in the x−direction. On the other hand, the beam cross-section becomes more elongated in

the y−direction for ϵ1/ϵ2 = 1/2 (Fig. 6). The case of equal emittances corresponds to Figs.

3(a) and 3(b). Since the numerical matching algorithm now involves solutions of both the

envelope and phase advance equations, which are highly nonlinear, errors can accumulate

as we calculate the beam envelopes by numerical integration along s. For example, the tilt
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angle plotted in Fig. 5(d) does not return to its initial value but rather shows a slight offset

at s = L. An improvement of the matching algorithm is being investigated for the case of

unequal mode emittances.

VI. CONCLUSIONS

In this paper, we have constructed the Gaussian beam distribution with two mode emit-

tances in the context of the recently developed generalized CS theory of the coupled trans-

verse dynamics. The formulation retains the elegant mathematical structure of the original

CS theory with remarkably similar physical interpretations, and therefore can be viewed as

complementary to other approaches such as the one based on eigenvectors of the transfer

matrix [6]. As a numerical example, we apply this formulation to the case of a continuously-

rotating quadrupole focusing channel. Since some of the beam characteristics are known

in terms of the analytical expressions for this channel, the formulation can be successfully

benchmarked. The numerical calculations based on the present formulation not only agree

very well with the results in Ref. [16], but also provide comprehensive information about the

rotating beam. Furthermore, it has been demonstrated that the beam propagation thorough

a very long, continuously-rotating quadrupole focusing channel can be studied equivalently

in an experimental setup such as the linear Pual trap with 8-segmented electrodes. Finally,

we emphasize that the formulation introduced in this paper can be readily applied to arbi-

trary (and more complex) linear, coupled focusing lattices other than continuously-rotating

quadrupole channels.
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FIG. 3: Evolution of the matched beam cross-section for 0 ≤ s/L ≤ 1 with several different

normalized focusing strengths κq0L
2. The transverse dimensions are normalized by

√
ϵ⊥L. Colors

of the boundary of the beam cross-section are blended according to s/L from Red (s/L = 0),

to Green (s/L = 0.5) and Blue (s/L = 1). The time step between two consecutive ellipses is

∆s/L = 1/16.
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FIG. 4: Elongation of the matched beam cross-section plotted as a function of the normalized

focusing strength κq0L
2. The line is obtained from the analytical expression in Eq. (43) and the

symbols represent numerical values calculated from the generalized Courant-Snyder theory.
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FIG. 5: Evolution of the matched beam cross-section for 0 ≤ s/L ≤ 1 with ϵ1 =
√
2ϵ⊥ and

ϵ2 = (1/
√
2)ϵ⊥. Here, we fix the normalized focusing strength κq0L

2 to be 4. The transverse

dimensions are normalized by
√
ϵ⊥L. Colors of the boundary of the beam cross-section are blended

according to s/L from Red (s/L = 0), to Green (s/L = 0.5) and Blue (s/L = 1). The time step

between two consecutive ellipses is ∆s/L = 1/16.
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FIG. 6: Evolution of the matched beam cross-section for 0 ≤ s/L ≤ 1 with ϵ1 = (1/
√
2)ϵ⊥ and

ϵ2 =
√
2ϵ⊥. Here, we fix the normalized focusing strength κq0L

2 to be 4. The transverse dimensions

are normalized by
√
ϵ⊥L. Colors of the boundary of the beam cross-section are blended according

to s/L from Red (s/L = 0), to Green (s/L = 0.5) and Blue (s/L = 1). The time step between two

consecutive ellipses is ∆s/L = 1/16.
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