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Abstract—It is best for fusion to operate STs at the highest 
feasible toroidal field. This may not be obvious since dissipated 
electrical power increases as the square of magnetic field 
strength.  However, fusion power density increases even faster.  
For example, increasing TF by 10% increases electrical losses by 
21% but it  also may increase fusion power by 46.4%. 

The main impediment blocking increased toroidal field is 
centerpost heat removal.  Heat deposited by resistive heating and 
by radiation from the fusioning plasma is removed by coolant 
flowing through holes cut in the centerpost.  Conventional 
designs have used axial flow within spaced, vertically oriented 
holes, and they have optimized flow speed, temperature rise, and 
cooling hole size.  However, with all flow paths having the same 
length, the conductor volume removed is just the product of 
centerpost height by total flow area.   

Radial flow cooling is a radically different scheme promising 
a factor of almost two improvement over axial flow designs in the 
volume of conductor removed for cooling. Its performance 
advantage stems from its shorter average flow path length while 
retaining the same total flow cross sectional areas for inflow, 
outflow, and internal flows.  This is accomplished by cooling the 
upper centerpost from the top and cooling the lower centerpost 
from the bottom, with no coolant crossing the horizontal 
midplane.   

For a single-turn TF, high pressure coolant is supplied both 
from the top and from the bottom to a central manifold located 
radially in the middle of the centerpost conductor.  Coolant flows 
outward through many small diameter radially oriented cooling 
holes in the centerpost conductor into a low pressure annular 
manifold surrounding the centerpost.  The external membrane 
surrounding the low pressure manifold includes sealed 
penetrations for the centerpost electrical connections and 
mechanical supports.   

Radial cooling optimization includes tapering of the manifold 
cross sections over their axial length in conjunction with varying 
the density and size of the radial cooling holes so that coolant 
flow speed is spatially constant and local cooling matches local 
heating.   

Radial cooling may simplify single-turn TF centerpost 
fabrication since it eliminates the need for long, narrow cooling 
holes as required for the axial schemes.      

 

 

 

I. INTRODUCTION                   

Radial cooling is a radically different alternative to the 
axial cooling designs usually pursued for the toroidal field (TF) 
centerposts of low aspect ratio tokamaks.  Radial cooling's 
performance advantage stems from its removal of less 
conductor material for coolant flow ducts. This is due to the 
fact that the average length of flow ducts in radial cooling is 
shorter than flow ducts in conventional axially cooled designs 
which extend the full height of the centerpost.   

Radial cooling's performance advantages are that it reduces 
electrical losses dissipated in the centerpost for constant 
toroidal field and coolant flows, and that it increases the 
achievable cooling power so that a higher toroidal field 
becomes feasible.  It may also simplify centerpost construction, 
reducing its manufacturing costs. 

Fig.1 illustrates the radial cooling scheme.   In radial 
cooling of a centerpost, the coolant fluid, e.g.,water, flows 
between pressurized inner and outer manifold volumes through 
many spaced radially directed cooling holes in the electrical 
conductor.  Coolant fluid is separately supplied to the inner 
manifold from external supply pipes connecting both at the 
centerpost's top and bottom.  Outer manifold coolant also exits 
from both the centerpost's top and bottom to external return 
pipes.  Thus, coolant fluid parcels follow U-shaped paths 
through the centerpost.   
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Figure 1: Radial Cooling scheme 



Thus, coolant fluid entering from a coolant supply pipe 
flows vertically within the inner manifold from either 
centerpost end toward its waist, then turns and flows radially 
outward through one of the many small diameter cooling holes, 
then turns again and flows vertically within the outer manifold 
back to the same end of the centerpost whence it came, then 
finally exits to a coolant return pipe.  The amount of coolant 
flow that turns at a junction from a vertical manifold to flow 
through a radial hole is determined by the flow-pressure 
properties of the entire hydraulic ladder network, whose 
dimensions must be carefully designed.   

With these U-shaped paths, coolant fluid never vertically 
crosses the horizontal midplane. At any vertical location, the 
vertical mass flow rate in the inner manifold is matched by the 
oppositely directed vertical mass flow rate in the outer 
manifold.  However, because of the radial flows between the 
manifolds through the centerpost conductor, the total vertical 
flows in the manifolds vary with vertical location.  They are 
maximized at the centerpost's ends but at any other location 
they are reduced by the cumulative radial flow between that 
location and the nearest end, thus reaching zero at the 
centerpost's horizontal midplane.  The manifolds are therefore 
designed to be tapered in their horizontal cross-sections so that 
the coolant traveling vertically in them can proceed at a 
uniform speed.  Thus, the conductor material which must be 
removed to form the manifolds varies from a maximum at the 
centerpost's top and bottom to zero at the centerpost's waist.  
Additional conductor is removed for the radially oriented 
holes, but since the radial holes are short this volume is small.    

Fig.2 illustrates the conventional axial cooling scheme 
which has been used in all ST centerpost designs.  If duct cross 
sections are also spatially constant, the coolant flow speed only 
varies due to fluid density dependence on spatially changing 
temperature and pressure.  Coolant fluid flows in one direction 
through each of many spaced axial (i.e., vertical) holes which 
comprise flow ducts in the TF centerpost conductor. There are 
no internal flow network junctions. All flow path ducts extend 
the full height of the centerpost.  The mass flow rate within 
each duct is spatially constant.  

 

II. WHAT SHOULD BE MAXIMIZED  

   The goal for ST reactors is to produce as much steady DT 
fusion power as feasible within a compact and relatively 
inexpensive device.  Total DT fusion power varies as follows; 
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where Vplasma is the plasma volume, n is the plasma density, 
and <σv> is the velocity averaged fusion cross section. Within 
the 10 to 20 keV plasma temperature range appropriate for 
magnetic confinement fusion, <σv> varies approximately in 
proportion to the plasma temperature squared, i.e.,  
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   Since the plasma pressure is the product of plasma density, 
n,  and temperature, T, fusion power density scales as the 
square of plasma pressure, at fusion relevant temperatures. 
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    However, magnetically confined plasmas become unstable 
if their pressure becomes too high for the confining magnetic 
field. This is best quantified by normalizing plasma pressure 
to the magnetic field pressure,  
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where μ0 is the permeability of free space.  All magnetic 
confinement schemes have maximum stable plasma beta 
values, all fractions smaller than one.  Combining (3) with (4),  
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   Thus, fusion power density scales with the square of β times 
the fourth power of magnetic field strength, B.   

Low aspect ratio tokamaks of the ST type show promise 
primarily because their maximum stable plasma β values are 
an order of magnitude larger than for higher aspect ratio 
tokamaks. A second reason is that they are more compact and 
thus may be less expensive.   

   On the other hand, ST reactor designs have challenges.  The 
toroidal field B within the plasma is reduced by the low aspect 
ratio to a smaller fraction of the maximum toroidal field 
strength than is the case for higher aspect ratio tokamaks.  
Most importantly, there is not enough space surrounding an 
ST centerpost for adequate radiation shielding unless the ST is 
excessively large.  In compact ST DT reactor designs lacking 
such shielding, the centerpost will be bombarded with a high 
flux of 14 MeV neutrons from the DT fusion reactions.   

Figure 2: Axial Cooling scheme 



   Conventional electrical insulation systems are incompatible 
with this unshielded high neutron flux and must be avoided.  
Superconducting magnet systems cannot be used to generate 
the ST's toroidal field, not only because of the need to avoid 
conventional insulation but also the near impossibility of 
maintaining magnet temperatures close to absolute zero while 
the magnet is absorbing a large amount of nuclear heating.  

   Therefore, TF centerpost designs for future ST DT reactors 
employ normal copper near ambient temperature as their 
conductor, and to avoid insulation, they must use single turn 
designs operating at very high dc current and low voltage. The 
high currents imply developing a new TF electrical power 
supply technology to unconventionally provide tens of 
millions of dc amperes steadily at only a few volts.  It is not 
clear whether the best power supply solution should use 
rotating homopolar generators or ac voltage stepdown 
transformers followed by thousands of parallel diode rectifiers 
with their forward voltage losses, or some other scheme.  
What is clear, this new TF power supply will need to be 
located as close as possible to the ST to avoid  electrical 
power transmission losses.  Another challenge caused by the 
high unshielded neutron flux in the centerpost region is that 
plasma startup will require developing new techniqueswithout 
any OH solenoid.  Yet another challenge is that an ST 
reactor's centerpost will need to be periodically replaced due 
to accumulated neutron damage.  With all of the difficulties, it 
is important to preserve the advantage conferred by higher β.  
This is why B should be optimized.   

   It is useful to compare the toroidal magnetic field scaling of 
the fusion power produced to the centerpost electrical 
dissipation losses.  TF centerpost losses are large and vary 
proportionally to the square of magnetic field while fusion 
power varies in proportion to the fourth power of magnetic 
field.  Thus, the ratio of fusion power to resistive losses 
improves rapidly as the magnetic field is increased.   

III. AXIAL FLOW CALCULATIONS 

   Toroidal magnetic field requires a centerpost current,  

0

2
μ
πRBI =   (6) 

which causes electrical heating of the centerpost. 
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   Here, B is the magnetic field strength, μ0 is the permeability 
of free space, I is the centerpost current, η is the electrical 
resistivity of the centerpost conductor material, L is the length 
of the flow passages which in this axial flow design are all as 
long as the centerpost is tall, Vcenterpost is the volume of the 
centerpost, and x is the fraction of the centerpost volume 
removed for cooling channels.  There is also radiation heating 
of the centerpost, Prad.   

   The cooling power is the rate at which thermal energy is 
removed.  It is the product of density and specific heat of the 
coolant with the coolant's temperature rise, speed, and the total 
duct's cross sectional area.    
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   These are combined by requiring the cooling power to 
balance the total heating power. 
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   Solve for current, I, then find the x value which maximizes 
it.  The result is: 
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   Alternatively, define a function proportional to fusion power 
divided by centerpost losses, i.e. 
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using the above relations, then it is elementary to show that its 
maximum is reached at the following condition: 
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   Thus in axial cooling, the highest possible toroidal magnetic 
field without radiation heating results if half of the centerpost 
volume is replaced with coolant flow channels.  Also, the 
highest possible QENG results (again, without radiation 
heating) if one third of the centerpost conductor were replaced 
by cooling channels.   Even more conductor material should 
be replaced by coolant channels if there is also significant 
radiation heating.   

    Of course, this analysis entirely neglects the temperature 
dependence of resistivity.  It has been included in more 
detailed analyses[1] and it modifies these results to some 
extent.  In addition to varying x such analyses need to vary the 
diameters of flowpaths and their spacings, determine the film 
heat transfer coefficient using, e.g., the Dittus-Boelter 
correlation, and also approximate average heat conduction 
temperature gradients within the conductor material.   For 
each of these there is an approximate algebraic formula, thus 
making such investigations straight forward.   



IV. SIMPLIFIED RADIAL COOLING MANIFOLD 
DESIGN CALCULATIONS 

   Radial cooling designs require the manifolds to be shaped 
and the density of radial holes selected to match expected 
spatial profiles of heat deposition.  In the present section these 
design calculations are approached in a simplified way.  The 
cylindrical coordinate system with independent variables (r,θ, 
z) is used for description. Only the upper half,  z>0, is 
considered since z<0 has mirror symmetry An allowable 
spatial envelope volume is identified within which the 
centerpost conductor, cooling manifolds and radial holes must 
fit. It's outer boundary is an axisymmetric surface specifed by 
stating its radius, RMAX(z) as a function of vertical position, z. 
An inner axisymmtric limiting surface, RMAX(z), is also 
defined but can be specified as zero .   

   It is assumed that ( )zRMAX , ( )zRMIN and any other 
functions of z are piecewise continuous and differentiable.  
For the radial cooling scheme the z>0 cooling water is 
conveyed axially inward (in the -z direction) through an inner 
high pressure manifold and axially outward (in the +z 
direction) through an outer low pressure manifold.  At any 
elevation, z, the cross-sectional manifold areas within the local 
constant-elevation cutting plane may be referred to as 

( )zAinner   and  ( )zAouter .  The centerpost electrical 
conductor is in the annular region between the inner and outer 
manifolds, defined as  ( ) ( )zRrzR CuCu maxmin −− <<  where 

( )zRCu min−  and ( )zRCu max− are respectively the inner and 
outer edges of the centerpost's conductor region. 

   Since the inner and outer manifolds are annular, the radial 
and areal quantities are interrelated as follows: 

( ) ( )( ) ( )( )( )22
min zRzRzA MINCuinner −= −π  (14) 

( ) ( )( ) ( )( )( )2
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2 zRzRzA CuMAXouter −−= π  (15) 

   The interest here is in configurations in which the water 
speed is everywhere constant.  A consequence is that the inner 
and outer manifolds have identical  area profiles, i.e.,  

( ) ( ) zzAzA innerouter  allfor   ≡   (16)  (16) 

or equivalently 
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   Another consequence of constant speed is that the total 
radial flowpath cross section between any two elevations must 
match the change in manifold area between those same two 
elevations.  However, to state this mathematically it is 
necessary to first define another function quantifying the 
cross-sectional area of radially oriented flowpaths through the 
conductor between the two manifolds.  It is envisioned that 
there will be a great number of radial flow paths, all of very 
small circular cross section, each created by drilling radially 

through the conductor between outer and inner manifold 
regions.  The function, ( )zAradial   is hereby defined as the 
total cumulative cross-sectional area summed over all radial 
holes located between the horizontal midplane and the 
horizontal plane through positive elevation z.  For the flow 
speed to be the same constant value in the radial holes that it is 
in the manifolds, it is necessary that their cross-sectional areas 
must be equal. The mathematical statement is then as follows: 

( ) ( )zAzA radialinner =  (18) 

   It is hereby assumed that the function ( )zAradial  becomes 
smooth and differentiable.  Differemtiatmg (18), 
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This can be restated in terms of the manifold radii as follows: 
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Then 
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and 
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   The simple physics invoked will require that at any 
elevation, z, the local radial coolant flow will convect away 
the local heating produced by ohmic electrical dissipation in 
the conductor, in an exact balance.  Nuclear heating of the 
centerpost is neglected but clearly could be included.  The 
heat removed from the centerpost is modeled simply as the 
product of coolant flow speed, coolant density, coolant 
specific heat, coolant passage cross-sectional area, and an 
assumed constant coolant temperaure rise, ΔT.   Actual 
centerpost temperature is ignored in this initial look.  Thus, the 
lineal density (per unit elevation) of heat removed is modeled 
as follows:  

dz
dATcv
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p
removed Δ= ρ  (23) 



  For the ohmic heating dissipation produced, it is assumed 
herein that the current redistributes itself immediaely arround 
the radial holes so that at every elevation, z, it is perfectly 
uniform across the effective cross section there.  The local  
dissipation produced is modeled as follows: 
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where I is the total centerpost current, where η is the 
centerpost conductor's electrical resistivity, and where 

( )zA effectivecurrent −  is the effective cross-section for current 
flow at elevation z. This effective cross section for current 
flow is less than the total annular conductor cross section, 

( )( ) ( )( )( )2
min

2
max zRzR CuCu −− −π ,  by an amount modeling 

the missing conductor materiaal removed for the drilled-out 
radial cooling passage holes.   Note that each drilled-out hole 
has a cylindrical volume in which the cylinder's radially-
oriented height is ( ) ( )( )zRzR CuCu minmax −− − .  Note that the 
total cross section of all the drilled-out cylinders between 
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conductor volume in the annular disk between elevations z and 
z+dz is therefore their product, i.e.,  
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   Dividing this missing volume by the disk thickness, dz, 
yields the effective missing area for centerpost current flow, 
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   Thus, the effective cross-sectional area for current flow at 
elevation z is taken to be as follows 
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Thus, the heating and cooling balance is written as follows: 
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or equivalently 
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To proceed further, it was decided to retain ( )zAinner  and 
eliminate other functions which can be calculated from it.   

   After substituting several identities and algebraically 
rearranging on obtains the following equation.  This form 
emphasizes the fact that it is a quadratic equation in the 

derivative variable 
( )
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parameters are either specified in advance or involve the 
unknown function, ( )zAinner .   
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    Eq.(29) is a standard quadratic equation form, 
02 =++ cbxax , where  
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    The roots are of course: 
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and the actual solution for the derivative ot duct area is one 
of them.  One notes that in the limit of small electrical current 
and thus small heating density, the c parameter approaches 
zero, a remains positive, b remains negative, and x should 
approach zero to signify that inner and outer manifold areas 
remain nearly constant over nearby elevations while the 
density of radial holes there  is near-zero.  This criterion 
excludes the root that does not approach zero as c approaches 
zero, leaving the root which does as the true solution, i.e. : 
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    Substituting the actual a, b, c, x  terms leads to  an 
involved, complicated multiterm expression.covering an 
entire page, but it can be simplified by reintroducing the radii 
of duct boundaries from (14) and (15).  The result is as 
follows:  
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    A code was written to numerically solve (33) in conjunction 
with (14) and (15), thus automatically generating manifold 
designs and the density profiles for radial hole patterns.   

V. APPLICATION TO FNSF 

    Fig. 3 illustrates a centerpost profile that is being considered 
for possible 1,6 meter major radius FNSF designs. Although it 
has not been envisioned as using radial cooling, that was the 
focus of a limited preliminary investigation.   

The computed shape was entered into the code and the code                                                                                  
used to scan through a grid of combinations of toroidal field at 
R=1.6 m and water flow speed in the coolant channels, 
generating a different manifold and radial holes system for 
each combination.  The resulting centerpost electric power 
dissipations levels (MW) and centerpost cooling water flow 
rates (m3/s)  are shown respectiveely as contour plots. in Figs. 
(4) and (5), plotted against internal water flow speed and 
magnetic field..   

   Fig.6 shows the shape of optimized manifolds in the upper 
half of the centerpost for the 3 Tesla case with internal water 
flow speed 3 m/s, and Fig.(7) shows the same manifold shapes 
with an expanded horizontal scale.  This operating condition 
requires 250 MW of centerpost electrical power and it requires 
about 1.3 m3/s of cooling water, supplied at 12C and returned 
aat 60C,  to remove all centerpost heat. (No nuclear heat 
sources were included.) 

   It is noteworthy that each of the plotted contours stops 
before reaching the left side of these graphs.  That occurs 
because it is not possible to operate there at high magnetic 
field with low water flow rates and restricted temperature 
rises.  That impossibility is manifest by the solution of the 
quadratic (29) acquiring imaginary component 
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Figure 3: A Proposed Centerpost Layout for FNSF 
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Figure 4: Radially Cooled Fig.3 Centepost: Power vsWater flow and TF 
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Figure 5:  Radially Cooled Fig.3 Centepost: WaterFlow vs Waterspeed &TF 

0 0.2 0.4 0.6
0

1

2

3

4

5

6

r (m)

z 
(m

)

Centerpost Radial Cooling Manifold Shapes

 

 

Inner manifold edge

inner copper edge
Outer copper edge

Outer manifold edge

Figure 6: Radial Cooling Manifolds for Fig.3, Water speed 3 m/s, B=3 Ts 
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