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Optimization by marker removal for δf particle

simulations

Wenjun Deng∗, Guo-Yong Fu

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

Abstract

A marker removal optimization technique is developed for δf particle simu-

lations to optimize the marker distribution so as to save markers and com-

puting time. The technique can be directly applied to single-mode linear

simulations. For multi-mode or nonlinear simulations, the technique can still

be directly applied if there is one most unstable mode that dominates the

simulation and δf does not change too much in nonlinear stage, otherwise

special care is needed, which is discussed in detail in this paper. The tech-

nique effectiveness, e.g., marker saving factor, depends on how localized δf

is. In this paper, the technique is first demonstrated in a simple 2D bump-

on-tail simulation, and then generalized to 5D gyrokinetic simulations. The

technique saves markers by factors of 4 and 19 in our nonlinear 2D bump-on-

tail and 5D toroidal Alfvén eigenmode (TAE) simulations, respectively. The

technique can be used for phase space of arbitrary dimension, as long as the

equilibrium motion constants can be found. The technique is not limited to

particle-in-cell (PIC) simulations but could be applied to other approaches of
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marker particle simulations such as particle-in-wavelet (PIW) and treecode

simulations.

Keywords: particle simulation, particle-in-cell, marker particle,

optimization, arbitrary dimension

1. Introduction

Marker particle simulation (usually shortened as particle simulation) is

a popular tool for plasma physics studies. It uses a small set (compared to

the set of actual physical particles in plasma) of computational particles for

Monte Carlo sampling of the distribution function of the physical particles

[1]. These computational particles are called marker particles or shortened

as markers. Sometimes they are also called super-particles or macroparti-

cles. Some simulations use markers to sample the whole physical distribu-

tion function f , which are called full-f or total-f simulations. Some others

decompose the distribution f into an equilibrium part f0 that is usually

time-independent and known analytically, and a perturbed part δf , and use

markers to sample only the perturbed distribution δf . These are called δf

simulations.

There are multiple simulation approaches that make use of marker parti-

cles. The oldest one is the particle-in-cell (PIC) approach that dates back to

the 1950s [2]. The PIC approach is still very popular today and is used in a

lot of currently active plasma simulation codes, such as GTC [3], GEM [4],

XGC [5], AWECS [6], GYGLES [7], HMGC [8], MEGA [9], M3D-K [10], etc.

There are also other approaches that are developed to improve the PIC ap-

proach, such as the particle-in-wavelet (PIW) approach [11] and the grid-free
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treecode approach [12].

For better resolution in phase space, i.e., lower particle noise, in particle

simulations, it is wise to load markers such that the marker distribution,

which is denoted as g in this paper, is proportional to the physical particle

distribution, which is called “importance sampling” in Ref. [1]. This can

usually be done straightforwardly in full-f simulations. For example, if a

simulation starts with a Maxwellian distribution f |t=0 = fMaxw, then markers

are loaded with a Maxwellian distribution g|t=0 = C ·fMaxw, such that f/g =

1/C is a constant, so as to achieve the “importance sampling.” Note that

the evolutions of both f and g are governed by the Vlasov equation (or the

gyrokinetic equation in gyrokinetic simulations), i.e., df/dt = 0 and dg/dt =

0, so f/g stays constant during the whole simulation when g is initially loaded

with the “importance sampling,” meaning that the “importance sampling”

is effective during the whole simulation. Things become different for δf

simulations, where dδf/dt 6= 0. Loading markers such that δf/g is a constant

initially does not guarantee δf/g to stay constant during the simulation. To

guarantee that δf is well-resolved during the whole simulation, typical δf

simulations load markers in the phase space either uniformly or such that

g is proportional to the total distribution f . Either loading method usually

causes markers to spread all over the phase space.

Energetic particle physics is crucial to ITER and other fusion devices.

Instabilities excited by energetic particles are being broadly studied in PIC

simulations, such as toroidal Alfvén eigenmode (TAE) [13, 14, 15, 16, 17, 18,

19, 20, 21], reversed shear Alfvén eigenmode (RSAE) [22, 23, 24], β-induced

Alfvén eigenmode (BAE) [25, 26, 27, 28, 29, 30], etc. These modes usually
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exhibit localized δf structures, i.e., δf is nearly zero in a large portion of

the phase space. The localized δf structures are usually but not always near

the wave-particle resonance regions. Maintaining a large number of markers

in the δf ≈ 0 regions is a waste of computing time. In this work, we have

developed an optimization technique by removing markers in the δf ≈ 0

regions to achieve the “importance sampling” for δf simulations so as to

save computing time.

This paper firstly demonstrates the marker removal optimization tech-

nique in a simple 2D PIC simulation in Sec. 2. Then the technique is gen-

eralized to 5D gyrokinetic PIC simulations and is tested in a nonlinear TAE

simulation in Sec. 3. Further generalization to arbitrary phase space dimen-

sion and other possible extensions of the technique are discussed in Sec. 4.

Finally, a summary is given in Sec. 5.

2. Optimization in 2D electrostatic bump-on-tail simulation

Before getting into a complicated high-dimension simulation, we start

with a simple 2D electrostatic bump-on-tail simulation to ease our discussion

of candidate optimization techniques and description of our marker removal

technique.
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2.1. Simulation model

The simulation model mainly consists of an electrostatic δf Vlasov equa-

tion and a Poisson equation:

d

dt
δfα(x, v, t) = − d

dt
f0α(v)

= −Zα
mα

E(x, t)∂vf0α(v) , (1)

∂xE(x, t) =
∑
α

Zα

∫ ∞
−∞

δfα(x, v, t)dv , (2)

where the subscript α indicates the particle species; Z is the particle charge;

m is the particle mass; δf is the perturbed distribution function and is a

function of the position x, the velocity v and the time t; f0 is the equilibrium

distribution function and is assumed to be independent on x and t; and E

is the electrostatic field. In the PIC simulation we use a two-weight scheme

similar to that in Ref. [31]. The marker evolution equations therefore write:

dxjα
dt

= vjα , (3)

dvjα
dt

=
Zα
mα

E(xjα) , (4)

dpjα
dt

= 0 , (5)

dwjα
dt

= −(pjα − wjα)
Zα
mα

E(xjα)
∂vf0α
f0α

, (6)

where the subscript jα indicates the marker index;

p = f/g , (7)

w = δf/g , (8)

are the total weight and the perturbed weight, respectively; f = f0 + δf is

the total distribution function and g is the marker distribution function.
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All quantities in the above equations are already normalized as follows:

time is normalized by 1/ωpe, where ωpe is electron oscillation frequency;

length is normalized by Debye length λDe; mass is normalized by electron

mass me; charge is normalized by proton charge e; temperature is normal-

ized by electron temperature Te; density is normalized by electron equilibrium

density n0e; electric field is normalized by e/(TeλDe).

2.2. Electron bump-on-tail instability

Here we keep using the normalization in Sec. 2.1 and assume that ions do

not move and stay as a fixed background and electrons have a bump-on-tail

distribution:

f0e(v) =
1√
2π

(1− nb) exp

(
−v

2

2

)
︸ ︷︷ ︸

background Maxwellian

+
nb

vth,b
exp

[
−(v − v0b)2

2v2th,b

]
︸ ︷︷ ︸

beam shifted Maxwellian

 , (9)

where nb represents the electron density of the beam, v0b represents the beam

velocity, and vth,b represents the thermal velocity of the beam. The linear

dispersion relation for this scenario is:

0 = 1 +
1

k2

{
[1 + ζeZ(ζe)] +

nb

Tb
[1 + ζbZ(ζb)]

}
, (10)

ζe =
ω√
2k

, (11)

ζb =
ω
k
− v0b√
2vth,b

, (12)

where Z() is the plasma dispersion function. This dispersion equation can

be solved numerically using Muller’s method [32]. Specifically, in this work

we use these parameters: nb = 0.1, v0b = 5, v2th,b = 0.1, k = 0.401. The
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Muller’s method gives the real frequency and growth rate as: ωr = 1.4674,

γ = 0.029120. The expression for δf is:

δfe(x, v, t)

= −

{
(1− nb)

v√
2π

exp

(
−v

2

2

)
+ nb

v − v0b√
2πv3th,b

exp

[
−(v − v0b)2

2v2th,b

]}

×
[

i

ω − kv
E0e

ikx−iωt + complex conjugate

]
, (13)

where E0 is the initial electric field amplitude. The structure of δf in phase

space for t = 2πj/ω with j being an arbitrary integer is shown in Fig. 1(a).

0 π/k 2π/k
x

8
6
4
2

0
2
4

6
8

v

(a)

0 π/k 2π/k
x

(b)

Figure 1: δf linear structure in (x, v) phase space. (a) Semi-analytic solution. (b) Simu-

lation by PIC1D-PETSc.

The PIC simulations in this section are performed by the code PIC1D-

PETSc [33]. The simulation result in the linear stage gives ωr ≈ 1.47, γ ≈

0.0287, and δf structure as shown in Fig. 1(b). The PIC simulation result

agrees well with the semi-analytic solution.
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2.3. Rigorous convergence test for marker particle simulations

Before introducing any optimization technique, we need a robust method

for numerical error measurement to evaluate how good an optimization tech-

nique is. A marker particle simulation is essentially a Monte Carlo simu-

lation [1], whose results, e.g., linear growth rate, nonlinear saturation level,

etc., are random variables with certain expectations and standard deviations.

The expectations should be equal to the physical results, and the standard

deviations usually go as ∼ 1/
√
N due to the central limit theorem, where

N is the number of sampling points, i.e., the number of markers in a parti-

cle simulation. In this case, the simulation results converge to the physical

results as N →∞.

Because the statistical uncertainty is random for every run, it is not re-

vealed by a traditional single-scan convergence test, which performs the simu-

lation once for each marker number. For example, Fig. 2(a) gives a traditional

single-scan convergence test, showing the effect of the number of markers on

the linear growth rate of the bump-on-tail instability by PIC1D-PETSc sim-

ulation. Due to the random fluctuation in each run, this convergence test

has three issues:

1. the convergence trend is not very clear;

2. the inverse-square-root relation between the statistical uncertainty and

the number of markers is not shown;

3. it is not a consistent test as redoing the test with markers loaded with

the same distribution but with a different random number sequence

may give a very different image; Fig. 2(b) and (c) give another two

possible results of such redoing.
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Figure 2: Traditional single-scan convergence tests of linear growth rate of bump-on-tail

instability vs number of markers. (a), (b) and (c) are giving three possible test results

when markers are loaded with the same distribution but with different random number

sequences.
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In contrast, a more rigorous convergence test is to perform the simulation

multiple times as a sample, with markers loaded with different random num-

ber sequences, which can be achieved simply by changing the random seeds,

then use the sample statistics to get a clearer error estimate as shown in

Fig. 3. Here we assume that the distributions of the linear growth rate and

other macroscopic simulation results are Gaussian without rigorous math-

ematical proof. From statistics we know that, if from a Gaussian random

variable X we take a sample {Xj, j = 1..N} which is of size N , the mean

of the sample Xj is also a Gaussian distributed random variable with an

expectation same as the original Gaussian distribution, i.e., E(Xj) = E(X),

and a standard deviation σ(Xj) = σ(X)/
√
N , where σ(X) is the standard

deviation of the original Gaussian distribution. According to the Cochran’s

theorem [34], the quantity
√
N − 1s(Xj)/σ(X) has a chi distribution with

N − 1 degrees of freedom, where s(Xj) is the standard deviation of the sam-

ple. Based on these properties, we can estimate the expectation and the

statistical uncertainty of the linear growth rate and other simulation results.

Here we take the sample size to be 20, i.e., 20 simulations are performed

for every choice of the marker numbers, with different random seeds. The

sample means as estimations of the expectations of the linear growth rate

are shown in Fig. 3(a). The error bars give the intervals of γj ± 2s(γj)/
√

20

and therefore are ∼ 95% confidence intervals, where γj and s(γj) are the

mean and the standard deviation of the sample growth rate, respectively.

It can be seen that these data points have approximately the same γ val-

ues within error bars. This indicates that finite marker number does not

introduce apparent systematic error. The sample standard deviations as es-
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timations of the standard deviations of the linear growth rate are shown in

Fig. 3(b) (normalized by the estimated expectation). The error bars of the

standard deviation give the intervals of [s(γj)/γj](100%±30%) and therefore

are ∼ 93% confidence intervals. The fitting verifies the inverse-square-root

relation between statistical uncertainty and marker number.

A correctly working optimization technique should:

1. make the data points in Fig. 3(a) to stay at the same level, so that no

systematic error is introduced;

2. and meanwhile lower the data points in Fig. 3(b), so that the statistical

uncertainty is reduced for the same marker number, or less markers are

needed for the same statistical uncertainty level.

2.4. Candidate optimization techniques

There are at least two categories of techniques for optimizing the marker

distribution during the simulation: marker increase and marker reduction.

In the first category, the simulation initially loads small amount of markers.

Then during the simulation when δf is known, in the regions where δf is

localized, one (or a few) marker is split into multiple markers to increase

resolution. Or alternatively, when δf is known, the initial set of markers is

removed and a new set of markers in a larger amount is reloaded based on

the calculated δf , to get better resolution. The reloading technique, also

called phase space remapping, has been systematically developed for PIC

simulations with 2D [35] and 4D [36] phase space. In the second category,

the simulation initially loads large amount of markers, then merge or remove

markers in the δf ≈ 0 regions.
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Figure 3: A more rigorous convergence test of linear growth rate of bump-on-tail insta-

bility vs number of markers. The growth rate is modeled as a Gaussian random variable.

20 simulations with different random seeds are performed for each choice of the marker

numbers to sample this Gaussian random variable for estimation of (a) the expectation

and (b) the standard deviation (normalized by the estimated expectation) and fit for

the inverse-square-root relation. The error bars of the expectation give the intervals of

γj ± 2s(γj)/
√

20 and therefore are ∼ 95% confidence intervals. The error bars of the

standard deviation give the intervals of [s(γj)/γj ](100%± 30%) and therefore are ∼ 93%

confidence intervals.
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The first category is a process of upsampling from a low-resolution sam-

ple and is difficult in general. The splitting technique is especially difficult

because:

1. it can easily introduce non-conservation problem if not treated carefully

[37], bringing in systematic error;

2. the children markers split from one parent marker are correlated; the

statistical uncertainty of a Monte Carlo simulation goes ∼ 1/
√
N where

N is the number of independent sampling elements; the splitting tech-

nique does not increase independent markers (unless after the decorre-

lation time, which could be very long) and therefore is hard to reduce

statistical uncertainty.

The second category is a process of downsampling from a high-resolution

sample and is relatively easier than the first category. For the merging tech-

nique, finding nearby markers to merge is not very easy, especially in high

dimension phase space. In this work, a marker removal technique is devel-

oped and is presented below.

2.5. Marker removal technique

The marker removal is performed only once in the early linear stage, when

linear eigenmode just forms. The removal procedures consist two marker

loops.

The first marker loop is to calculate an importance function. Before

normalization, the importance function is defined as:

i(v) =

∫
|δf(x, v)|dx∫
g(x, v)dx

, (14)
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where g(x, v) is the marker distribution. Making a grid on v, the importance

function can be approximated by:

i(v) ≈
∑

j |wj|S(vj − v)∑
j S(vj − v)

, (15)

where S() is the shape function for marker-grid interpolation, and
∑

j sums

over all markers. Note that this approximation may overestimate i(v) be-

cause:

i(v) '
∫
|
∑

j wjS(vj − v)S(xj − x)|dx∑
j S(vj − v)

≤
∫ ∑

j |wj|S(vj − v)S(xj − x)dx∑
j S(vj − v)

'
∑

j |wj|S(vj − v)∑
j S(vj − v)

. (16)

This overestimation should be small and is not important because the ac-

curacy of the importance function is not important as will be discussed in

Sec. 4.2. The importance function is normalized as:

I(v) =
i(v)

maxv{i(v)}
. (17)

This normalization makes the function in the range of [0, 1].

The second marker loop uses I(v) to identify the importance of each

marker and determine whether each marker should be removed. For each

marker indexed j,

1. its importance Ij is calculated directly by the importance function:

Ij = I(vj);

2. then a uniform [0, 1] random number called “dice” is generated;
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3. if dice > Ij, remove this marker; otherwise, keep this marker and scale

up its weights: pj → 1
Ij
pj, wj → 1

Ij
wj.

This way makes the marker distribution to have a same shape as the im-

portance function, and only statistical error is introduced to the distribution

function, as well as mass, momentum and energy. In the limit of infinite

number of markers, the distribution function and its moments are conserved

exactly.

The reason that the importance function integrates over x is that in this

2D phase space, v is an equilibrium motion constant while x is not. The

importance function as well as the marker distribution after marker removal

need to be a function of the equilibrium motion constants, so that in linear

stage, the marker distribution is time independent to keep the optimization

effective. In nonlinear stage, the optimization is still effective if the impor-

tance function does not change too much from the linear stage. Note that

when there are multiple species in the system, each species has its own im-

portance function and the above procedures need to be performed for each

species.

2.6. Test on electron bump-on-tail simulation

The marker removal technique is tested on the electron bump-on-tail sim-

ulation described in Sec. 2.2. The time evolution of the electric field energy

is shown in Fig. 4. As described in Sec. 2.5, the marker removal technique

is applied in the early linear stage when the linear eigenmode just forms.

The marker distributions before and after the marker removal are shown in

Fig. 5.
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Figure 5: Marker distributions in bump-on-tail simulation and compare with δf : (a) initial

uniform marker distribution; (b) marker distribution after removal; (c) marker distribution

after removal in velocity space (x integrated); (d) δf for comparison.
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The rigorous convergence test method described in Sec. 2.3 is used to test

two common macroscopic quantities in simulation results, linear growth rate

and nonlinear saturation level, so as to measure the optimization effect of

the marker removal technique. The convergence results are shown in Figs. 6

and 7. It can be seen from the upper panels of both figures that “optimized”

data points are vertically very close to the “regular” ones, indicating that

the marker removal technique does not introduce apparent systematic error.

The lower panels of these two figures show that the marker removal tech-

nique reduces the statistical uncertainty by a factor of ∼ 2, indicating that

retaining the same statistical uncertainty, the marker removal technique can

save markers by a factor of ∼ 4 due to the inverse-square-root relation. The

optimization by marker removal is successful in this 2D simulation, and will

be generalized to 5D gyrokinetic simulations in the next section.

3. Optimization in 5D gyrokinetic simulations

In this section, the marker removal optimization technique is generalized

to 5D gyrokinetic simulations and is tested in a TAE simulation by the M3D-

K code [10].

3.1. Marker removal technique in 5D gyrokinetic phase space

In the 5D gyrokinetic phase space, the phase space volume element is:

J dE dµ dPζ dζ dθorb, where J is the Jacobian and E , µ, Pζ , ζ, θorb are gyro-

center energy, magnetic moment, toroidal angular momentum, toroidal angle

and orbit phase, respectively. The reason to choose this special coordinate

system is that the importance function for marker optimization is a function

of equilibrium motion constants, and E , µ, Pζ are the equilibrium motion

17
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constants in the 5D gyrokinetic phase space. The unnormalized importance

function in the 5D phase space is defined as:

i(E , µ, Pζ) =

∫
|δfJ | dζ dθorb∫
gJ dζ dθorb

, (18)

which can be approximated by:

i(E , µ, Pζ) ≈
∑

j |wj|S(Ej − E)S(µj − µ)S(Pζ,j − Pζ)∑
j S(Ej − E)S(µj − µ)S(Pζ,j − Pζ)

. (19)

Again this approximation may overestimate i(E , µ, Pζ), but this overestima-

tion is not important. Similar to the case in the 2D phase space, the impor-

tance function is normalized as:

I(E , µ, Pζ) =
i(E , µ, Pζ)

maxE,µ,Pζ{i(E , µ, Pζ)}
. (20)

After the importance function is calculated, the procedures for marker re-

moval in 5D phase space are the same as those in 2D phase space described

in Sec. 2.5. Note that again, when there are multiple species, the procedures

need to be performed for each species individually.

3.2. Test on a TAE simulation

M3D-K is a kinetic/MHD hybrid code that solves energetic particles in

the 5D gyrokinetic phase space [10]. The marker removal technique has been

implemented in the kinetic part of M3D-K and is tested on an n = 1 TAE

simulation. The mode structures in linear and nonlinear stages are similar as

can be seen from Fig. 8. The time history of the MHD perturbation energy

is shown in Fig. 9. The third nonlinear peak is marked in this figure as this

is used in the convergence tests for measuring the marker saving effect in the

nonlinear stage. Similar to the 2D case, the marker removal is performed in
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early linear stage when linear eigenmode just forms. Fig. 10 shows the marker

distribution change from the removal in one E–Pζ slice (µ = 0) of the motion

constant space. In this simulation, initially the markers are loaded uniformly

in (R,Z, ζ, v‖, v⊥) coordinates. As we look at the system in the motion

constant coordinates, the coordinate transformation Jacobian J makes the

marker distribution concentrated at the bottom of the phase space slice as

shown in Fig. 10(a). Meanwhile, the δf structure locates mainly on the left

side in the E–Pζ slice as shown in Fig. 10(b). After marker removal, the

markers become concentrated in a narrow band on the left side in the E–Pζ

slice as shown in Fig. 10(c). The rigorous convergence test method is applied

to linear growth rate, nonlinear saturation level, and also the amplitude

of the third nonlinear peak. The results are given in Figs. 11, 12 and 13,

respectively. From these figures, it is again verified that numerical error

introduced by finite marker number is mainly statistical. It can be also seen

that the marker removal technique does not introduce apparent systematic

error. The marker removal technique saves markers by a factor of 19, 34 and

24 with respect to linear growth rate, nonlinear saturation level, and third

nonlinear peak, respectively. Overall, the saving factor is 19.

4. Possible generalizations and extensions of the marker removal

optimization technique

4.1. Generalization to arbitrary dimension phase space

Our marker removal optimization technique can be straightforwardly gen-

eralized to arbitrary dimension phase space, as long as the equilibrium mo-

tion constants can be found in this phase space. The only thing that needs
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to be changed in a different phase space is the importance function, which

becomes:

i(zc) =

∫
|δf(zc, zn)J |dzn∫
g(zc, zn)J dzn

≈
∑

j |wj|S(zc,j − zc)∑
j S(zc,j − zc)

, (21)

where zc denotes the motion constants, and zn denotes the non-constant

coordinates. The normalization of importance function does not change:

I(zc) =
i(zc)

maxzc{i(zc)}
. (22)

The removal procedures remain the same as those in the 2D simulation de-

scribed in Sec. 2.5.

4.2. Flexibility of importance function

The importance function is only for controlling what portion of markers

to be kept and it does not directly enter the simulation system. In the limit of

infinite number of markers, no matter what importance function is used, the

simulation result does not change. Therefore, the accuracy of the importance

function is not crucial. As a result, the grid in motion constant space for

calculation of importance function does not need to have such a small grid

size that resolves all fine structures in δf since the grid size does not directly

contribute to the numerical error of the simulation. Also, the shape function

for calculation of importance function does not need to be of high order. A

simple piecewise linear function is good enough. Furthermore, the choice

of importance function is flexible and not unique. The importance function

Eq. (21) leads to an aggressive marker removal, which brings in quite large
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statistical uncertainty to a single run. Although the rigorous convergence test

shows marker saving effect, it is not practical to do the rigorous convergence

test for every simulation scenario as it needs to perform the simulation too

many times. A less aggressive removal may be more practical. Such less

aggressive removal can be achieved by adjusting the normalized importance

function. Here are two examples of such less aggressive functions:

Ila1(zc) = [I(zc)]
ξ 0 < ξ < 1 , (23)

Ila2(zc) =
tanh {η[I(zc)− 1/2]}

tanh(η/2)
η > 0 , (24)

where I(zc) is the original normalized importance function given by Eq. (22).

One can simply use one of these functions to calculate the importance of each

marker instead of the original normalized importance function to achieve

less aggressive removal effect. The aggressiveness can be adjusted by the

parameters ξ and η. The optimal values of ξ and η need further investigation.

4.3. Applicability in multi-mode and nonlinear simulations

Our marker removal optimization technique is good for single-mode lin-

ear simulations (or linear stage of nonlinear simulations), because in this

case the normalized importance function does not change over time in the

linear stage, so the optimization effect, i.e., the “importance sampling”, is

sustained. In multi-mode linear simulations, usually there is one most unsta-

ble mode which dominates the simulation, in which case the technique is still

good. In nonlinear stage, the technique is still good if the δf structures do

not change or move too much; or the δf structures move, but markers also

move along. This is why the rigorous convergence tests show that the tech-
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nique is still good in nonlinear stage for both the 2D bump-on-tail simulation

and the 5D TAE simulation.

If there are multiple modes that are comparably unstable and are all

important in the simulation, or δf changes too much and the markers do

not follow along in the nonlinear stage, then the marker removal technique

is not recommended for the very first run; but if a second run is needed

for whatever reason, the technique is useful by constructing an importance

function from the previous run, which will be described in Sec. 4.4.

4.4. Construct importance function from known properties

When some properties of the simulation is known before the simulation

is performed, the importance function may be constructed from those known

properties instead of from the linear simulated δf . For example, if the linear

δf can be calculated analytically, then the importance function can also

be calculated before the simulation. In this case, the marker removal can

be performed at the very beginning of the simulation instead of at the early

linear stage. Or alternatively, the markers can be initially loaded to distribute

as the importance function in the motion constant space and no removal

needs to be performed. This alternative way needs to find the mapping of

particle orbits between regular phase space coordinates, which are simply

the position and the velocity, and motion constant space coordinates. This

is solved in tokamak geometry [38], but may be unsolved and difficult in

other geometries. In a geometry where the mapping is difficult to find, the

marker removal is a good replacement.

Sometimes a simulation needs to be re-performed because a higher reso-

lution is needed, or output of more data is needed, or some minor mistakes
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were made in the previous simulation. If the previous simulation is still

trustable, then it can be used to construct the importance function for the

next simulation:

Inext(zc) = max
t
{Iprev(zc, t)} , (25)

where Iprev(zc, t) is the normalized importance function from previous run:

Iprev(zc, t) =
iprev(zc, t)

maxzc{iprev(zc, t)}
, (26)

iprev(zc, t) =

∫
|δf(zc, zn, t)J |dzn∫
g(zc, zn, t)J dzn

≈
∑

j |wj(t)|S[zc,j(t)− zc]∑
j S[zc,j(t)− zc]

, (27)

where δf , g, wj and zc,j are taken from the previous run. The importance

function is time dependent because the previous simulation has been per-

formed and the importance function can be obtained for any time.

4.5. Automatic selection of marker removal time

In the simulations described in Secs. 2 and 3, the marker removal times are

specified manually and are determined based on regular simulations without

marker removal. For a simulation of a different problem, the marker removal

time can also be programmed to be automatically detected. Whether the

linear eigenmode has formed can be detected by the stability of instantaneous

growth rate and/or the stability of the normalized mode structure. Once

the linear eigenmode has formed, the marker removal can and should be

performed.

4.6. Applicability in simulations of microturbulence

PIC simulation is vastly used to study microturbulence. It is recom-

mended to follow the discussions in Secs. 4.3 and 4.4 when applying the
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marker removal optimization technique to microturbulence simulations. Note

that microturbulence may occupy a large portion of the phase space, so the

marker saving factor may be small for simulations of microturbulence.

4.7. Applicability in full-f simulations

It is frequently asked whether the marker removal optimization technique

can be used in full-f simulations. In full-f simulations, the “importance

sampling” can be simply achieved by loading markers such that f/g is a

constant, as suggested in Ref. [1] and discussed in Sec. 1. When f is a simple

function, e.g., Maxwellian, it is usually easy to directly load markers such that

g is proportional to f . When f is a complicated function, direct loading may

be difficult. In this case, once can first load markers arbitrarily (the simplest

choice would be uniform loading), then use such a simple importance function

i(z) = f(z)/g(z), normalize it, and then perform marker removal to achieve

the “importance sampling.”

4.8. Extension to other approaches of marker particle simulation

Although we applied the marker removal technique to particle-in-cell sim-

ulations in Sec. 2 and Sec. 3, the technique does not directly touch the “in-

cell” part in the simulation. Therefore, the marker removal optimization

technique can be directly applied to other approaches of marker particle sim-

ulation such as the PIW simulation [11] and the grid-free treecode simulation

[12].
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5. Summary

A marker removal optimization technique has been developed for δf par-

ticle simulations. The technique uses the linear eigenmode structure in the

equilibrium motion constant space to construct an importance function by

Eqs. (21) and (22), then remove some markers based on the importance func-

tion and adjust the weights of the leftover markers, to optimize the marker

distribution. The technique is tested on a 2D bump-on-tail simulation and

a 5D TAE simulation and can save markers by a factor of 4 and 19, respec-

tively. The marker saving factor depends on how localized the δf structure is.

The technique can be directly applied to single-mode linear simulations. For

multi-mode simulations, if there is one most unstable mode that dominates

the simulation, the technique can still be directly applied. For nonlinear

simulations, if δf does not change too much, or particle orbits follow the

change of δf , the technique can still be directly applied. If there are multiple

modes that are comparably unstable and are all important in the simula-

tion, or δf changes too much and particle orbits do not follow in nonlinear

stage, the technique can be applied but the importance function needs to

be constructed from other sources, such as a previous run or analytic theo-

ries. The technique is not limited to PIC simulations but could be applied to

other approaches of marker particle simulations such as PIW and treecode

simulations.
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tokamak plasmas, Commun. Comput. Phys. 4 (2008) 457–495.

[7] A. Mishchenko, R. Hatzky, A. Konies, Global particle-in-cell simulations
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