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Finite-β Simulation of Microinstabilities

Edward A. Startsev and W. W. Lee

Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543

Abstract

A new split-weight perturbative particle simulation scheme for finite-β plasmas in the pres-

ence of background inhomogeneities is presented. The scheme is an improvement over the

original split-weight scheme, which splits the perturbed particle response into adiabatic and

non-adiabatic parts to improve numerical properties. In the new scheme, by further sepa-

rating out the adiabatic response of the particles associated with the quasi-static bending of

the magnetic field lines in the presence of background inhomogeneities of the plasma, we

are able to demonstrate the finite-β stabilization of drift waves and ion temperature gradient

modes using a simple gyrokinetic particle code based on realistic fusion plasma parameters.

However, for βmi/me � 1, it becomes necessary to use the electron skin-depth as the grid

size of the simulation to achieve accuracy in solving the resulting equations, unless special

numerical arrangement is made for the cancelling of the two large terms on the either side

of the governing equation. The proposed scheme is most suitable for studying shear-Alfvén

physics in general geometry using straight field line coordinates for microturbulence and

magnetic reconnection problems.

I. INTRODUCTION

The development of numerical schemes for solving finite-β gyrokinetic equations [1] for sim-

ulating shear-Alféven waves using a gyrokinetic particle code has a long history. It all started

with two Ph.D. theses at Princeton University - first, the observation of the existence of streaming

modes due to the fast electron motion above the Alfvén phase velocity [2] and, subsequently, the

necessity of using a grid size of the electron skin-depth for the simulation [3], when the plasma

β is above the mass ratio between the electrons and the ions, me/mi. The problem of streaming

modes was later resolved by the use of the finite-β split-weight scheme [4] based on the gener-

alization of electrostatic perturbative methods [5, 6], where the response of the fast electrons is

approximately assumed to be Boltzmann-like, i.e., adiabatic. In the present paper, we will present
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a new finite-β split-weight scheme, which uses the double-split scheme, by taking out the addi-

tional adiabatic response of the fast particles to the field-line bending terms associated with the

background inhomogeneity. Furthermore, we will show the resolution for the numerical difficulty

facing us for high-β simulations for β � me/mi. The term, arising from the electron inertia as-

sociated with the skin-depth term in the gyrokinetic Ampere’s law [1], is thought to be important

only for the cold electron response near the rational surfaces. However, we have found that the

electron skin-depth, δe, which for β � me/mi is much smaller than the ion gyroradius, ρi, gives

rise to the singular nature of the gyrokinetic Ampere’s law and, as such, a grid spacing of the size

of δe is actually need to be used as the grid size in the simulation domain to achieve accuracy in

agreement with the earlier observation [3]. This is somewhat surprising, since one would think that

δe is only important near the rational surface when magnetic tearing takes place. But, the singular

nature of our equation, where the highest derivative term in the equation is multiplied by a small-

ness parameter [7, 8] calls for such a remedy, which we will explain. We will also show that this

observation is consistent with the prevailing wisdom that the difficulty in simulating shear-Alfvén

waves, when the plasma β is larger than the mass ratio, is due to the cancellation problem between

the above-mentioned electron skin term and the warm electron source in the gyrokinetic Ampere’s

law [9–11], and the use of the electron skin-depth as the grid size in the simulation may be utilized

to circumvent the cancellation problem. However, in the case when resolving the electron skin-

depth is not desired (for example away from the rational surfaces), we will show how to modify

the field equations to ensure that the cancellation happens numerically. We will also illustrate the

relation of our approach to the hybrid approach of Lin & Chen [12].

The paper is organized as follows. In Sec. II, the governing finite-β gyrokinetic equations in the

limit of k⊥ρi � 1 are presented. In sec. III, a generalized split-weight numerical scheme includ-

ing background inhomogeneity is discussed. The double split-weight scheme in simple geometry

is the topic for Sec. IV. The theoretical properties of shear-Alfvén waves, drift instabilities and

ion temperature gradient (ITG) modes are reviewed and the simulation results of finite-β modified

microinstabilities are given in Sec. V. Finally, conclusions are drawn in Sec. IV. The ultimate

goal of this study is the inclusion of finite-β effects in the global gyrokinetic particles codes such

as GTC [13] and GTS [14]. Its purpose is not only for understanding the electromagnetic effects

on micronistabilities, but is also a natural way to study the coupling between microturbulence

and MHD in global toroidal geometry using the Particle-In-Cell (PIC) approach as described ear-

lier [15]. This endeavour is intended as the continuation of the electromagnetic code development
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effort of the present gyrokinetic codes, GEM [16] and GTC [17].

II. BASIC FORMULATION FOR FINITE-β PLASMAS

In the gyrokinetic units of ρs(≡
√
τρi) and Ω−1i for length and time, where Ωi = eB0/mic is

the ion cyclotron frequency, ρi = (Ti/mi)
1/2/Ωi is the ion gyroradius, the governing gyrokinetic

Vlasov equation for a finite-β plasma in the limit of k2⊥ρ
2
i � 1, can be written as [4, 15]

dFα
dt
≡ ∂Fα

∂t
+ v‖b ·

∂Fα
∂x

+ EL × b0 ·
∂Fα
∂x

+ sαv
2
tα(EL · b + ET

‖ )
∂Fα
∂v‖

= 0, (1)

where τ ≡ Te/Ti is the ratio of the electron, Te, and the ion temperature, Ti, α ≡ e, i denotes

species, v2te = mi/me, v2ti = 1/τ , se = −1, si = τ ,

b ≡ b̂0 +
δB

B0

=
B0

B0

+∇A‖ × b̂0, (2)

EL = −∇φ, ET
‖ = −

∂A‖
∂t

, (3)

the superscripts L(longitudinal) and T(transverse) denote the vector decomposition relative to the

direction of wave propagation and the subscript ‖ indicates the direction parallel to the external

magnetic field B0. The gyrokinetic Poisson’s equation for k2⊥ρ
2
i � 1 can be simplified as

∇2
⊥φ = −

∫
(Fi − Fe)dv‖dµ, (4)

where the electrostatic potential φ is normalized by Te/e,
∫
F0αdv‖dµ = 1 and µ ≡ v2⊥/2. Am-

pere’s law then becomes

∇2A‖ = −β
∫
v‖(Fi − Fe)dv‖dµ, (5)

where the vector potential A‖ is normalized by cTe/ecs, β ≡ c2s/v
2
A, vA ≡ cλD/ρs is the Alfvén

speed, λD = (Te/4πe
2n0)

1/2 is the (unnormalized) electron Debye length, c is the speed of light

and n0 is the plasma density. [Note that the ion acoustic speed cs(≡ ρsΩi) is unity in the gyroki-

netic unit.]

Equations (1) - (5) are the so-called electromagnetic Darwin model. The energy conservation

of the resulting system of equations can be expressed as

1

2

d

dt

〈∫ v2‖ + v2⊥
v2te

Fedv‖dµ+
∫ v2‖ + v2⊥

τv2ti
Fidv‖dµ+ |∇⊥φ|2 +

1

β
|∇A‖|2

〉
= 0, (6)
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where < · · · > is the spatial average. Here, for our present purpose, we also assume the conserva-

tion of the magnetic moment for each particle,

µB ≡ v2⊥/2B0 ≈ const. (7)

This is a quasineutral system without the space charge waves where the normal mode frequencies

in a homogeneous plasma are given by [4]

ω2 = k2‖v
2
A/(1 + k2δ2e) (8)

and

ω2 = k2‖v
2
A(1 + k2⊥) (9)

for cold and warm electron response, respectively, where

δe = c/ωpe = ρs

(
me

miβ

)1/2

(10)

is the electron skin-depth and ωpe = vte/λD is electron plasma frequency. The frequencies of Eq.

(8) may set the limit for the time step of the simulation for low β < me/mi cases. By setting

A‖ = 0, one recovers the electrostatic gyrokinetic Vlasov-Poisson system [18] and the associated

numerical properties [19].

The scheme presented in the present paper is a generalization of the original split-weight

scheme [4] by including the background inhomogeneities. It is suitable for finite-β simulations of

tokamak plasmas using straight field lines coordinates. We can first re-write Eq. (1) as

dFα
dt
≡ ∂Fα

∂t
+
[
v‖b̂0 −∇(φ− v‖A‖)× b̂0

]
· ∂Fα
∂x

−sαv2tα(∇ψ +∇φ×∇A‖) · b̂0
∂Fα
∂v‖

= 0, (11)

where

b̂0 · ∇ψ ≡ b̂0 · ∇φ+
∂A‖
∂t

. (12)

This governing gyrokinetic equation takes the phase space conservation form of

∂Fα
∂t

+
∂

∂x
·
(
dx

dt
Fα

)
+

∂

∂v‖

(
dv‖
dt
Fα

)
= 0 (13)

with
dx

dt
= v‖b̂0 −∇(φ− v‖A‖)× b̂0, (14)
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and
dv‖
dt

= −sαv2tα(∇ψ +∇φ×∇A‖) · b̂0. (15)

Equations (13) - (15) along with the Klimontovich-Dupree representation for particle distribution

function

Fα(x, v‖, t) =
N∑
j=1

δ(x− xαj)δ(µ− µαj)δ(v‖ − vα‖j), (16)

where N is the total number of simulation particles, are the focus of the present paper. This

complete set of equations are amenable for particle pushing because of its conservation properties

[19].

III. THE PERTURBATIVE SIMULATION SCHEMES

Let us first cast Eq. (13) into the δf formalism. Namely, for Fα = F0α + δfα and ∂F0α/∂t +

v‖b̂0 · ∂F0α/∂x = 0 , we obtain

dδfα
dt

= −∇(φ− v‖A‖)× b̂0 · καF0α − sαv‖(∇ψ +∇φ×∇A‖) · b̂0F0α, (17)

and, for wα ≡ δfα/Fα, the weight equation now becomes

dwα
dt

= −(1− wα)
1

F0α

dδfα
dt

, (18)

where κα ≡ −(∂F0α/∂x)/F0α = κn− 3
2
κTα+ 1

2
κTα(v2‖+v

2
⊥)/v2tα, κn ≡ −dlnn0/dx, and κTα ≡

−dlnT0α/dx represent the zeroth-order inhomogeneities and F0α ≡ (1/
√

2πv3tα)exp[−(v2‖ +

v2⊥)/2v2tα] is the background Maxwellian. The field equations become

∇2
⊥φ = −

∫
(δfi − δfe)dv‖dµ, (19)

and

∇2A‖ = −β
∫
v‖(δfi − δfe)dv‖dµ. (20)

This is the familiar δf scheme [6], and

δfα(x, v‖, t) =
N∑
j=1

wαjδ(x− xαj)δ(µ− µαj)δ(v‖ − v‖αj). (21)

As we know, δf scheme has numerical difficulties in simulating shear-Alfvén waves [4] without

further separating the adiabatic response from δf by using the split-weight scheme [5]. In the

present paper, we will first describe the generalization of the split-weight scheme used earlier
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by Lee et al. [4] for solving ψ in a shearless slab geometry defined in Eq. (12), by including

background inhomogeneity. For Fα = F0α+δfα = e−sαψF0α+δhα, for which δfα ≈ −sαψF0α+

δhα. The evolution for the nonadiabtic response part of the perturbed distribution becomes

dδhα
dt

= e−sαψF0α

[
sα
∂ψ

∂t
−∇(φ− v‖A‖)× b̂0 · (κα + sα∇ψ)− sαv‖∇φ×∇A‖ · b̂0

]
(22)

For wNAα ≡ δhα/Fα, the corresponding weight is

dwNAα
dt

= (1− wNAα )
1

F0α

dδhα
dt

. (23)

For a scheme using δhe and δhi, with k‖ � k⊥, the corresponding field equations for φ and A‖

are

∇2
⊥φ− (1 + τ)ψ = −

∫
(δhi − δhe)dv‖dµ, (24)

and

∇2
⊥A‖ = −β

∫
v‖(δhi − δhe)dv‖dµ, (25)

respectively. Taking ∂/∂t of Eqs. (24) and (25), and substituting ∂δhi/∂t and ∂δhe/∂t from Eq.

(22), respectively, we arrive at

∇2
⊥
∂φ

∂t
= b̂0 · ∇

∫
v‖(δhi − δhe)dv‖dµ, (26)

∇2
⊥
∂A‖
∂t

= β
[
b̂0 · ∇

∫
v2‖(δhi − δhe)dv‖dµ +∇A‖ × b̂0 · [v2te(κn + κTe)− v2ti(κn + κT i)]

]
,

(27)

where nonlinear terms have been ignored (see, Eq. (17) in Ref. [5]). Again taking ∂/∂t of Eq. (27)

and substituting the resulting time derivatives for δhi and δhe by the proper equations, we obtain

(∇2
⊥ − βv2te − β)

∂2A‖
∂t2

= β

[
− (b̂0 · ∇)2

∫
v3‖(δhi − δhe)dv‖dµ

+(v2te + 1)b̂0 · ∇
∂φ

∂t
+ b̂0 · ∇(∇ψ × b̂0) · [v2te(κn + κTe)− v2ti(κn + κT i)]

]
, (28)

where b̂0 · ∇(∇φ× b̂0) +∇(∂A‖/∂t)× b̂0 = b̂0 · ∇(∇ψ × b̂0) is used.

Thus, particle pushing can be carried out with Eqs. (14) and (15), along with Eq. (23) for the

non-adiabatic part of particle weights. Equations (24) - (28) are the five field equations for φ, A‖,

∂φ/∂t, ∂A‖/∂t, and ∂2A‖/∂t2, respectively, where

δhα =
N∑
j=1

wNAαj δ(x− xαj)δ(µ− µαj)δ(v‖ − v‖αj) (29)
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and N is the number of particles. The field quantity ψ is given by Eq. (12), i.e.,

ψ = φ+
∫ ∂A‖

∂t
dx‖0, (30)

and its time derivative, ∂ψ/∂t, can be calculated accordingly from ∂φ/∂t and ∂2A‖/∂t2.

Alternatively, in the limit where (b̂0 · ∇)∇2
⊥φ = ∇2

⊥(b̂0 · ∇φ), and using Eqs. (12) and (24),

Eq. (27) can be simplified as

(∇2
⊥ − 1− τ)(b̂0 · ∇ψ) = β(b̂0 · ∇)

∫
v2‖(δhi − δhe)dµdv‖ − (b̂0 · ∇)

∫
(δhi − δhe)dµdv‖

+β∇A‖ × b̂0 ·
[
mi

me

(κn + κTe)−
1

τ
(κn + κT i)

]
. (31)

Similarly, we can also simply Eqs. (26) and (28) to

[∇2
⊥ − β

mi

me

− β]
∂ψ

∂t
= −β(b̂0 · ∇)

∫
v3‖(δhi − δhe)dµdv‖ + (b̂0 · ∇)

∫
v‖(δhi − δhe)dµdv‖

+β∇ψ × b̂0 ·
[
mi

me

(κn + κTe)−
1

τ
(κn + κT i)

]
. (32)

The former can be considered as a generalized Ohm’s law, while the latter a kind of vorticity

equation. So, in this limit, the governing field equations are reduced to Eqs. (24), (25), (31), and

(32), and Eqs. (23) and (29) describe the time evolution of the perturbed distribution.

We should remark here that these equations, without the inhomogeneity terms, are similar to

those used for the study of shear-Alfvén waves earlier, where the original split-weight scheme for

finite-β plasmas [4] was devised. However, we found that the original split-weight scheme had

stability problems when density gradients were included in the simulation and the solution for

which is the topic for the remaining of this paper.

Finally, let us point out that the linearized Eqs. (25), (26) and (28) can also be simplified to the

two-field MHD equations [20], i.e.,

∇2
⊥
∂φ

∂t
+

1

β
b̂0 · ∇∇2

⊥A‖ = 0, (33)

and
∂A‖
∂t

+ b̂0 · ∇φ = 0. (34)

in the limit of cold ion and electrons with (ck⊥/ωpe)
2[≡ (k⊥ρs)

2(me/miβ)] � 1. They are the

vorticity equation and the parallel collisionless Ohm’s law, respectively. These reduced two-field

MHD equations give rise to the usual shear-Alfvén waves of ω = ±k‖vA in the zero electron mass

limit.
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IV. THE DOUBLE SPLIT-WEIGHT SCHEME

The numerical difficulty associated with the original split-weight scheme [4] comes from the

fact that the resulting weight equation, Eq. (23), contains v‖ terms, i.e., those associated with the

presence of A‖, which, for accuracy purposes, need small time steps in the simulation to resolve.

Thus, the existing split-weight schemes [4, 5], designed for eliminating v‖ terms, are not sufficient

when the finite-β effects, through v‖A‖ terms, are included in the simulation. To circumvent the

problem, let us present a new scheme, as first pointed out in 2007 [21], by further separating out

the fast particle response to the quasi-static bending of the magnetic field lines as

Fα = F0αe
−sαψ + F0αe

−sαψ
∫
dx||κα · (∇A|| × b̂0) + δgα, (35)

for both the electrons and the ions, so that a new full inhomogeneous gradient, background plus

perturbation, which is set up by the fast particles, is transverse to the direction of the field, back-

ground plus perturbation, i.e.,

b · ∇
[
1 +

∫
dx||κα · (∇A|| × b̂0)

]
F0αe

−sαψ ≈ 0, (36)

where b = b̂0+δB/B0. (An independent, but more general, idea of separating out the background

magnetic field in toroidal geometry was given Nishimura et al. in 2007 [22])

The evolution for the remaining linear response for the particles, from Eq. (22), becomes

dδgα
dt

=

[
sα
∂ψ

∂t
−∇ψ × b̂0 · κα

]
F0αe

−sαψ, (37)

where the disappearance of the explicitly v|| dependent term associated the spatial inhomogeneity,

unlike those in Eqs. (22) and (23), gives us the numerical advantage. Let wDNAα ≡ δgα/Fα, the

corresponding time evolution for the particle weight of species α takes the form of

dwDNAα

dt
= (1− wDNAα )

[
sα
∂ψ

∂t
−∇ψ × b̂0 · κα

]
, (38)

by assuming that |
∫
dx||κα · (∇A|| × b̂0)| � 1, which, in turn, gives

δgα =
N∑
j=1

wDNAαj δ(x− xαj)δ(µ− µαj)δ(v‖ − v‖αj) (39)

and N is the total number of particles in the simulation. While Eqs. (14) and (15) for particle

advance remain the same for the new scheme, the governing field equations of Eqs. (24)-(28) then

become

∇2
⊥φ− (1 + τ)ψ = −

∫
(δgi − δge)dv‖dµ, (40)
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∇2
⊥A‖ = −β

∫
v‖(δgi − δge)dv‖dµ, (41)

∇2
⊥
∂φ

∂t
= b̂0 · ∇

∫
v‖(δgi − δge)dv‖dµ, (42)

∇2
⊥
∂A‖
∂t

= βb̂0 · ∇
∫
v2‖(δgi − δge)dv‖dµ, (43)

for e−sαψ ≈ 1 and

(∇2
⊥ − βv2te − β)

∂2A‖
∂t2

= β

[
− (b̂0 · ∇)2

∫
v3‖(δgi − δge)dv‖dµ

+(v2te + 1)b̂0 · ∇
∂φ

∂t
+ b̂0 · ∇(∇ψ × b̂0) · [v2te(κn + κTe)− v2ti(κn + κT i)]

]
, (44)

respectively, while Eqs. (31) and (32) in terms of δgα take the form of

(∇2
⊥ − 1− τ)ψ = β

∫
v2‖(δgi − δge)dµdv‖ −

∫
(δgi − δge)dµdv‖, (45)

for e−sαψ ≈ 1 and

[∇2
⊥ − β

mi

me

− β]
∂ψ

∂t
= −β(b̂0 · ∇)

∫
v3‖(δgi − δge)dµdv‖ + (b̂0 · ∇)

∫
v‖(δgi − δge)dµdv‖

+β∇ψ × b̂0 ·
[
mi

me

(κn + κTe)−
1

τ
(κn + κT i)

]
, (46)

respectively. Equations (37) - (46) represent the full system of equations for simulating gyrokinetic

plasmas with finite β. Note that ψ and ∂ψ/∂t can be calculated either by using Eq. (12), i.e.,

ψ = φ +
∫

(∂A‖/∂t)dx‖0, from Eqs. (40), (42), (43) and (44), or by using Eqs. (45) and (46),

directly. From Eq. (40), Eq. (45) can also be expressed as

∇2
⊥(ψ − φ) = β

∫
v2‖(δgi − δge)dµdv‖ (47)

based on the double split-weight scheme. Similarly, Eq. (46) can be expressed in terms of Eq.

(42) as well via its integral in v‖.

V. THEORY AND SIMULATION OF FINITE-β STABILIZATION OF MICROINSTABILITIES

In the present work, the gyrokinetic Vlasov equation, Eq. (37), and the associated field equa-

tions, Eqs. (45) and (46), have been used as a complete set of equations describing the self-

consistent evolution of fields and particles. In this section we will describe the numerical properties
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and the numerical methods used to solve these equations and the comparisons between the simula-

tion results and the theoretical predictions on the linear properties of the shear-Alfvén and finite-β

modified microinstabilities.

Let us first point out a interesting aspect of Eq. (46). Namely, it can be symbolically written as(
∇2
⊥ −

1

δ2e

)
y = G, (48)

where δe is the electron skin-depth normalized by ρs as given by Eq. (10), which can be much

smaller than unity for high β plasmas, and G represents the contents of the RHS of Eq. (46). Mul-

tiplying Eq. (48) by δ2e , it then takes the form of a singularly perturbed equation, where the highest

derivative is multiplied by a smallness parameter, in which the three terms represent diffusion,

source and driving, respectively, using the terms commonly adopted in the literature [7, 8]. As

such, the scale-length prescribed by Eq. (48) as well as Eq. (46) can be normalized by the electron

skin-depth - a fundamental quantity of our system. From our governing electromagnetic equa-

tions, Eqs. (46) and (10) in the limit of the cold electrons (ω/k‖ � vte) and ions (ω/k‖ � vti) for

a homogeneous plasma, using the the ansatz of exp(−iωt + ik · x), we can write the dispersion

relation approximately in the integral form of

D

(
λ2D
ρ2s

)
≡ 1 + ω2

A

∫ ∞
0

texp(−iωt− 1

2
k2‖v

2
tet

2)dt = 0, (49)

where ω is the complex frequency, k is the wave vector, and

ω2
A ≡ k2‖v

2
A/(1 + k2⊥δ

2
e) = ω2

H/(1 + 1/k2⊥δ
2
e) (50)

are the normal modes of the system for β < me/mi. They are the inertial Alfven waves, with

the denominator coming from the first two terms on the LHS of Eq. (46). Following the same

arguments used by Langdon based on ωpe and λD for an unmagnetized plasma [23, 24] as well

as by Lee based on ωH and ρs for a gyrokinetic plasma [19], we may conclude from Eq. (49)

that it gives us the time step and grid spacing restrictions of ωA∆t ≤ 1 and ∆x ≤ δe similar to

the roles of ωpe∆t ≤ 1 and ∆x ≤ λD [23, 24] for unmagnetized plasma and ωH∆t ≤ 1 and

∆x ≤ ρs for an electrostatic gyrokinetic plasma [19]. In all these cases, k‖vte∆t ≤ 1 is required

for accuracy purposes. However, in the high β limit, i.e., βmi/me � 1, when δe � ρs and the

electron response is warm, the normal modes become [4]

ω2
A ≡ k2‖v

2
A(1 + k2⊥), (51)
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where the electron skin depth does not play a role. One would assume that we can use a grid

of the size of ρs � δe. However, as Cummings [3] has pointed out, that a numerical grid of

∆x ≈ δe � ρs is indeed needed regardless the plasma β. This puzzling observation has also been

verified by us by solving Eqs. (37), (45) and (46). One possible way to understand this is to write

Eq. (48) in the finite difference form, i.e.,

δ2e
∆x2

[y(x + ∆x)− 2y(x) + y(x−∆x)]− y(x) = δ2eG(x), (52)

where ∆x is the grid size. Thus, for δe � ∆x, we may run into accuracy problems for the

reasons that Eqs. (48) and (52) may support either highly oscillatory or tearing-type solutions.

This observation may be related to the stringent grid size requirement discussed in Refs. [7, 8] for

singularly perturbed equations. For us, this accuracy problem is perhaps further exacerbated by

the presence of the third order velocity moments in Eq.(46).

However, this restriction on the grid size can be removed if one deals with Eqs. (45) and (46)

based on physical arguments as follows. Let us re-write Eq. (46) symbolically as(
d2

dx2
+

1

δ2e

)
y =

1

δ2e
F (y) +G(y). (53)

Here, F (y)/δ2e represents the electron contribution to the right-hand side in Eq. (46) and G(y) is

the remaining contributions due to the ions as well as the electrons. There are two different type

of modes that are described by Eqs. (46) or (53), slow modes with ω/k|| � vte for which electron

response is warm and nearly adiabatic, and fast modes with ω/k|| ≥ vte for which the response is

cold and non-adiabatic. For the latter case, it can be easily seen from Eq. (37) that the first term

on the RHS of Eq. (53) is negligible and we need a grid of the size of δe.

On the other hand, for slow modes with ω/k|| � vte, it can be easily seen from Eq. (37) that

the function F has a form F (y) = y+ δ2e F̃ (y), with first term due to the nearly adiabatic response

of the electrons. For these waves the large terms in Eq. (53) proportional to 1/δ2e cancel and the

resulting equation has a form
d2

dx2
y = F̃ (y) +G(y), (54)

which contains no large parameter 1/δ2e and therefore does not require any special care to find

its solution numerically. What is required in this case is the accurate calculation of large terms

in adiabatic electron response [the term y in expression F (y) = y + δ2e F̃ (y)] which should can-

cel equally large term on the left hand side of Eqs.(53) or Eq. (46). As shown in Appendix A,
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because of the finite grid size approximation in calculating the electron response, the numerical

approximation to function F (y) has a form

F (y) =

(
1 +

1

6
∆x2

d2

dx2

)
y + δ2e F̃ (y). (55)

Substitution of Eq. (55) into Eq. (53) produces the equation(
1− 1

6

∆x2

δ2e

)
d2

dx2
y = F̃ (y) +G(y). (56)

Comparing it with Eq. (54), the solution of Eq. (56) will correctly approximate the solution of

Eq. (54) if the grid size is sufficiently small ∆x� δe, i.e., the if the electron skin-depth is resolved.

Note that resolving the electron skin-depth for modes with ω/k|| � vte is needed to accurately

cancel large terms in original Eq. (53) or (46) and therefore is necessary for modes with arbitrary

transverse wavelength, even the ones with λ⊥ � δe.

To avoid resolving the electron skin-depth for these slow modes with λ⊥ � δe we can modify

the left-hand side of Eq. (46) and (53) as described in Appendix A, which insures accurate cancel-

lation of the large terms even when the skin-depth is not resolved. This corresponds to replacing

large parameters 1/δ2e in Eq. (53) with differential operator 1/δ2e → (1/δ2e)(1 + [∆x2/6]d2/dx2),

and similarly, the introduction of operator A in Eq. (46) as follows,

[∇2
⊥ − Aβ

mi

me

− β]
∂ψ

∂t
= −β(b̂0 · ∇)

∫
v3‖(δgi − δge)dµdv‖ + (b̂0 · ∇)

∫
v‖(δgi − δge)dµdv‖ +

β∇ψ × b̂0 ·
[
A
mi

me

(κn + κTe)−
1

τ
(κn + κT i)

]
, (57)

whereA =
∑

kA(k)exp(ik·x) andA(k) ≈ 1−(k2
⊥∆x2⊥+k2‖∆x

2
‖)/6 for (k2

⊥∆x2⊥+k2‖∆x
2
‖)� 1.

The derivation of Eq. (57) is given in Appendix A.

Note that, in the situations when both modes, fast with ω/k|| ≥ vte and slow with ω/k|| � vte

are present (for example in simulations around rational surface in tokomaks), resolving the electron

skin-depth to numerically resolve the wavelength of short-wavelength modes with ω/k|| ≥ vte

also insures the cancellation of large terms for modes with adiabatic electron response for which

ω/k|| � vte.

In this paper we present results of linear simulations with periodic boundary conditions in

transverse direction. Equation (46) is solved using Fast Fourier Transform (FFT) where short-

wavelength modes are filtered out, and only long-wavelength modes with λ⊥ � δe are kept.

Because only long-wavelength modes are kept, the ”singular perturbed” property of field equa-

tion (46) did not present any problem, while cancellation problem was dealt with by using cor-

rected field equation (57). That allowed us to use much coarser grid resolution λ⊥ � ∆x � δe.
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In the future work where the magnetic tearing modes in sheared geometry will be studied, the

electron skin-depth may need to be resolved to produce accurate numerical results.

Before presenting the simulation results, let us first describe the linear dispersion relation for

the shear-Alfvén waves and the finite-β modified drift waves as follows. Using the ansatz of

exp (ik · x− iωt) with κi = κe = κnŷ (in {y, x, z} coordinate system), and ω∗ = kxκn, the

perturbed ion distribution for k‖v‖ � ω, from Eq. (17), can be written as

δfi =
ω∗
ω

(φ− v‖A‖)F0i + τ
k‖v‖
ω

ψF0i (58)

and the non-adiabatic electron distribution Eq. (22), for ω � k‖v‖, becomes

δhe =

[
ω

k‖v‖
ψ − ω∗

k‖v‖
(φ− v‖A‖)

]
(1+

ω

k‖v‖
+

ω2

k2‖v
2
‖
)F0e+iπδ(k‖v‖−ω)[ωψ−ω∗(φ−v‖A‖)]F0e.

(59)

Substituting them into Eqs. (24) and (25), and noting that ψ = φ − (ω/k‖)A‖, we can write the

dispersion relation as

k2⊥ =
(
ω∗
ω
− 1

)1− βω
2

k2‖

(1 + i

√
π

2

ω

k‖vte

)
− β

(
1 +

ω∗
τω

)
, (60)

where k2⊥ = k2x + k2y and the last term on the RHS comes from the parallel ion dynamics. The

same dispersion relation can also be obtained by using the generalized Ohm’s law, Eq. (31). For

ω∗ = 0, we recover the damped shear-Alfvén waves with

ωl = ±k‖vA
√

1 + k2⊥ + β, (61)

where vA = 1/
√
β and

γl
ωl

= −1

2

√
π

2

ωl
k‖vte

k2⊥
1 + k2⊥

. (62)

For the finite-β modified drift waves, the linear frequencies and growth rates can be obtained

approximately as
ωl
ω∗

=
1

1 + k′2⊥
(63)

and
γl
ωl
≈
√
π

2

ωl
k‖vte

k′2⊥
1 + k′2⊥

, (64)

respectively, where

k′2⊥ = k2⊥ + β
(
ω∗
ωl
− 1

)
ω2
l

k2‖
+ β

(
1 +

ω∗
τωl

)

≈ k2⊥ + β

(k⊥
k‖

)2 (
ω∗

1 + k2⊥

)2

+
1 + k2⊥
τ

+ 1

 ≥ k2⊥ (65)
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and Eq. (63) has been used. Thus, both the linear frequencies and the linear growth rates are

lowered by the finite-β effects. Note that the finite-β contribution by the ions to the damping rate

has been ignored in the present calculation. When β = 0, we then recover the electrostatic results,

for example, as those given in Ref. [5]. A more complete version of the dispersion relation, than

that of Eq. (60), by including the complete plasma response, can be written as

k2⊥ + (1− βω
2

k2‖
)
[
(1− ω∗

ω
)(1 +Xe) + (τ +

ω∗
ω

)(1 +Xi)
]

= 0, (66)

where Xα ≡ ξαZ (ξα), ξα ≡ ω/
√

2k‖vtα and Z is the usual plasma dispersion function. Simi-

larly, for including the electron and ion temperature gradient (ETG & ITG) modes, the dispersion

relation becomes

k2⊥ + (1− βω
2

k2‖
)

{
(1 +Xe) + τ(1 +Xi)−

ω∗
ω

(Xe −Xi)

+
ω∗Te
ω

[
Xe

2
− ξ2e (1 +Xe)

]
− ω∗T i

ω

[
Xi

2
− ξ2i (1 +Xi)

]}
= 0, (67)

where ω∗Tα ≡ kxκTα. For the ITG modes only with ω∗ = 0 and ω∗Te = 0, in the cold ion limit

(Xi ≈ −1− 1/2ξ2i − 3/4ξ4i ) together with adiabatic electrons (Xe ≈ 0), it can then be written as

k2⊥ + (1− βω
2

k2‖
)

[
1− (τ +

ω∗T i
ω

)
k2‖v

2
ti

ω2

]
= 0. (68)

In the limit of β → 0 and τ � ω∗T i/ω, we recover the usual unstable electrostatic eigenmode

from the resulting cubic equation as [25]

ω

ω∗T i
≈ −1 + i

√
3

2

(
k‖vti
ω∗T i

)2/3 (
1

1 + k2⊥

)1/3

(69)

For β 6= 0, Eq. (68) becomes a fifth-order algebraic equation in (ω/ω∗Ti), and the correspond-

ing growth rates show a slight increase as a function of β. The finite-β stabilization of ITG modes

appears only if finite gyro-radius effects are included. The equations that include finite gyro-radius

effects are derived in Appendix C.

To verify the validity of the proposed double split-weight scheme in Sec. IV in comparisons

with the linear properties of finite-β modified microinstabilities described above, let us now carry

out the simulation in simple one dimensional slab geometry, for which y and z are ignorable

coordinates, b̂0 = θx̂ + ẑ, x‖ = x/θ, θ � 1 and κα = κn = κnŷ. Thus, from Eq. (14).

dx‖
dt

= v‖ (70)
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gives the equation for the velocity and, from Eq. (15),

dv‖
dt

= −sαv2tα
∂ψ

∂x‖
, (71)

describes the acceleration. The particle weight equation is

dwDNAα

dt
= (1− wDNAα )

[
sα
∂ψ

∂t
−
(
κn −

3

2
κTα +

1

2
κTα

v2‖ + v2⊥
vTα

)
∂ψ

∂x

]
(72)

Eqs. (45) and (46) are the field equations. The perturbed particle distribution is given by Eq. (39).

Figures 1-3 show the results for the simulations of shear-Alfvén waves, finite-β modified drift

waves and finite-β modified ITG (ηI) modes, respectively. In these simulations Ti/Te = 1, k⊥ρi =

0.4 and k||/k⊥ = 0.01. For all values of β except β = 0.1, the time step ∆tΩi = 0.2, grid size

∆x/ρs = 0.0625, and the number of particles for each species np = 10946 were chosen. For the

case of β = 0.1 the time step was reduced to ∆tΩi = 0.1, and the number of particles for each

species was increased to np = 28657. For the chosen simulation parameters the ratio of electron

skin depth to the ion gyro-radius is δe/ρs = 0.07.

Specifically, for damped shear-Alfvén oscillations, Fig. 1 shows the logarithmic plots of the

normalized electric field potential ψ as function of time Ωit for Ti/Te = 1, κn = 0 and κT i =

κTe = 0.0 for different values of plasma β. Numerical solution of exact dispersion relation Eq. (67)

gives shear-Alfvén wave frequencies and damping rates: for β = 0.1%: (ω + iγ)th/Ωi = 0.13 −

0.0081i while the simulation result is (ω + iγ)sm/Ωi = 0.13 − 0.0079i; for β = 1%: (ω +

iγ)th/Ωi = 0.042 − 0.00089i while the simulation result is (ω + iγ)sm/Ωi = 0.042 − 0.00093i;

for β = 3%: (ω + iγ)th/Ωi = 0.024 − 0.00031i while the simulation result is (ω + iγ)sm/Ωi =

0.025− 0.00033i; for β = 10%: (ω + iγ)th/Ωi = 0.013− 0.00013i while the simulation result is

(ω + iγ)sm/Ωi = 0.013− 0.00014i.

For finite-β modified drift waves, Fig. 2 shows logarithmic plot of normalized electric field po-

tential ψ as function of time Ωit for Ti/Te = 1, κn = 0.1 and κT i = κTe = 0.0 for different values

of plasma β. Numerical solution of exact dispersion relation Eq. (67) gives finite-β modified drift

waves frequencies and growth rates : for β = 0.1%: (ω + iγ)th/Ωi = 0.035 + 0.001i while the

simulation result is (ω+iγ)sm/Ωi = 0.033+0.001i; for β = 1%: (ω+iγ)th/Ωi = 0.03+0.00087i

while the simulation result is (ω + iγ)sm/Ωi = 0.03 + 0.0009i; for β = 3%: (ω + iγ)th/Ωi =

0.021 + 0.00022i while the simulation result is (ω+ iγ)sm/Ωi = 0.022 + 0.00024i; for β = 10%:

(ω + iγ)th/Ωi = 0.012 + 0.0i while the simulation result is (ω + iγ)sm/Ωi = 0.0125 + 0i.

For finite-β modified ITG modes, Fig. 3 shows logarithmic plot of normalized electric field

potential ψ as function of time Ωit for Ti/Te = 1, κn = 0 and κT i = κTe = 0.4 for different values



16

0 2 4 6 8 10 12 14 16 18
�24

�22

�20

�18

�16

�14

�12

�10

8

t Wi

-log |y|

b=0.1%

x10
2

0 1 2 3 4 5 6 7
3

�24

�22

�20

�18

�16

�14

�12

�10

8

t Wi

-log |y|

b=1%

x10

0 1 2 3 4 5 6 7
�20

�18

�16

�14

�12

�10

8
b=3%

-log |y|

t Wi x10
3

0 1 2 3 4 5 6 7
�18

�16

�14

�12

�10

8

6

b=10%

t Wi

-log |y|

x10
3

FIG. 1: Logarithmic plot of normalized electric field potential ψ for shear-Alfevn waves as function of time

Ωit for Ti/Te = 1, κn = 0, κT i = κTe = 0.0 and plasma β = 0.1, 1.0, 3.0, and 10.0%.

of plasma β. Numerical solution of dispersion relation Eq. (67) gives finite-β modified ηI ITG

modes wave frequencies and growth rates : for β = 0.1%: (ω + iγ)th/Ωi = −0.0057 + 0.0093i

while the simulation result is (ω+ iγ)sm/Ωi = −0.0055 + 0.0082i; for β = 1%: (ω+ iγ)th/Ωi =

−0.0057+0.0093iwhile the simulation result is (ω+iγ)sm/Ωi = −0.0055+0.0082i; for β = 5%:

(ω + iγ)th/Ωi = −0.0059 + 0.0094i while the simulation result is (ω + iγ)sm/Ωi = −0.0058 +

0.0086i and for β = 10%: (ω + iγ)th/Ωi = −0.0059 + 0.0096i while the simulation result is

(ω + iγ)sm/Ωi = −0.0058 + 0.0095i. It is well known that ITG modes are stabilized by finite β

effects only if finite gyro-radius effects are included. The equations that include finite gyro-radius

effects are derived in Appendix C. The results of simulations using these equations agree well with

the solution of eighenmode equation. As an illustration, Figure 4 shows the plot of normalized

electric field potential ψ as function of time Ωit for Ti/Te = 1, κn = 0.1 and κT i = κTe =
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FIG. 2: Logarithmic plot of normalized electric field potential ψ for drift instabilities as function of time

Ωit for Ti/Te = 1, κn = 0.1, κT i = κTe = 0.0 and plasma β = 0.1, 1.0, 3.0, and 10.0%.

0.4 for β = 10%. The numerical growth rate and the oscillation frequency of the mode agree

well with numerical solution of exact dispersion relation with finite gyro-radius effects included:

(ω+iγ)th/Ωi = −0.003+0.0023iwhile the simulation result is (ω+iγ)sm/Ωi = −0.003+0.002i.

To illustrate the influence of the spatial resolution on the accuracy of the simulations and the

resolution of the cancellation problem discussed above, we plot in Figure 5 the results of simu-

lations of ITG mode with κn = 0, κT i = κTe = 0.4, np = 46368, ∆tΩi = 0.1, k⊥ρi = 0.4,

k||/k⊥ = 0.01, Te/Ti = 1. In Fig. 5 the red (I) curve corresponds to simulation where the

skin-depth was resolved with ∆x/ρs = 0.0625 and A = 1 was used in field equation (57) for

∂ψ/∂t. The green line (II) corresponds to the same simulation but with skin-depth not resolved

∆x/ρs = 1.0. Note the wrong frequency and wrong growth rate of ITG mode due to incomplete

cancellation of large terms in Eq. (57). The black (III) and blue (IV) lines are result of simulation

where the skin-depth was not resolved, ∆x/ρs = 1.0, but the equation for ∂ψ/∂t, Eq. (57), was

corrected to insure the cancellation of large terms as explained in Sec. V and Appendix A. The
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FIG. 3: Logarithmic plot of normalized electric field potential ψ as function of time Ωit for Ti/Te = 1,

κn = 0, κT i = κTe = 0.4 and and plasma β = 0.1, 1.0, 5.0, and 10.0%.

differences between black (III) and blue (IV) lines are due to the use of inconsistent definition

∇xψ = ikxψ (black line III) instead of correct one [ψ(x + dx) − ψ(x − dx)]/2/dx(blue line IV)

in the field equation for ∂ψ/∂t. That was needed to be consistent with the same term in equation

for weights (last term in Eq. (37)). By correcting those large terms in Eq. (57) for ∂ψ/∂t, the

simulation results are in good agreement with theory without the need to resolve the skin-depth.

VI. CONCLUSIONS

In this paper, we have extended the previously developed split-weight simulation scheme [4] to

the finite-β gyro-kinetic plasmas with background inhomogeneity. In the new double-split-weight

scheme, the additional adiabatic response to the quasi-static bending of the magnetic field lines

due to magnetic field perturbation is analytically separated out, so that full inhomogeneity gradi-

ent, background plus perturbation, is transverse to the direction of total magnetic field, background
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κT i = κTe = 0.4 and plasma β = 10.0% obtained taking into account the finite Larmor radius effects as

described in Appendix C.
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FIG. 5: Logarithmic plot of normalized electric field potential ψ as function of time Ωit for Ti/Te = 1,

κn = 0, κT i = κTe = 0.4 and and plasma β = 10.0%. Here, ∆x/ρs = 0.0625 and A = 1 is used

for red (I) line; ∆x/ρs = 1. and A = 1 is used for green (II) line, and ∆x/ρs = 1.0 and A given by

Eq. (A6) is used for black (III) and blue (IV) lines. The definition ∇xψ = ikxψ (black (III) line) and

∇xψ = [ψ(x+ dx)− ψ(x− dx)]/2/dx (blue (IV) line) are used in the field equation (57) for ∂ψ/∂t.
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plus perturbation, as in Eq. (36). Formally, such separation removed large terms proportional to

electron velocity from electron Vlasov equation, which allowed for a larger time-step in simula-

tions of low-frequency phenomena in finite-β gyrokinetic plasmas. The resulting equations have

been implemented in 2D shearless slab-geometry particle-in-cell gyrokinetic code which was used

to study shear-Alfvén waves and finite-β modified drift waves and ion temperature gradient (ITG)

modes and instabilities in the long-wavelength limit k2⊥ρ
2
i � 1. The finite Larmor radius effects

for k2⊥ρ
2
i ∼ 1 can be easily recovered as shown in Appendix C and demonstrated by simulating

the finite-beta stabilization of ITG modes for β = 10% [see Fig. 4].

In this paper, we have paid special attention to high-β regime β � me/mi which is known to

be especially difficult to simulate using gyrokinetic codes. For particle-in-cell codes this is known

as ”cancellation problem”, and has been a subject of numerous studies [3, 10]. In early efforts to

simulate shear-Alfvén waves [3] it was observed that an electron skin-depth δe � ρi had to be

resolved in the plane transverse to magnetic field in order to eliminate numerical instability. On

the other hand, it was shown that the accurate numerical cancellation of large terms in Ampere’s

law also eliminates the numerical instability [10]. We have shown in this paper that both views

are consistent with each other, and indeed the inaccuracy in numerical evaluation of Ampere’s

law is proportional to (∆x/δe)
2 and therefore is made small by resolving the electron skin-depth

∆x < δe. It is often prohibitively expensive to resolve the electron skin-depth everywhere in

simulations domain, unless it becomes necessary. e.g., near rational surfaces. Using the analysis of

numerical cancellation problem given in Sec. V and Appendix A, we have shown how to correctly

modify the equation representing the Ampere’s law in our method which leads to the accurate

cancellation of large terms and eliminates the need for such fine scale resolution. The extension of

the present formalism to include sheared geometry for studying tearing modes will be presented

in a subsequent study. Here we just note that our scheme is non-perturbative, as such, it allows

simulations of the modes with arbitrary values of ω/(k‖vte). Such feature is absolutely necessary

for accurate numerical representation of tearing modes near rational surfaces in tokamaks where

ω/(k‖vte) → ∞ [See Appendix B where our scheme is compared with the perturbative ”hybrid

method” of Ref. [12]].

Recently, shearless ITG modes based on an extended MHD model [26] have been investigated

for the purpose of incorporating kinetic effects in hybrid MHD codes. Our study here represent an

approach from the opposite direction. Namely, the study of drift waves and ITG modes kinetically

in our paper is for the purpose of extending gyro-kinetics codes into the MHD regime.
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Appendix A: Resolution of the Cancellation Problem

Let us describe the derivation of Eq. (57) as follows. To obtain Eq. (46) we first differentiate

Eq. (45) with respect to time and then use the time derivatives of dδgα/dt from Eq. (37). The

form of Eq. (37) assumes that particles are localized, i.e, contributions to the charge density at

x from the particle at the location xα is related to the delta-function, δ(x − xα). In the PIC

simulations [28], the field quantities such as ψ are defined on the grid as ψ(Xp) ≡ ψp at a location

Xp ≡ (Xp1, Xp2, Xp3) = (p1∆x1, p2∆x2, p3∆x3), where ∆x ≡ (∆x1,∆x2,∆x3) is the grid and

p ≡ (p1, p2, p3) is a vector with integer components pi = 0, 1, 2, . . . , (Ni − 1) with i = 1, 2, 3,

Ni = Li/∆xi and Li is the system length along i-direction. The field at the particle location xαj is

interpolated from the grid using a weighting function S(x) by ψ(xαj) = ∆V
∑
p ψpS(Xp − xαj),

where ∆V is the volume of the grid cell. In turn, the contribution to the particle density at the

grid location Xp coming from the particle located at position xαj is given by the same weighting

function and is proportional to wαjS(Xp − xαj) with the total density from all particles given by

δnα(Xp) =
∫
dv||dµδgα(Xp, v||, µ) =

∑
αj wαjS(Xp − xαj).

As the result of such nonlocal weighting, the grid version of Eq. (46) can be written as[
(∇2
⊥ − 1− τ)

∂ψ

∂t

]
p

= −β(b̂0 · ∇)
∫
v3‖(δgi − δge)dµdv‖ + (b̂0 · ∇)

∫
v‖(δgi − δge)dµdv‖

+(n0∆V )
∑
l

∫
dxS(Xp − x)S(Xl − x)

{
(β
mi

me

+ β − 1− τ)
∂ψl
∂t

+

β(∇ψ)l × b̂0 ·
[
mi

me

(κn + κTe)−
1

τ
(κn + κT i)

] }
, (A1)

where we have replaced the summation over particles with integration over space
∑
j → n0

∫
dx

and l is the grid location index. Note that Eq. (A1) is reduced to Eq. (46) for the weighting factor
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S(x) = δ(x) if we use the identity
∑
l δ(Xp −Xl)∆V =

∑
l δpl = 1, where δpl is the Kronecker

symbol, and recall that in our normalized units n0 ≡ 1.

Equation (A1) is simplified by the use of Fourier series where grid quantities such as ψp are

expressed as

ψp =
1

V

∑
s

ψ̄se
iksXp , (A2)

where ks = skL, s is the vector with integer components si = 0,±1,±2, . . . ,±(Ni − 1) with

i = 1, 2, 3, Ni = Li/∆xi, and kL = 2π(1/L1, 1/L2, 1/L3). Using the relationship of∫
dxS(Xp − x)S(Xl − x) =

1

V

∑
s

[∑
p

|S̄(ks − pkg)|2
]
eiks(Xp−Xl), (A3)

where kg = 2π(1/∆x1, 1/∆x2, 1/∆x3) and p is the vector with integer components pi =

0,±1,±2, . . . with i = 1, 2, 3, and Fourier transform of weighting function

S̄(k) ≡
∫
dxS(x)e−ikx, (A4)

Equation (A1) in Fourier space can be written as

[
∇2
⊥(ks)− 1− τ

] ∂ψ̄s
∂t

= (A5)

−β(b̂0 · ∇(ks)
∫
v3‖(δgi − δge)dµdv‖ + (b̂0 · ∇(ks)

∫
v‖(δgi − δge)dµdv‖

+A(ks)

{
(β
mi

me

+ β − 1− τ)
∂ψ̄s
∂t

+ β∇(ks)× b̂0 ·
[
mi

me

(κn + κTe)−
1

τ
(κn + κTi)

]
ψ̄s

}
,

where A(k) ≡ ∑
p |S̄(k − pkg)|2. Note that Eq. (A5) differs from Eq. (46) in Fourier space by

a form factor A(k) 6= 1 due to finite size grid. For a weighting function which corresponds to a

linear interpolation of the field from closest grid neighbour nodes, the form-factor A(k) can be

approximated by the first term in the sum, and is given by

A(k) ≈
[
dif

(
k1∆x1

2

)
dif

(
k2∆x2

2

)
dif

(
k3∆x3

2

)]4
, (A6)

where dif(θ) ≡ sin θ/θ is a diffraction function.

For k2∆x2 � 1, A(k) ≈ 1− [(k1∆x1)
2 + (k2∆x2)

2 + (k3∆x3)
2]/6 and we can use the value

A = 1 in Eq. (A5) everywhere except where it is multiplied by large factor β(mi/me), i.e.,[
∇2
⊥(ks)− β − β

mi

me

A(ks)
]
∂ψ̄s
∂t

= −βb̂0 · ∇(ks)
∫
v3‖(δgi − δge)dµdv‖ (A7)

+b̂0 · ∇(ks)
∫
v‖(δgi − δge)dµdv‖ + β∇(ks)× b̂0 ·

[
A(ks)

mi

me

(κn + κTe)−
1

τ
(κn + κT i)

]
ψ̄s.
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For low-frequency modes such as ITG mode, the electrons response is adiabatic, and the elec-

tron velocity integrals will cancel the large terms proportional to βmi/me in Eq. (A7). The remain-

ing terms will determine the mode frequency. If the approximation A = 1 is used in Eq. (A7), the

cancellation will be incomplete, with the remaining terms proportional to β(mi/me)k
2
⊥∆x2⊥ due

to incomplete cancellation of adiabatic electron response in Eq. (A7). For the simulation to re-

produce frequency correctly, the error introduced by this term must be smaller than the remaining

terms such as the first term in Eq. (A7), ∇2
⊥(ks) = −k2⊥. This introduces the requirement that the

grid size be smaller then the skin-depth ∆x⊥ � [β(mi/me)]
−1/2 ≡ δe. The numerical instability

can then be completely removed if the correct form for the formfactor A(k) given by Eq. (A6) is

used in Eq. (A7).

The scheme presented here is similar to that of Chen and Parker [10], but is different in imple-

mentation.

Appendix B: Relationship to the Hybrid Method

In present work, the gyrokinetic Vlasov equation, Eq. (37), and the associated field equations,

Eqs. (45) and (46), have been used as a complete set of equations describing the self-consistent

evolution of fields and particles. In this appendix we will illustrate the relationship of our ap-

proach, based on the original split-weight scheme [4], with the hybrid scheme developed by Lin

and Chen [12]. In the approach presented here the fields ψ and ∂ψ/∂t are the independent fields

satisfying system of Eqs. (45) and (46). Equation (46) was derived by taking the time derivative

of Eq. (45) and using the gyrokinetic Vlasov equation of

∂

∂t
gα = −v‖

∂

∂x‖
gα −

[
sα
∂ψ

∂t
−∇ψ × b̂0 · κα

]
F0α (B1)

to eliminate ∂gα/∂t. Note that in the last step we replaced the small term ∂gα/∂t in terms of

combination of large terms (for low-frequency waves ∂/∂t ∼ ω � k‖v‖). This way the cancel-

lation problem was introduced into the field equations, which was solved by us using the method

described in Appendix A. The advantage of this approach is that static system of equations needs

to be solved on every time-step and, therefore, the field solvers that have been developed for elec-

trostatic problems with zero β can be easily adopted to electromagnetic problems with non-zero

β.

A different approach was taken by Lin and Chen [12]. For simplicity, we will only illustrate
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this approach using the example with zero background gradients and assuming immobile ions.

These restrictions can be easily removed by including the rest of the terms, if desired. By taking a

second spatial derivative of Eq. (45) along the magnetic field we obtain

(∇2
⊥ − 1)

∂2

∂x2‖
ψ = −β

∫ (
v‖

∂

∂x‖

)2

gedµdv‖ +
∂2

∂x2‖

∫
gedµdv‖. (B2)

Next, we use the gyrokinetic Vlasov equation for ge,

v‖
∂

∂x‖
ge = − ∂

∂t
ge −

∂

∂t
ψF0e, (B3)

twice to eliminate (v‖∂/∂x‖)
2ge in Eq. (B2) and obtain the wave-like equation of the form,

β
∂2

∂t2

[
ψ +

∫
gedµdv‖

]
=

∂2

∂x2‖

[
ψ +

∫
gedµdv‖

]
−∇2

⊥
∂2

∂x2‖
ψ. (B4)

Introducing the full perturbed electron density

ne = ψ +
∫
gedµdv‖, (B5)

we can rewrite Eqs. (B4) and (B3) for ne and ge as coupled set of equations

β
∂2

∂t2
ne = (1−∇2

⊥)
∂2

∂x2‖
ne +∇2

⊥
∂2

∂x2‖

∫
gedµdv‖. (B6)

d

dt
ge = −

(
∂

∂t
ne

)
F0e +

(
∂
∂t

∫
gedµdv‖

)
F0e . (B7)

It follows from Eq. (B6) that the wave frequency is given by ω2 ≈ v2Ak
2
‖(1 + k2⊥) with v2A = 1/β

assuming that non-adiabatic correction are small∫
gedµdv‖
ne

≈ ω

k‖vte
≈ vA
vte
≈ 1

(βmi/me)1/2
� 1. (B8)

In that case one can also neglect the last term (boxed) in Eq. (B7) compared to the second term

as was also done in Ref. [12]. Equations (B6) and (B7) constitute a complete set of equations

describing the alfven dynamics with kinetic electron contribution represented by the terms propor-

tional to ge. Equations (B6) and (B7) without the boxed term are equivalent to equations used in

Ref. [12]

Note that this method only works for large β so that (βmi/me)
1/2 � 1. There are no problems

with cancellation of large terms proportional to (βmi/me)
1/2 � 1 in this approach. The numerical

constraints in solving Eqs. (B6) and (B7) are

ω∆t ∼ k‖vA∆t� 1, k‖vte∆t ∼
(
vte
vA

)
k‖vA∆t ∼

(
β
mi

me

)1/2

ω∆t < 1, (B9)
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where the first constraint is needed to accurately resolve the mode frequency and the second is to

accurately reproduce the Landau damping of the wave.

As it is clear from this presentation, Ref. [12] approach is designed for low-frequency alfvenic

dynamics only, ω/k‖ � vte, and, therefore, does not work near the rational surfaces for studying

tearing modes. Furthermore, even though the final equations do not contain large parameters

proportional to (βmi/me)
1/2 � 1, Eq. (B6) has the form of a wave equation and it may be

difficult to implement in the codes designed with static field solvers.

Appendix C: Finite Larmor Radius Effects on ITG Modes

To take into account the finite Larmor radius effects for k⊥ρi ∼ 1, we need to re-write the

governing equations, Eqs. (40) and (41) in k-space as [2]

Q̂φ− (1 + τ Γ̂0)ψ = −S0 −
∫
dx‖

[
(Γ̂0 − 1)κn + κT i(Γ̂

∗ − Γ̂0)
]
· (∇A‖ × b0), (C1)

∇2
⊥A‖ = −βS1, (C2)

where

Sn ≡
∫
vn‖ (Ĵ0δgi − δge)dv‖dµ, (C3)

and, from Eq. (37), the equations for the non-adiabatic part of the distribution function for the

electrons and ions are

dδge
dt

= −∂ψ
∂t
− (∇ψ × b0) · κe

dδgi
dt

= τ
∂ψ̄

∂t
− (∇ψ̄ × b0) · κi, (C4)

where ψ̄ = Ĵ0ψ, κα ≡ −(∂F0α/∂x)/F0α = κn − 3
2
κTα + 1

2
κTα(v2‖ + v2⊥)/v2tα, κn ≡

−dlnn0/dx, and κTα ≡ −dlnT0α/dx represent the zeroth-order inhomogeneities and F0α ≡

(1/
√

2πv3tα)exp[−(v2‖ + v2⊥)/2v2tα] is the background Maxwellian. Definitions of operators in

Eq. (C1)-(C4) are

b ≡
(
k2⊥
τ

)
= −∇

2
⊥
τ
, c ≡ k⊥(2µ)1/2,

Γ̂0 = I0(b)e
−b,

Γ̂1 = I1(b)e
−b,
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Q̂ ≡ −τ [1− Γ̂0],

Γ̂∗ ≡ Γ̂0 − b[Γ̂0 − Γ̂1],

Ĵ0 = J0(c), (C5)

where J0 is zeroth-order Bessel function, I0 and I1 are modified Bessel functions of zeroth and

first order respectively. Using Eqs. (C4) we obtain the relations between Sn’s:

∂S1

∂t
= −∂S2

∂x‖
,

∂S2

∂t
= −∂S3

∂x‖
+
(

Γ̂0 +
mi

me

)
∂φ

∂t

+
[
mi

me

(κn + κTe)−
1

τ
(κnΓ̂0 + κTiΓ̂

∗)
]
· (∇ψ × b0). (C6)

Substituting Eqs. (C6) and

φ = ψ − ∂t
∂‖
A = ψ − ∂t

∂‖∇2
⊥
∇2
⊥A

= ψ + β

[
∂tS1

∂‖∇2
⊥

]
= ψ − β

∇2
⊥
S2 (C7)

into Eqs. (C2) we obtain the finial set of two field equations for ψ and ∂tψ as

(1 + τ)∂‖ψ = ∂‖(S0 − β
Q̂

∇2
⊥
S2) +

[
(Γ̂0 − 1)κn + κT i(Γ̂

∗ − Γ̂0)
]
· (∇A× b0) (C8)

and [
Q̂− (Γ̂0 +

mi

me

)β
Q̂

∇2
⊥

]
∂tψ = ∂‖(S1 − β

Q̂

∇2
⊥
S3) (C9)

− β

∇2
⊥

[
(Γ̂0 − 1)κn + κT i(Γ̂

∗ − Γ̂0)
]
· (∇S2 × b0)

+

[
(Γ̂0 − 1)κn + κT i(Γ̂

∗ − Γ̂0)+ β
Q̂

∇2
⊥

{
mi

me

(κn + κTe)−
1

τ
(κnΓ̂0 + κT iΓ̂

∗)
}]
· (∇ψ × b0).

Here, ∂t ≡ ∂/∂t, ∂‖ ≡ ∂/∂x‖ = ik‖,∇ = ik, and∇2
⊥ = −k2⊥. This set of equations has been used

to obtain the results shown in Fig. 4 for β = 10%, which, in comparison with the corresponding

plot in Fig. 3, shows the importance of finite Larmor radius (FLR) effects on the stabilization of

ITG modes.
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