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Abstract

Smoothing functions are commonly used to reduce numerical noises arising from coarse sam-

pling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing func-

tions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to

preserve good conservation properties. In this paper, we show how to construct a variational

multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The

conservation of the multi-symplectic structure and the reduction of numerical noises make this

algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the

steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has

been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the

good conservation properties of the multi-symplectic algorithm and the reduction of the noise due

to the application of smoothing function.
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I. INTRODUCTION

Modern large-scale simulations in plasma physics require algorithms with long-term nu-

merical stability and high computation efficiency. When facing multi-time-scale problems,

such as RF wave heating and current drive in tokamaks, the coherent accumulation of nu-

merical errors turns out to be the most challenging problem. Standard algorithms can bound

numerical errors from each time-step by small values, but they do not guarantee that nu-

merical errors from different time-steps cancel out with each other. In general, the total

numerical error increases through accumulation over many time-steps. This problem can be

resolved by using symplectic integrators which bound the total numerical error of energy

and momentum, and conserve phase space volume of a physical system [1]. The basic idea of

symplectic integrator is to construct integrators which exactly conserve a discrete symplectic

two-form, the so-called symplectic structure. Different approaches to constructing symplec-

tic integrators have been developed [2–9]. A standard method [2–4] is to investigate the

generating functions of dynamic systems. Because this method requires canonical Hamilto-

nian structure, its application is limited. It cannot be applied to non-canonical Hamilton

systems, such as the gyrocenter systems, and particle-field systems conveniently. Marsden,

et al., proposed another method to obtain symplectic integrators based on the discretization

of the Lagrangian of the system [10]. Through discrete variational principle, this method

can be applied to the gyrocenter systems [11, 12] and the evolution of electromagnetic field,

an infinite dimensional system described by partial differential equations (PDE). Based on a

similar idea, variational multisymplectic integrators using discrete exterior calculus (DEC)

technique have also recently been developed [13, 14].

In the particle-in-cell (PIC) method, fields and particles are sampled in different ways.

Fields are sampled on Eulerian grids in 3D configuration space, while particles are sampled

on Lagrangian grids in 6D phase space. The PIC method greatly enhances computation

efficiency while avoiding the singularity problem [15]. Due to the limit of computation

capacity, it is unpractical to track down the trajectories of all real particles. A sampling

point, namely a marker or super-particle, is hence used to denote a number of real particles

to relieve the computation burden. On the other hand, the coarse sampling leads to a

large background noise, which is the major drawback of full-f PIC methods. In addition

to increasing the number of markers, various techniques have been developed to suppress
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the numerical noises, such as the δf method and the application of smoothing functions.

A smoothing function, also called as a shape function [16], is a local distribution function

carried by each marker to give the marker a smoother shape (compared with the sharp δ-

function shape). However, the application of smoothing functions in symplectic integrator

is not as simple as in standard algorithms, because the application of smoothing functions

may break the symplectic structure.

As a generalization of original variational symplectic algorithm, a variational multisym-

plectic integrator with a smoothing function S for the Vlasov-Maxwell system is necessary

for its application to PIC plasma simulation. In this paper, we show how to develop such

a symplectic algorithm based on the Lagrangian of the system. We follow Marsden’s proce-

dure [10, 17] to construct the variational symplectic integrator and give an explicit particle

pusher which is less resources consuming. The challenge is how to preserve the symplectic

structure of entire self-consistent particle-field system while allowing different smoothing

functions for particle sampling. A selected smoothing function, which reflects the form of

particles’ local distribution at each sampling point, is substituted into the Lagrangian at the

very beginning. After taking variation of the discretized Lagrangian, we obtain a discrete

symplectic integrator with smoothing function for the entire Maxwell-Vlasov system. This

algorithm is realized in a PIC code, where the good conservation properties of the algorith-

m are numerically verified. We also compare cases with different smoothing functions to

demonstrate the effectiveness of noise suppression.

The paper is organized as follows. In section II, the detailed procedure of constructing a

variational multi-symplectic PIC algorithm with smoothing function is introduced. In Sec-

tion III, we describe the implementation of this algorithm in a PIC code. Three numerical

examples are given to demonstrate the good conservation properties of this symplectic algo-

rithm and the reduction of numerical noises due to the application of smoothing function.

Finally we briefly summarize and discuss future plans in Section IV.

II. CONSTRUCTION OF THE VARIATIONAL SYMPLECTIC PIC ALGORITH-

M WITH SMOOTHING FUNCTION FOR THE MAXWELL-VLASOV SYSTEM

In this section, we construct a generalized variational symplectic PIC algorithm with

smoothing function for the Vlasov-Maxwell system. The starting point is the Lagrangian
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of a Vlasov-Maxwell system and the corresponding variational principle. In the context

of classical dynamics, the Lagrangian density for a collection of N non-relativistic charged

particles together with the electromagnetic field is [18, 19]

L =
ϵ0
2

[
−Ȧ (x)−∇ϕ (x)

]2
− 1

2µ0

[∇×A (x)]2

+
N∑
s=1

δ (x− xs)

[
1

2
msẋ

2
s + qsA (x) · ẋs − qsϕ (x)

]
, (1)

where ms, qs, and xs denote the mass, electric charge, and position of the s-th particle re-

spectively, ε0 is the permittivity of free space, µ0 is the permeability of free space, and A and

ϕ are vector potential and scalar potential for the electromagnetic field. The corresponding

Lagrangian L is the integral of L over configuration space

L =

∫∫∫
Ω

Ld3x , (2)

and the action A is the integral of L over time

A =

∫ t1

t0

Ldt . (3)

According to Hamilton’s principle, the evolution of the Vlasov-Maxwell system is de-

termined by the variational equations with respect to independent variables A, ϕ,xs, that

is,

δA
δA

= 0 , (4)

δA
δϕ

= 0 , (5)

δA
δxs

= 0 . (6)

Equation (4) gives Ampère’s law

∇×B = µ0

∑
s

qsδ (x− xs) ẋs + µ0ϵ0
∂E

∂t
. (7)

Equation (5) gives Gauss’s law

∇ · E = ϵ0
∑
s

qsδ (x− xs) , (8)

and Eq. (6) gives the motion equation of charged particles

msẍs = qs (vs ×B+ E) . (9)
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Gauss’s law for magnetism

∇ ·B = 0 (10)

and Faraday’s law of induction

∇× E = −∂B

∂t
(11)

follow directly from the definition of E and B,

B = ∇×A , (12)

E = −∂A

∂t
−∇ϕ . (13)

Therefore Eqs. (4) to (6) are equivalent to the Vlasov-Maxwell system. Our task is to dis-

cretize this set of equations into symplectic difference equations suitable for PIC simulations.

In PIC method, field quantities are sampled on fixed grids in configuration space. A

rectangular region in 3D configuration space is discretized to rectangular grids (i, j, k) with

the same grid spacing ∆l, where i, j, and k are integer indices for three directions of the

chosen Cartesian coordinate frame. The integers Nx, Ny, and Nz are grid numbers in three

directions with 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz. Potentials on grids are denoted as

Ai,j,k = A(xi,j,k) and ϕi,j,k = ϕ(xi,j,k). In Eq. (1) potentials in the positions of particles

are required, while almost all particles do not locate on grids exactly. Off-grid values of

potentials can be calculated by interpolation techniques as

A (x) =
∑
i,j,k

Ai,j,kW (x− xi,j,k) , (14)

ϕ (x) =
∑
i,j,k

ϕi,j,kW (x− xi,j,k) , (15)

where W denotes the interpolation function. Though it seems that summations in Eqs. (14)

and (15) are taken over all the spatial grids, practical sum operation only involves the grids

adjacent to the position x, because the value of W is not zero only in a small region around

x. The accuracy of interpolation determines the smoothness of the electromagnetic fields in

PIC simulations. Given an interpolation function W , the Lagrangian L can be expressed as

a function of field values on grids according to Eqs. (1) and (2).

On the other hand, particles are sampled in PIC method on Lagrangian grids which

are carried by charged particles. However, due to the constraint on computing power, it’s

impossible to trace the trajectory of every particle. To reduce the computation burden, a
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sampling point is used to present a group of particles in practical PIC simulations. Thus

the third term on the right-hand-side (RHS) of Eq. (1) ought to be modified accordingly.

The summation over charged particles should be replaced by a summation over markers, and

distributions of particles in configuration space δ (xs − x) should be replaced by distributions

carried by markers S(x,xs). The smoothing function S(x,xs) represents the shape of particle

distribution in configuration space carried by the s-th marker [16]. Smoothing functions have

to bear properties such as symmetry and normalization, and thus can be further written

as S(x − xs). The simplest smoothing function is still the delta function δ (xs − x), which

indicates that all the particles represented by the s-th marker locate in a same position

xs. Obviously, such a choice brings large numerical noises. A better smoothing function

should span a finite volume, characterized by a length parameter a, in configuration space.

In the first paper on SPH (Smoothed-particle hydrodynamics) [20], Lucy used a bell-shaped

smoothing function

S(R; a) = αd

 (1 + 3R)(1−R)3 R ≤ 1 ,

0 R > 1 ,
(16)

where R = |(x − xs)/a| is the relative distance and αd is the normalization coefficient for

the number of dimensions d. Larger parameter a usually leads to lower numerical noises but

requires larger computing power.

After dealing with the sampling problem of fields and particles, we have to discretize

the Lagrangian containing interpolation function and smoothing function. To introduce the

discretization procedure, we separate the Lagrangian into three parts,

L = Lf + LI + Lp , (17)

where the Lagrangian for fields is

Lf =

∫∫∫
Ω

1

2

(
ϵ0

(
Ȧ (x) +∇ϕ (x)

)2
− 1

µ0

(∇×A (x))2
)
dx , (18)

the Lagrangian for particles is

Lp =

∫∫∫
Ω

∑
s

1

2
S(xs − x, a)msẋ

2
sdx =

1

2
msẋ

2
s , (19)

and the Lagrangian for interaction between particles and fields is

LI =

∫∫∫
Ω

∑
s

qsS(xs − x, a) (A (x) · ẋs − ϕ (x)) dx . (20)
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The second equality sign in Eq. (19) holds because of the normalization of smoothing func-

tion. Therefore, the smoothing function does not appear in Lp any more. Note that ms here

denotes the mass of the s-th marker, which indicates its weight implicitly.

When substituting interpolated potential functions given by Eqs. (14) and (15) into the

Lagrangian of Eqs. (18) to (20), the dependence of Lf , LI , and Lp on Ai,j,k, ϕi,j,k, Ȧi,j,k, xs,

and ẋs are

Lf = Lf

(
Ȧi,j,k,Ai,j,k, ϕi,j,k

)
, (21)

LI = LI (Ai,j,k, ϕi,j,k, ẋs,xs) , (22)

Lp = Lp (ẋs) . (23)

The time variable can also be discretized uniformly to Nt time steps with time interval

∆t. We use the forth subscript l to denote the time coordinate for discretized variables.

Then the action of fields

Af =

∫ Nt∆t

0

Lfdt (24)

can be discretized as

Ãf =
Nt−1∑
l=0

L̃f (l, l + 1)∆t , (25)

where

L̃f (l, l + 1) = Lf

(
Ȧi,j,k,l+1/2,Ai,j,k,l+1/2, ϕi,j,k,l+1/2

)
(26)

is the discretized Lagrangian of field on time interval [l∆t, (l+1)∆t]. The field variables on

half time-steps take the form of

Ai,j,k,l+1/2 =
Ai,j,k,l +Ai,j,k,l+1

2
, (27)

ϕi,j,k,l+1/2 =
ϕi,j,k,l + ϕi,j,k,l+1

2
. (28)

The time derivative Ȧi,j,k,l+1/2 is discretized as

Ȧi,j,k,l+1/2 =
Ai,j,k,l+1 −Ai,j,k,l

∆t
. (29)

Similarly, the action of particles

Ap =

∫ Nt∆t

0

Lpdt (30)
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can be discretized as

Ãp =
Nt−1∑
l=0

L̃p(l, l + 1)∆t , (31)

L̃p(l, l + 1) = Lp

(
ẋs,l+1/2

)
. (32)

The time derivative ẋs,l+1/2 is discretized as

ẋs,l+1/2 =
xs,l+1 − xs,l

∆t
. (33)

If we repeat midpoint scheme when discretizing the action of interaction Ai, the particle

pusher would be totally implicit. To develop a more efficient pusher, we use a different

method. The action of interaction

AI =

∫ Nt∆t

0

LIdt (34)

is discretized as

ÃI =
Nt−1∑
l=0

L̃I(l, l + 1)∆t , (35)

L̃i(l, l + 1) = LI

(
Ai,j,k,l, ϕi,j,k,l, ẋs,l+1/2,xs,l

)
. (36)

The total discretized action is the summation of three parts,

Ã = Ãf + Ãp + ÃI . (37)

We now applies the discrete variational principle to derive a multi-symplectic integrator.

Corresponding to Eqs. (4) to (6), the discretized Hamilton’s principle are expressed as

∂Ã
∂Ai,j,k,l

= 0 , (38)

∂Ã
∂ϕi,j,k,l

= 0 , (39)

∂Ã
∂xs,l

= 0 (40)

for each i, j, k, s, and l. Because the initial and final states are fixed, variations at time-step

0 and Nt should be zero, that is,

(δAi,j,k,0, δϕi,j,k,0, δxs,0) = (δAi,j,k,Nt , δϕi,j,k,Nt , δxs,Nt) = (0, 0, 0) . (41)

Equations (38) and (39) provide the discretized Maxwell solver, and Eq. (40) provides the

discretized particle pusher.
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For the action of fields Ãf , which does not depend on xs,l, we have

Ãf

∂Ai,j,k,l

= ∆t

(
∂L̃f (l − 1, l)

∂Ai,j,k,l

+
∂L̃f (l, l + 1)

∂Ai,j,k,l

)
, (42)

Ãf

∂ϕi,j,k,l

= ∆t

(
∂L̃f (l − 1, l)

∂ϕi,j,k,l

+
∂L̃f (l, l + 1)

∂ϕi,j,k,l

)
. (43)

Substituting Eqs. (14) and (15) into Eq. (26), we have

L̃f (l, l + 1) =
ϵ0
2

∫∫∫
Ω

d3x

(∑
i,j,k

Ȧi,j,k,l+1/2Wi,j,k (x) +
∑
i,j,k

ϕi,j,k,l+1/2∇Wi,j,k (x)

)2

− 1

2µ0

∫∫∫
Ω

d3x

(∑
i,j,k

∇×Ai,j,k,l+1/2Wi,j,k (x)

)2

, (44)

where Wi,j,k (x) = W (x− xi,j,k) is the interpolation function. From Eqs. (27) to (29), it

is clear that L̃f (l, l + 1) is a quadratic form of Ai,j,k,l, Ai,j,k,l+1, ϕi,j,k,l and ϕi,j,k,l+1, which

asserts that Eqs. (42) and (43) are both linear equations. It’s also obvious that only L̃f (l, l+

1) and L̃f (l − 1, l) contain values on the l-th time-step, such as Ai,j,k,l and ϕi,j,k,1.

For the variation of the action of interaction ÃI with respect to vector potential, we have

∂Ãi

∂Ai,j,k,l

= ∆t
∑
s

∫∫∫
qsS(x− xs,l; a)Wi,j,k(x)ẋs,l+1/2dx = ∆tJi,j,k,l , (45)

which gives the current density on grids. The variation with respect to the scalar potential

gives the electric charge density on grids,

∂Ãi

∂ϕi,j,k,l

= −∆t
∑
s

∫∫∫
qsS(x− xs,l; a)Wi,j,k(x)dx = −∆tρi,j,k,l . (46)

Noting that the action of particles Ãp is independent of field variables, we can write down

the variational equations for the total action as

∂Ã
∂Ai,j,k,l

=
∂(Ãf + Ãi)

∂Ai,j,k,l

= 0 , (47)

and

∂Ã
∂ϕi,j,k,l

=
∂(Ãf + Ãi)

∂ϕi,j,k,l

= 0 . (48)

It can be proved that Eqs. (47) and (48) are also linear equations of Ai,j,k,l+1 and ϕi,j,k,l+1.

Thus according to Eqs. (47) and (48), we can solve for field variables at the (l + 1)-th
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time-step Ai,j,k,l+1 and ϕi,j,k,l+1 from field variables at previous time-steps Ai,j,k,l−1, Ai,j,k,l,

ϕi,j,k,l−1, ϕi,j,k,l and Ji,j,k,l, ρi,j,k,l using conjugate gradient method [21].

Because the action of fields Ã doesn’t depend on xs, Eq. (40) can be written as

1

∆t

∂Ã
∂xs,l

=
∂

∂xs,l

[
L̃i (l − 1, l) + L̃i (l, l + 1) + L̃p (l, l − 1) + L̃p (l, l + 1)

]
= 0 , (49)

where

− 1

ms

∂

∂xs,l

[
L̃p (l − 1, l) + L̃p (l, l + 1)

]
=

1

∆t2
(xs,l−1 − 2xs,l + xs,l+1) (50)

can be regarded as the discrete acceleration of the s-th marker at the l-th time-step. The

Lagrangian of interaction is expressed explicitly as

L̃i (l, l + 1) =∫∫∫
Ω

∑
i,j,k,s

qsS(xs,l − x, a)
(
Ai,j,k,lWi,j,k (x) · ẋs,l+1/2 − ϕi,j,k,lWi,j,k (x)

)
d3x . (51)

Because Eq. (49) dose not depend on Ai,j,k,l+1 and ϕi,j,k,l+1 according to Eqs. (50) and

(51), xs,l+1 can be explicitly expressed in terms of quantities before the (l+1)-th time-step,

such as Ai,j,k,l−1, Ai,j,k,l, ϕi,j,k,l−1, ϕi,j,k,l, xs,l−1, and xs,l. This provides an explicit particle

pusher. Thus, the variational multi-symplectic PIC algorithm with smoothing function for

the Vlasov-Maxwell system have been constructed.

In principle, the choice of electromagnetic gauge does not change the physics. However,

different gauges do result in different computational complexity. We can choose the temporal

gauge, ϕ = 0, to simplify the symplectic algorithm. In this gauge

E = −Ȧ , (52)

B = ∇×A , (53)

and only electric current density and potential vector on grids are needed.

The symplectic PIC iteration is depicted in Fig. 1. We start from the quantities in the

first box in the upper left corner. The position of the s-th marker xs,l+2 can be updated

according to Eq. (49),

xs′,l+2 = 2xs′,l+1 − xs′,l +
∆t2

ms′

∂

∂xs′,l+1

[
L̃i (l, l + 1) + L̃i (l + 1, l + 2)

]
, (54)
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xs,l,xs,l+1,xs,l+2

Ai,j,k,l,Ai,j,k,l+1,Ji,j,k,l+1,Ai,j,k,l+2

Maxwell equations

Solve the discrete

Calculate
discrete
current

Lorentz force equations

Solve the discrete

Set l = l + 1
Set t = t+∆t

xs,l,xs,l+1,xs,l+2

Ai,j,k,l,Ai,j,k,l+1,Ji,j,k,l+1

xs,l,xs,l+1,xs,l+2

Ai,j,k,l,Ai,j,k,l+1

xs,l,xs,l+1

Ai,j,k,l,Ai,j,k,l+1

FIG. 1. A complete PIC iteration for the variational multi-symplectic algorithm with smoothing

functions. The temporal gauge is adopted.

where

L̃i (l, l + 1) =

∫∫∫
Ω

∑
i,j,k,s

qsS(xs,l − x, a)

(
Wi,j,k (x)Ai,j,k,l ·

xs,l+1 − xs,l

∆t

)
dx .

Even though in Eq. (54) L̃i(l+ 1, l+ 2) depends on xs,l+2 for all s, after the derivative with

respect to xs′,l+1, only the terms containing xs′,l+1 are left. The result is

∂

∂xs′,l+1

L̃i(l + 1,l + 2) =
∂

∂xs′,l+1

∫∫∫
Ω

dx∑
i,j,k

q′sS(xs′,l+1 − x, a)

(
Wi,j,k (x)Ai,j,k,l+1 ·

xs′,l+2 − xs′,l+1

∆t

)
. (55)

Equation (54) gives three linear equations for the three components of xs′,l+2. Thus, xs′,l+2

can be solved for analytically to give an explicit relation between quantities at the l-th and

(l + 1)-th time-steps. Though this is a tedious task, symbolic algebra tools, such as the

MAXIMA, can be used to carry out the algebraic calculation easily.

The current density Ji,j,k,l+1 can be calculated from the quantities in the second upper

right box in Fig. 1 using Eq. (45),

Ji,j,k,l+1 =
∑
s

∫∫∫
qsS(x− xs,l+1, a)Wi,j,k(x)

xs,l+2 − xs,l+1

∆t
dx . (56)
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Similarly, the potential vector Ai,j,k,l+2 can be solved for the quantities in the third lower

right box using Eq. (47),

∂

∂Ai,j,k,l+1

(
L̃f (l, l + 1) + L̃f (l + 1, l + 2)

)
+ Ji,j,k,l+1 = 0 , (57)

where

L̃f (l, l + 1) =
ϵ0
2

∫∫∫
Ω

d3x

(∑
i,j,k

Ȧi,j,k,l+1/2Wi,j,k (x) +
∑
i,j,k

ϕi,j,k,l+1/2∇Wi,j,k (x)

)2

− 1

2µ0

∫∫∫
Ω

d3x

(∑
i,j,k

∇×Ai,j,k,l+1/2Wi,j,k (x)

)2

.

In Eq. (57), L̃f (l, l + 1) and L̃f (l + 1, l + 2) are both quadratic forms of Ai,j,k,l, Ai,j,k,l+1

and Ai,j,k,l+2. Equation (57) is actually a matrix equation for Ai,j,k,l+2 which contains

3 × Nx × Ny × Nz linear equations. Because Wi,j,k(x) is locally non-zero adjacent to xi,j,k,

Eq. (57) is a sparse matrix equation and can be solved using biconjugate gradient method.

These procedures constitute one iteration step, which advances all the quantities to the next

time-step.

The initial conditions for potentials Ai,j,k,0 and Ai,j,k,1 can be obtained according to

the initial electromagnetic field and Eqs. (52) and (53). Moreover, xs,0 and xs,1 can be

determined from the initial distribution of particles. In Sec. III, we will apply the variational

multi-symplectic PIC algorithm constructed in this section. The advantage of combining

symplectic algorithm with smoothing functions will be numerically verified.

III. NUMERICAL EXAMPLES

To verify the correctness and effectiveness of our variational symplectic algorithm with

smoothing function, we have carried out numerical studies for typical problems in plasma

physics. In these cases, we choose the interpolation function for fields W (x) to be

W (x) =

 (1− |x|/h)(1− |y|/h)(1− |z|/h) , |x|, |y|, |z| < h ,

0 , otherwise .
(58)

The smoothing function in 3D configuration space can be factorized into three 1D smoothing

functions as

S(x; a) = S1(x; a)S1(y; a)S1(z; a) , (59)
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FIG. 2. 1D smoothing function S1(x, 1) (a) and and 2D smoothing function S1(x, 1)S1(y, 1) (b).

where the smoothing function in 1D configuration space is

S1(x; a) = α1

 (1− x2/a2)
3
(1 + x2/a2) , |x| ≤ a ,

0 , |x| > a .
(60)

The normalization coefficient of the 1D smoothing function is

α1 =
63

64

1

a
. (61)

The smoothing function is bell-shaped, which is different from Lucy’s choice [20] in Eq. (16).

The corresponding 1D and 2D smoothing functions are visualized in Fig. 2.

Firstly, we consider electromagnetic fluctuation in an unmagnetized plasma in equilibri-

um. When there is no external perturbation, the physical electromagnetic fluctuation should

be very small over spatial scales much larger than the Debye length. However, the number

of sampling points is much less than that of real particles, and the nonuniformity of coarse

sampling in space results in severe numerical noises. To investigate the reduction of numer-

ical noises by smoothing functions, we compare the bell-shaped smoothing function defined

in Eq. (59) and the δ-function. The simulation is carried out in an 18×18×18 computation

domain with grid size ∆l = 2.4× 10−5m in 3D configuration space. Electrons are uniformly

distributed in the configuration space and is Maxwellian in the velocity space. Ions offer

a static, uniform, and positively charged background. The plasma parameters are given as

follows. Thermal velocity of electrons is chosen to be 0.06c, number density of electrons is

9 × 1020m−3, and the Debye length of plasma is 7.52 × 10−6m. The time-step is set to be

13
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FIG. 3. Magnetic energy (a) and electric energy (b) of noise field in simulations with different

smoothing functions. The simulation results with bell-shaped smoothing function are plotted

in blue curves, and the simulation results with the δ-function are plotted in green curves. The

reduction of noise by the smoothing function is evident. The characteristic length of shape function

is a = 0.5∆l and there are 100 markers per cell in both cases.
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FIG. 4. Standard deviation in spatial distribution of the magnetic field (a) and the electric field

(b) of the noise field in simulations with different smoothing functions. The simulation results

with bell-shaped smoothing function are plotted in blue curves, and the simulation results with

the δ-function are plotted in green curves. The simulation parameters are the same as in Fig. 3.

∆t = 4 × 10−14s ≈ 0.068/ωpe. Meanwhile, the following periodic boundary conditions are

14



adopted,

ANx+1,j,k = A1,j,k ,

ϕNx+1,j,k = ϕ1,j,k ,

Ai,Ny+1,k = Ai,1,k ,

ϕi,Ny+1,k = ϕi,1,k ,

Ai,j,Nz+1 = Ai,j,1 ,

ϕi,j,Nz+1 = ϕi,j,1 .

Simulation results depict the growth of numerical noises of electromagnetic fields from null

initial values in Fig. 3 and 4. Figure 3 shows the total magnetic energy and the total

electric energy of the fluctuation field. Plotted in Fig. 4 is the spatial standard deviation

of the magnetic field and the electric field. The numerical noise is evidently reduced and

rapidly saturated at a low level with the application of the bell-shaped smoothing function,

in contrast to the δ-function case, where the noise level keeps growing. In this comparison,

we have chosen the smoothing function parameter to be a = 0.5∆l. If we choose a larger

a, the reduction of noise level will be more prominent at the expense of more computation

time.

In the next example, we simulate a harmonic standing wave in the above computation

domain to test the convergency and effectiveness of the algorithm. The grid size ∆l is reset

to 4.4 × 10−5m. A harmonic standing wave is initialized in the unmagnetized plasma with

periodic boundary conditions. After the evolution of 1.2×104 time-steps, it can be observed

that important differences appear between the simulations with different smoothing func-

tions, see Fig. 5. The standing wave structure is well maintained in the simulation with

bell-shaped smoothing function. But for the simulation using the δ-function as the smooth-

ing function, numerical noise is so large that it almost outgrows the physical perturbation.

Finally, we investigate the electromagnetic fluctuation in a magnetized plasma to verify

the long-term conservation properties of this algorithm. As a symplectic algorithm, this PIC

method has good long-term conservation properties. The numerical error of all conserved

quantities should be bounded by a small value and not increase with time. The background

magnetic field is selected to be B0 = 1T . The time-step is ∆t = T/8.1, where T is the

gyro-period of electrons. At t = 0, an arbitrary perturbation which does vary along the
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FIG. 5. After evolution of 1.2×104 time-steps, the simulation results of a harmonic standing wave

in an unmagnetized plasma are different with the application of different smoothing functions.

The standing wave structure is well-maintained in the simulation with the bell-shaped smoothing

function (b) and is dominated by the noise with the δ-function (a). The characteristic length of

the bell-shaped smoothing function is chosen to be a = 0.5∆l.
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FIG. 6. The evolution of total energies of a magnetized plasma simulated with different algorithms.

The blue curve is the result using the non-symplectic method, while the green curve is the result

using the variational multi-symplectic algorithm. It’s obvious that the symplectic algorithm bounds

the long-term energy error.
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FIG. 7. The space-time spectrum of high frequency waves in magnetized plasmas simulated by

the variational multi-symplectic PIC algorithm with smoothing function. The numerial dispersion

relations (the blue contours) agree with analytical results (the red curves).

magnetic field is launched. The system is then evolved using this symplectic algorithm. A

non-symplectic algorithm, which uses the forth-order Runge-Kutta method (RK4) to push

particles and a finite difference method to solve for fields, is also applied for comparison. The

total energy of the plasma is recorded at every time-step, see Fig. 6. The total energy of the

system decays for the non-symplectic algorithm, while it is bounded within a small value

∆EM for the symplectic algorithm. The maximum energy error ∆EM of the symplectic

integrator is approximately proportional to the size of time-step ∆t in this case because

the particle pusher used here is a first-order algorithm. The space-time spectrum of the

electromagnetic fluctuation simulated using the symplectic algorithm is plotted in Fig. 7.

The dispersion curves of X waves in low wave-number region and that of electron Bernstein

waves in high wave-number region agree with the analytical results very well.

IV. SUMMARY AND DISCUSSION

In this paper, we have introduced a method to construct a variational multi-symplectic

algorithm with smoothing function for Vlasov-Maxwell equations. This algorithm can ef-

fectively reduce the numerical noises caused by coarse sampling of particles in full-f PIC
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simulations. At the same time, it also has the good conservation properties and long-term

numerical stability associated with symplectic algorithms. Simulation results with different

smoothing functions were carried out for comparison. The reduction of numerical noise by

smoothing function and good conservation properties were verified by numerical examples.

The variational multi-symplectic PIC algorithm can be extended to more general cases. For

example, the electromagnetic field can be discretized on other types of meshes, such as

tetrahedron mesh. When discretizing the Lagrangian density, we can use a method different

from the mid-point method to construct an explicit solver for electromagnetic fields. Oth-

er techniques, such as the δf method, can also be used to reduce numerical noises in PIC

simulation. Although the δf method is widely adopted in non-symplectic algorithms, the

construction of a symplectic δf PIC method is still an open question. This topic will be

investigated in our future study.
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