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Tendency of a rotating electron plasma to approach the Brillouin limit
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Israel

A neutral plasma is considered to be immersed in an axial magnetic field together

with a radial electric field. If the electrons are magnetized, but the ions are not

magnetized, then the electrons will rotate but the ions will not rotate, leading to

current generation. The currents, in turn, weaken the axial magnetic field, leading

to an increase of the rotation frequency of the slow Brillouin mode. This produces a

positive feedback effect, further weakening the magnetic field. The operating point

thus tends to drift towards the Brillouin limit, possibly finding stability only in

proximity to the limit itself. An example of this effect might be the cylindrical Hall

thruster configuration.
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I. INTRODUCTION

Many magnetic devices feature rapidly rotating clouds of electrons, including centrifu-

gal fusion devices1–4, plasma centrifuge5–8, helicon source9, and various Hall-type thruster

geometries10,11. In these configurations, the rotation is driven by crossed electric and mag-

netic fields.

In such configurations, the electron rotation frequency ω is in first approximation de-

scribed by the azimuthal cross field drift velocity, in which case ω is assumed to be equal

to E(Br)−1, with E the electric field intensity, B the magnetic field intensity and r the

radial coordinate. A more complete description indicates that, when the the magnetic field

is inclined with respect to the radial direction, the radial centrifugal force exerted on the

azimuthally rotating electron cloud has components both parallel to the magnetic field line

(and compensated therefore by a parallel electric field) and perpendicular to the magnetic

field12. The perpendicular component of the centrifugal force results in an additional az-

imuthal drift, which modifies the rotation frequency1. The rotation frequency ω is therefore

no longer equal to E(Br)−1, but some particular kind of Brillouin solution (see, e. g., Ref.13)

generalized to non-purely axial magnetic fields. This deviation is shown1 to be negligible for

E(Br)−1 << ωc, where ωc is the electron gyro-frequency, but becomes non negligible when

these two frequencies are comparable.

The particular feature that we uncover here is the rather fascinating tendency, through

a feedback mechanism, of the rotating electron cloud flow to grow closer to the so-called

Brillouin limit14. In this limit, the frequency of rotation of the electron cloud becomes one

half of the electron gyro-frequency. This tendency is shown to occur for a particular set of

plasma parameters, such as observed for example downstream of the miniaturized cylindrical

Hall thruster15.

The paper is organized as follows: In Sec. II, the role played by the non negligible induced

magnetic field on the electron cloud azimuthal rotation frequency is introduced. In Sec. III,

a simplified geometrical configuration is used to derive analytical solutions for the rotation

frequency under the assumption of a solid body rotation. In Sec. IV, different electron

cross-field transport regimes are discussed. In Sec. V, these considerations are applied, as

an example, to data obtained in the cylindrical Hall thruster. In Sec. VI, the main findings

are summarized.
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II. FEEDBACK LOOP CAUSED BY THE INDUCED MAGNETIC FIELD

Under the assumption of a purely homogeneous axial magnetic field B = B0ẑ and a

radial electric field E = −E0r̂ (E0 > 0), and neglecting initially the induced magnetic

field, the electron azimuthal rotation frequency ω(r) can be shown to be the slow Brillouin

rotation mode13

ω− =
eB0

2m

[
1−

√
1− 4

mE0

eB2
0r

]
. (1)

In principle, another solution for the rotation frequency would be the fast Brillouin rotation

mode

ω+ =
eB0

2m

[
1 +

√
1− 4

mE0

eB2
0r

]
. (2)

However, since the rotation of an electron in the fast mode ω(r) = ω+ requires a significantly

larger electron initial kinetic energy, only a negligible fraction of electrons will actually orbit

in this mode, so that the contribution of these electrons can be reasonably neglected. The

slow rotation mode ω(r) = ω− will therefore be the only one considered in the rest of the

paper.

Consider a homogeneous electron density ne rotating at the frequency ω(r) = ω− as

obtained in Eq. 1. The induced magnetic field Bi = −Biẑ can then be estimated as

Bi =

∫ r0

r

eµ0neω(r′)r′dr′, (3)

with r0 the external radius of the device and µ0 the free space permeability. A lower estimate

of Bi can be obtained by noting that, as shown in Eq. 1, ω is always larger than E(B0r)
−1,

which yields

Bi ≥ eµ0ne
E0

B0

(r0 − r). (4)

Introducing the plasma frequency ω2
p = e2ne(mε0)

−1 , the speed of light c = (ε0µ0)
−1/2,

and the parameter p0 = mE0/(eB
2
0r) representative of the proximity of the vacuum fields

conditions to the Brillouin limit, Eq. 4 can be rewritten as

Bi

B0

≥
ω2
p

c2
r20

(
1− r

r0

)
r

r0
p0 =

(
r0
δs

)2(
1− r

r0

)
r

r0
p0, (5)

where δs = c/ωp is the electron skin depth. The condition for a non negligible induced

magnetic field can then be seen as the combination of two factors. The first factor is the

ratio of the plasma column radius over the electron skin depth. The second one is the
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parameter p0, with p0 = 1/4 at the Brillouin limit for wich ω/ωc = 1/2. Eq 5 indicates that

the induced magnetic field is to be expected to play a non negligible role when the product

of these factors is O(1). Let us consider in the remaining of this paper the situation for

which such a condition is met.

The non-negligibility of the induced magnetic field Bi demands considering the effective

magnetic field B in place of the externally applied magnetic field B0 in Eq. 1. Since the

induced magnetic field depends itself on the rotation frequency ω, a feedback loop exists.

The magnetic field weakening modifies the rotation frequency, which itself modifies the

magnetic field strength through the induced magnetic field. The system to be solved is then

ω =
eB

2m

[
1−

√
1− 4

mE

eB2r

]
(6a)

B = B0 −
∫ r0

r

eµ0neω(r′)r′dr′. (6b)

The derivation of solutions for Eq. 6 requires additional assumptions as for the the electric

field E and the magnetic field B (or the rotation frequency ω), as well as for the electron

number density ne.

III. RIGID ROTOR

In order to quantify the effect of the magnetic field weakening on the electron cloud

rotation speed, an analytical solution for Eq. 6 can be obtained in the idealized case cor-

responding to the rigid rotor rotation (ω independent of r) of a uniform electron cloud (ne

constant). Eq. 6 then becomes

ω =
eB

2m

[
1−

√
1− 4

mE

eB2r

]
(7a)

B = B0 −
eµ0ne

2
(r20 − r2)ω. (7b)

Introducing the dimensionless variables

ξ :=
r

r0
, (8a)

Ωc(ξ) :=
ωc(ξ)

ωc0
, (8b)
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ωc :=
eB

m
, (8c)

ωc0 :=
eB0

m
, (8d)

Ω :=
ω

ωc0
, (8e)

a(ξ) :=
eE(ξ)

mω2
c0
r0
, (8f)

s :=
ω2
p

c2
r20, (8g)

Eq. 7 reads

Ω =
Ωc

2

[
1−

√
1− 4

a

Ω2
cξ

]
(9a)

Ωc = 1− s

2
(1− ξ2)Ω. (9b)

The variables a and Ωc are the dimensionless electric and magnetic fields, s is the dimen-

sionless electron number density responsible for the diamagnetic effect, and Ω is the resulting

dimensionless uniform rotation angular frequency.

Rewriting Eq. 9a, one obtains that the dimensionless electric field must satisfy

a = Ωξ(Ωc − Ω). (10)

Plugging in the expression for the dimensionless magnetic field Ωc obtained from Eq. 9b,

the explicit dependence of the electric field on the radial coordinate reads

a = Ωξ
[
1− s

2
(1− ξ2)Ω− Ω

]
. (11)

It is clear that the electric field does not depend linearly on the radial coordinate ξ as

obtained when neglecting the induced magnetic field. The corresponding dimensionless

potential v is

v :=

∫ ξ

0

adξ′ =
e

mr20ω
2
c0

φ = Ω

[
ξ2

2
− s

2

(
ξ2

2
− ξ4

4

)
Ω− ξ2

2
Ω

]
, (12)

with φ the potential at distance r relative to the axis. The dimensionless voltage across the

electron cloud is then

v0 :=

∫ 1

0

adξ′ =
e

mr20ω
2
c0

φ0 =
Ω

2

[
1− Ω

(
1 +

s

4

)]
. (13)
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The uniform rotation frequency Ω can consequently be interpreted as a function of the

two dimensionless parameters v0 and s. Solving Eq. 13, one gets

Ω± =
1±

√
1− 8v0(1 + s/4)

2(1 + s/4)
. (14)

From energetic considerations, the naturally arising mode is Ω = Ω−. We verify that, in the

limit case of a negligible electron density s → 0, Eq. 14 is equivalent to the classical slow

Brillouin rotation mode driven by an applied voltage φ = φ0ξ
2. The classical Brillouin flow

limit v0 ≤ 1/8 is here modified by the diamagnetic effect through the dimensionless electron

density s, with

8v0

(
1 +

s

4

)
≤ 1, (15)

or in dimensional form
8mφ0

eB2
0r

2
0

(
1 +

µ0e
2ner

2
0

4m

)
≤ 1. (16)

Figure 1(a) shows the evolution of Ω as a function of the dimensionless variables s and v0.

The deviation from the neglected induced magnetic field case is, as expected, materialized

by an increase of Ω for large values of s, or in other words for large electron number densities

(see Fig 1(b)). This result is however insufficient to quantify the proximity of the operating

conditions to the Brillouin flow limit since the gyro-frequency is itself decreasing as the

induced magnetic field increases.

Once the rotation frequency Ω is determined, the dimensionless magnetic field Ωc can be

derived as a function of the same dimensionless variables s and v0,

Ωc = 1− s

2
(1− ξ2)Ω = 1−

1−
√

1− 8v0(1 + s/4)

4(1 + s/4)
(1− ξ2)s. (17)

The magnetic field radial profiles obtained for various dimensionless electron number den-

sities and a dimensionless electric potential v0 = 0.043 are plotted in Fig 2(a). The field

weakening is seen to be significant close to the axis, with a 30% decrease at ξ = 0.5 (r = r0/2)

for s ≥ 5.7. Insight of the operating conditions’ proximity to the Brillouin flow limit can be

obtained by analyzing the radial dependence of the ratio Ω/Ωc, the Brillouin parameter, as

plotted in Fig. 2(b). As a matter of fact, from Eq. 9a, the Brillouin flow limit is equivalent

to Ω/Ωc = ω(ξ)/ωc(ξ) = 1/2. If neglecting the induced magnetic field, Ω = (1−
√

1− 8v0)/2

and Ωc = 1. Figure 2(b) together Fig. 2(a) with clearly demonstrates the role of diamag-

netism on the evolution towards to the Brillouin flow. The magnetic field weakening within
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FIG. 1. Map of the uniform dimensionless rotation frequency Ω = ω/ωc0 as a function of the

dimensionless electron number density s and electric potential v0 (a). The dependence of s over

ne is indicated in (b), with s ∼ 6 10−18ne[m
−3] for r0 = 13 mm.

the core of the plasma indeed corresponds to a large increase of the Brillouin parameter, with

Ω/Ωc increasing rapidly towards the 1/2 limit in response to an electron number density

increase past a given value.

We note that even larger electron number densities (larger s values) would yield a decon-

finement (p = mE/(eB2r) ≥ 1/4) of the electrons. More specifically, looking at Eq. 14, one

can show that the dimensionless rotation frequency at the Brillouin limit is

Ω =
1

2(1 + s/4)
, (18)

so that on axis
Ω

Ωc(ξ = 0)
=

1

2
, (19)

while at the edge of the plasma, Ωc(ξ = 1) = 1, and

Ω

Ωc(ξ = 1)
=

1

2(1 + s/4)
≤ 1

2
. (20)

A dense plasma could therefore become unstable close to the axis while the outer regions

remain stable, leading in turn to the formation of a hollow cylindrical plasma.
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(b) Ω/Ωc(ξ)

FIG. 2. Magnetic field (a) and Brillouin parameter (b) radial profiles for various value of the

dimensionless electron number density s and a dimensionless electric potential v0 = 4.3 10−2

(E0(r0) ∼ 2 104 V.m−1).

Another quantity of interest is the ratio of rotational to electrostatic energy (relative to

the axis)

χ :=
m

2

ω2r2

eφ
. (21)

Using the expression for the potential,

eφ

ω2
c0
mr20

= Ω

[
ξ2

2
− s

2

(
ξ2

2
− ξ4

4

)
Ω− Ω

ξ2

2

]
, (22)

one gets

χ (ξ) =
ω2
c0
mr20

2eφ
Ω2ξ2 =

Ω[
1− s

(
1
2
− ξ2

4

)
Ω− Ω

] (23)

The ratio χ increases monotonically with ξ. Therefore, its maximal value is

χmax =
Ω

[1− Ω (1 + s/4)]
. (24)

Substituting the slow mode dimensionless rotation frequency Ω as specified by Eq. 14, it

yields,

χmax =
1−

√
1− 8v0 (1 + s/4)

(1 + s/4)
[
1 +

√
1− 8v0 (1 + s/4)

] ≤ 1. (25)
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The stronger the diamagnetic effect, the larger the rotational to electrostatic energy ratio.

At the limit of zero density, s = 0, the rotational energy becomes equal to the electrostatic

energy if 8v0 = 1, that is to say at the Brillouin limit. For a vanishing s, it occurs at

Ω = 1/2, in which case the ratio is then identically unity across all the cylinder:

χ (ξ) =
Ω

1− Ω
. (26)

The assumption of a solid body rotation is mainly motivated by the interest for the

possibility of an analytical solution. The physical realizability of these solutions is therefore

not immediate. But this this idealized case highlights a trend, which could be checked

computationally for more realistic models.

IV. CROSS-FIELD TRANSPORT

Recalling the modeling of the purely axial magnetic field configuration, the assumption

of a particular transport regime can be rewritten as a given relation between the electric and

magnetic fields E and B. More specifically, the assumption of a constant discharge current

across the field lines, that is to say of a constant radial current in our idealized case, leads

to the invariance of the product σE, where σ is the plasma conductivity. Since the two

different transport regimes considered above can be rewritten as σ ∝ B−1 (Bohm scaling) or

σ ∝ B−2 (classical diffusion), a constant conductivity yields respectively E ∝ B or E ∝ B2.

Eq. 6 is consequently numerically solved for various dependences of the electric field E

on the magnetic field B. The system is solved iteratively, starting from the initial magnetic

field and electric potential

B(0) = B0 ẑ (27a)

φ = φ0
r2

r20
, (27b)

until the relative error with respect to the magnetic field B converges within one percent.

The corresponding initial electric field can be expressed as a function of the variable v0

defined in Eq. 13, with

E(0) = −2eB2
0

m
v0r r̂ (28)

Let us first consider Bohm scaling for the electron cross-field transport, for which E is

assumed proportional to B, E = E(0)B/B(0). Fig. 3 shows that the dimensionless rotation
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FIG. 3. Map of the dimensionless rotation frequency Ω = ω/ωc0 as a function of the dimensionless

electron number density s and electric potential v0 in case of a Bohm scaling (E = E(0)B/B(0))

for various normalized radial positions ξ. ξ = 1/3 (a), ξ = 2/3 (b) and ξ = 1 (c).

frequency Ω evolution is qualitatively similar to the rigid rotor solution presented in Sec. III.

The main difference lies in the radial dependence of the rotation frequency, with Ω compara-

ble to the rigid rotor values close to the axis, and globally smaller at larger radial positions.

The regime for which the operating conditions are close to the Brillouin flow is in this case

shifted to larger electron number density (larger s values), as illustrated in Fig 4.

Consider now the limiting case of a negligible dependence of the conductivity on the

magnetic field, i e. a regime for which the electric field E is supposed independent of B.

In this limit, the numerical solutions plotted in Fig. 4 confirm the general trend previously

identified. The main difference consists in a shift towards lower values of the electron

number density for which the operating conditions reach a given proximity to the Brillouin

flow (e. g. a given Ω/Ωc(ξ)), the sudden increase of Ω/Ωc(ξ) occurring for approximately

half the electron number density observed in case of a Bohm scaling (ne ∼ 9 1017 m−3).

Consider also the classical electron cross-field regime, for which the electric field is as-

sumed proportional to the square of the magnetic field, E ∝ B2. Eq. 6 then indicates a

stabilizing feedback loop, since an increase of the magnetic field B would yield an increase of
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FIG. 4. Proximity to the Brillouin flow for various s values and electron-cross field regimes. The

Brillouin flow regime corresponds to Ω/Ωc(ξ) = 1/2. The weaker the electron cross field diffusion,

the larger the electron number density required to yield a deviation from the neglected induced

magnetic field case.

the angular frequency, which itself would weaken the magnetic field. The rotation frequency

ω is therefore expected to remain close to its free space value under the assumption of a

classical electron cross-field transport.

To summarize, with the exception of the case corresponding to Bohm scaling for the

electron cross-field transport, the various regimes studied highlight a tendency of the electron

rotating cloud to grow toward the Brillouin limit much similar to the one identified in the case

of the analytical rigid-rotor model presented in Sec III. In addition, despite small variations,

the conditions for which this growth is observed remain globally identical (within roughly a

factor 2.5). These descriptions do rely on the simplifying assumption of constant electron

number density. The dependence of the electron number density on the rotation frequency,

as well as the implications with respect to the results obtained, are discussed in Appendix A.
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V. EXAMPLE: CYLINDRICAL HALL THRUSTER

The cylindrical Hall thruster (CHT) is a promising alternative to the conventional annular

Hall Thruster (HT) particularly in scaling to low power 15. A number of variations of Hall

thrusters with large axial field components have now been explored as well16–19. In this open

or magnetic-nozzle configuration, the outer part of the central portion of a conventional HT

annular channel is eliminated, giving a larger volume to surface ratio for a given thruster

radial dimension. The electron losses to the walls are therefore smaller, and it stands to

reason that so might be the erosion.

However, because of the partial elimination of the central annular channel, the magnetic

field lines have a significantly larger component in the axial direction as compared to the

magnetic field lines in the conventional HT. Thus, while there are many magnetic field effects

such as magnetic mirroring or focusing exhibited by the conventional annular thruster18–21,

that may be expected to be found also in cylindrical Hall thrusters, cylindrical thrusters may

exhibit new features or exaggerated features compared to conventional annual thrusters. One

such example is the role of the diamagnetic effect described in this paper.

We apply the analysis described above to the miniaturized thruster described in ref12,22.

Table 1 presents values of parameters downstream that CHT. For ne = 1018 m−3, the electron

skin depth δs is about 5 mm, that is to say about a third of the channel width. In addition,

the vacuum electric E0 and magnetic field B0 values give p0 ∼ 0.08 at r = r0/2, so that

according to Eq. 5, one gets Bi/B0 ≥ 0.15. Consequently, the derivation of the electron

cloud rotation frequency downstream of this CHT indeed requires computing the effect of

the induced magnetic field. Taking the voltage φ0 = 130 Volts, the dimensionless voltage

is v0 = 0.043 while the dimensionless electron number density is s = 6. The dimensionless

rotation frequency is then Ω = 0.125, considerably smaller than unity. However, as a result

of the large diamagnetic current, we obtain for the rigid-rotor flow a much larger ratio within

the plasma core, with Ω/Ωc ≥ 0.2 for ξ ≤ 0.5. The fact that the results obtained for the

classical diffusion model (c. f. Sec. IV) and typical CHTs’ parameters are consistent with

these values is taken as a strong indicator that the diamagnetism effects previously discussed

are likely to be observed downstream of a cylindrical Hall thruster.

Closer to the anode of the CHT, the diamagnetic effect is weaker. However, each elec-

tron is expected to bounce back and force between the anode region and the downstream

12



Parameter Value

distance from axis [mm] 13

potential relative to axis [V] 130

Magnetic field [T] 0.01

Electron number density [m−3] 1018

TABLE I. Dimensions and typical operating conditions downstream of a miniaturized cylindrical

Hall thruster, from Ref.12,22.

region, and therefore it experiences being closer to the Brillouin limit along its trajectory

downstream from the anode. It is true that downstream from the anode the magnetic field

lines diverge and the the validity of the approximation of an axial magnetic field is therefore

only limited. However, some of the flow behavior, such as the existence of two solid rotation

frequencies exist also when the magnetic field is divergent23.

VI. SUMMARY

In this paper, the effects of diamagnetism on the rotation of an electron cloud within

a neutral plasma in which electrons are magnetized, but ions are not magnetized, are ad-

dressed. In such configurations, typically obtained by cross electric and magnetic fields, the

rotation of the sole electron component can yield large currents, which in turn weaken the

axial magnetic field. For some particular conditions, this magnetic field weakening is shown

to be non negligible. In this case, the rotation frequency of the slow Brillouin mode increases

as a result of the magnetic field decrease, producing a positive feedback effect.

For solid body rotation of a homogeneous electron cloud, analytical solutions for the

rotation frequency are derived for an idealized magnetic field topology. These solutions

demonstrate a significant diamagnetism effect for larger electron number densities, which

tends to bring the operating point closer to the Brillouin limit. This trend is confirmed by

substituting for solid body rotation different assumptions representative of different electron

cross-field transport regimes, and numerically solving for the rotation frequency. The prox-

imity to the Brillouin flow limit is seen to be greater for large cross-field transport regimes,

such as Bohm scaling, while classical diffusion maintains the system further away from this
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limit.

Consideration of the typical operating parameters reported downstream of a cylindrical

Hall thruster reveals that such diamagnetic effects are likely to be locally observed in these

thrusters. The resulting magnetic field in the core of the plasma is expected to be signif-

icantly weaker than its vacuum field value, exhibiting locally an electron flow close to the

Brillouin limit. Experimental measurements of the electron rotation speed, or alternatively

a mapping of the in-operation magnetic field, should corroborate this analysis. Since the

magnetic field topology is expected to deviate from its vacuum shape, a significant mod-

ification of the electric potential distribution in the thruster is anticipated. This electric

potential remapping is likely to affect significantly the ion beam focusing in a miniaturized

cylindrical Hall thruster.
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Appendix A: Feedback through ionization

The solid body rotation model presented in Sec. III, as well as the simulations presented

in Sec. IV, indicates a relatively sudden appearance of the diamagnetism effects above a

threshold electron number density. Because of this electron number density sensitivity, it

seems suitable to depict how the relaxation of the constant electron density hypothesis

would alter these results. A solution consists in modeling the electron impact ionization

cross-section σ dependence on the rotation frequency. Since the electron cloud rotation is

expected to be supersonic, the ionization rate will be determined by the electron rotation

velocity. More specifically, an increase of the rotation frequency yields an electron kinetic

energy εc = mω2r2/2 increase, modifying in turn the ionization rate σngv, where v = ωr

is the electron velocity and ng is the background neutral number density. In addition,

assuming solid body rotation, the kinetic energy of an electron close to the outer wall will

be much larger than the one of an electron in the central region, leading to an inhomogeneous
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ionization rate.

Above some threshold kinetic energy, an electron becomes less efficient at ionizing back-

ground neutrals. Consequently, two cases can be set apart depending on the scaling of the

rotational energy with respect to the electron kinetic energy εi for which the electron impact

ionization rate peaks. On the one hand, if εc > εi, an increase of the rotation frequency ω

with respect to its free space value ω0 = eB0[1 −
√

1− 4p0]/(2m) will result in an increase

of electron number density ne. This feedback loop would consequently bring the system

even closer to the Brillouin limit. On the other hand, if m(ωr)2/2 < εi, an increase of the

rotation frequency would yield a decrease of the electron number density, stabilizing in turn

the system.

A hint of the behavior likely to appear in the cylindrical Hall thruster configuration

discussed in Sec. V can be obtained as follows. The rotation frequency corresponding to

the Brillouin flow limit is ωc/2, which is equivalent to an electron energy εB = e2B2r2/(8m)

for solid body rotation of the electron cloud. An upper limit for this electron energy εe

can be calculated at the outermost radial position r0 by neglecting the induced magnetic

field. Considering the typical miniaturized CHT parameters summarized in Tab. I, one gets

εB ≤ 370 eV. Using as an example the cross section in Xenon24, the kinetic energy above

which an electron becomes less efficient at ionizing background neutrals is εi ∼ 320 eV. These

two energies εB and εi being comparable, an increase of the rotation frequency ω will result

in an increase of electron number density ne in most of the domain. Such an ne increase

will globally strengthen the induced magnetic field, amplifying in turn the feedback loop

exhibited by Eq. 7. A possible exception consists of the limited regions where the conditions

are already sufficiently close to the Brillouin flow for the electron energy to be larger than εi.

In such regions, an increase of the rotation frequency will yield an electron density decrease,

giving a stabilizing effect. Note however that additional effects, in particular collisions,

should generally lower the electron energy, so that it remains much lower than εi.

Thus, with the exception of particularly large rotation frequencies, the consideration of

the rotation frequency’s influence on the electron number density is expected to lead to

predicting an even stronger feedback loop, bringing the system even more quickly towards

the Brillouin limit. It is worth noting that this process is expected to take place irrespectively

of the transport regime.
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