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Abstract

The Vlasov-Poisson system can be viewed as the collisionless limit of the corresponding Fokker-

Planck-Poisson system. It is reasonable to expect that the result of Landau damping can also be

obtained from the Fokker-Planck-Poisson system when the collision frequency ν approaches zero.

However, we show that the colllisionless Vlasov-Poisson system is a singular limit of the collisional

Fokker-Planck-Poisson system, and Landau’s result can be recovered only as the ν approaching

zero from the positive side.
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Landau damping is the most fundamental result in plasma physics [1]. In 1946, Lan-

dau found that a wave can suffer a damping even in a collisionless plasma when he studied

electron oscillations as an initial problem with the linearized Vlasov equation [2]. In his

seminal paper, Landau did not give a physical explanation to his result. It seems that Lan-

dau damping is just a mathematical result. Since then, Landau damping stimulates many

discussions. Now, it is recognized that the Landau damping is due to the wave-particle

interactions: waves transfer their energy to the charged particles and thus suffer damping

even without any irreversible processes. It is well known that the Vlasov-Poisson system

describes the kinetic processes in high-temperature tenuous plasmas in which collisions be-

tween charged particles can be neglected. On the other hand, the Vlasov-Poisson system

can be viewed as the collisionless limit of the corresponding Fokker-Planck-Poisson system.

From this point of view, it is reasonable to expect that Landau’s result can also be obtained

from the Fokker-Planck-Poisson system when the collision frequency approaches zero.

The linear response of a plasma can be properly described by its permittivity ε. In the

case of an isotropic plasma, the mean energy Q of a monochromatic electric field dissipated

per unit time and volume is given by [3]

Q =
ω Im ε

8π
|E|2. (1)

Landau damping means that the permittivity of a collisionless plasma has a positive imagi-

nary part when the frequency is positive,

Im εLandau(ω, k) > 0 when ω > 0. (2)

With inclusion of collisions, the plasma permittivity should depend on some collision fre-

quency ν, i.e.,

ε = ε(ω, k; ν). (3)

It is reasonable to expect that Landau’s result can be obtained as the collisionless limit of

the collisional case, i.e.,

εLandau(ω, k) = lim
ν→0

ε(ω, k; ν). (4)

From a mathematical point of view, the limit of vanishing ν can be approached from either

side of zero. However, we show in this article that Landau’s result can be reduced only from

ε(ω, k; ν) as ν approaching zero from the positive side. When ν approaches zero from the
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negative side, the permittivity approaches to a different value with a different sign for the

imaginary part. In other words, the colllisionless Vlasov-Poisson system is a singular limit

of the collisional Fokker-Planck-Poisson system.

We start our discussion from the following one-dimensional Fokker-Planck equation [3],

∂f

∂t
+ v

∂f

∂z
− e

m
E
∂f

∂v
= C(f) ≡ ν

∂

∂v

(
vf + v2T

∂f

∂v

)
, (5)

where ν is the collision frequency, vT is the thermal speed, and E is the self-consistent

electric field governed by the Poisson equation,

∂E

∂z
= −4πn0e

(ˆ
f(t, z, v)dv − 1

)
. (6)

The collision term in Eq. (5) conserves the particle number and drives the distribution

function to a Maxwellian when ν > 0,

f0 ∝ e−v
2/2v2T .

Of course, for a high-temperature plasma, a realistic collision term should be the Landau col-

lision integral [4] or the Fokker-Planck equation with the Rosenbluth potentials [5]. However,

the model Fokker-Planck equation of (5) is much simpler for the discussion on collisional

effects. Lenard and Bernstein first studied the influence of collisions on small-amplitude

electron oscillations with Eq. (5) [6]. In recent years, Ng, Bhattachargee and Skiff [7, 8]

and Short and Simon [9] also addressed the collisional effect on the eigenmodes of plasma

oscillation using Eq. (5). In particular, they investigated the limit of ν approaching zero, and

concluded that Landau’s result for the Vlasov-Poisson system can be recovered. However,

the limit of ν → 0 in these studies are implicitly assumed to be from the positive side, i.e.,

ν → +0. As we will show now, if taking the limit from the negative side, i.e., ν → −0, we

will obtain a very different result. We will first present the mathematical derivation, and

then discuss the physical implication of the result.

The linearized Fokker-Planck equation (5) is given by

∂δf

∂t
+ v

∂δf

∂z
− e

m
E
∂f0
∂v

= ν
∂

∂v

(
vδf + v2T

∂δf

∂v

)
. (7)

where δf is the small perturbation from an equilibrium Maxwellian f0. The electric field E

is determined with the Poisson equation,

∂E

∂z
= −4πen0

ˆ
δfdv. (8)
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Equations (7) and (8) can be solved with the Laplace-Fourier transformation [6], and the

plasma permittivity function can be obtained as

ε(ω, k; ν) = 1 +
1

ν2

ˆ 1

0

xs−1(1− x)e(k/ν)
2(1−x)dx. (9)

where

s =
k2

ν2
− iω

ν
.

It would be satisfactory if the limit of ν → 0 were well-defined and Landau’s result could be

recovered at this limit. The integral presentation of the permittivity is valid when Re s > 0.

For any real wave number k, the condition Re s > 0 is

Imω > −k
2

ν
if ν > 0, (10)

or

Imω < −k
2

ν
if ν < 0. (11)

In the collsionless limit of ν → 0, the plasma permittivity of Eq. (9) is well defined in the

whole plane of the complex ω. However, we now show that the permittivity ε(ω, k; ν) is

discontinuous at ν = 0.

First for ν > 0, we change the integral variable as [6]

x = e−νt,

then have

ε(ω, k; ν > 0) = 1 +
1

ν

ˆ ∞
0

e−sνt(1− e−νt) exp
[
(k/ν)2(1− e−νt)

]
dt. (12)

With aid of the series expansion,

1− e−νt = −
∞∑
n=1

(−νt)n

n!

the integrand on the right hand side of Eq. (12) can be written as

1

ν
e−sνt(1− e−νt) exp

[
(k/ν)2(1− e−νt)

]
=

[
t+

∞∑
n=1

νnQn(t)

]
eiωt−k

2t2/2,

where Qn(t) is a finite power series of t. It can be verified that both the sum
∑

n ν
nQn

and the integral
´∞
0
tn exp(iωt − k2t2/2)dt converge uniformly for any finite real k . The
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permittivity in Eq. (12) can be written as

ε(ω, k; ν > 0) = 1 +

ˆ ∞
0

t exp

(
iωt− 1

2
k2t2

)
dt+

∞∑
n=1

νn
ˆ ∞
0

Qn(t) exp

(
iωt− 1

2
k2t2

)
dt

= 1 +
∂

∂(iω)

ˆ ∞
0

exp

(
iωt− 1

2
k2t2

)
dt+O(ν). (13)

It is easy to verify that

ˆ ∞
0

eiωt−k
2t2/2dt = − i√

2k
Z(ω/

√
2k),

where Z(ξ) is the plasma dispersion function [10]. Thus the permittivity as ν approaching

zero from the positive sides is

ε(ω, k; ν → +0) = 1 +
1

k2

[
1 +

ω√
2k
Z

(
ω√
2k

)]
+O(ν), (14)

where use is made of the following fact

Z ′(ξ) = −2(1 + ξZ).

Equation (14) is the well-known Landau result.

Now let’s look at the case of ν < 0. We introduce a new integral variable

x = eνt.

The permittivity (9) can now be written as

ε(ω, k; ν < 0) = 1 +
1

ν

ˆ ∞
0

esνt(eνt − 1) exp
[
(k/ν)2(1− eνt)

]
dt. (15)

In the limit of ν → −0, for any real frequency ω, we obtain

ε(ω, k; ν → −0) = 1 +

ˆ ∞
0

te(−iωt−k
2t2/2)dt = 1 +

1

k2

[
1 +

ω√
2k
Z∗
(

ω√
2k

)]
. (16)

In this case, the imaginary part of the permittivity becomes

Im ε(ω, k; ν → −0) = −
√
π

2

ω

k3
e−ω

2/2k2 ,

which implies that the plasma is emissive instead of absorptive in this case. Equations (14)

and (16) clear show that ε(ω, k; ν → +0) 6= ε(ω, k; ν → −0). Therefore, we conclude that

the collisionless Vlasov-Poisson system is a singular limit of the collisional Fokker-Planck-

Poisson system.
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The fact that a negative collision frequency corresponds to an instability should not

come as a surprise. It is actually very simple to understand. It is easy to verify that the

eignfunctions and eigenvalues of the collision term C(f) in Eq. (5) are given by

Fn(v) = e−v
2/2v2THn(v/vT ),

λn = −nν, (n = 0, 1, 2 · · · )

where Hn(x) is the n−th order Hermite polynomial. With aid of the eigenfunctions and

eigenvalues, the equation
∂f

∂t
= C(f)

can be easily solved,

f =
∞∑
n=0

anFne
−nνt.

where the factors an are determined with the initial condition. When ν > 0, the distribution

function relaxes to a Maxwellian in sufficient time, indicating that the unperturbed distri-

bution f0 itself in Eq. (7) is stable. On the other hand, if ν < 0, the system is unstable:

any small departure from a Maxwellian exponentially grows with time, leading to that the

plasma becomes emissive. This is natural and expected. What is surprising here is that the

limit of ν → 0 is a singular point of the Fokker-Planck-Poisson system. In particular for

a Maxwellian plasma, as ν → +0 the system is stable with a finite damping rate, and as

ν → −0 the system is unstable with a finite growth rate.

This interesting results can also be derived by investigating the eigenvalue problem of

the Fokker-Plank-Poisson system. Let δf = e−iωtδf̂ , where ω is the eigen-frequency. By

expanding the perturbed distribution function with the eigenfunctions of the collision term

C(f), i.e., δf̂ =
∑∞

n=0 anFn, we can recast Eqs. (7) and (8) as an eigenvalue problem [7, 11],

Aa = ωa, (17)

where a is a vector defined as

a = (a0, a1, · · · ),
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and A is an array defined as

A =



0 1 0 0 0 · · ·

1 + k−2 −iν
√

2 0 0 · · ·

0
√

2 −2iν
√

3 0 · · ·

0 0
√

3 −3iν
√

4 · · ·

0 0 0
√

4 −4iν · · ·
...

...
...

...
...

. . .


. (18)

Because of A(−ν) = A∗(ν), it is easy to show that if ωn(ν) is an eigenvalue of A(ν), ω∗n(ν) is

an eigenvalue of A(−ν). Ng et al have demonstrated that when ν → +0 the damping rate

of the least damped eignemode returns to the Landau result [7]. Therefore, when ν → −0,

the mode is unstable, and the growth equals to the corresponding Landau damping rate.

In summary, we have re-studied the permittivity of a collisionless plasma by solving a

linearized model Fokker-Planck-Poisson system and taking the collisionless limit of ν → 0.

Using two different approaches, we have shown that the ν → 0 limit of collisional permittivity

is singular. While the ν → +0 corresponds to the classical Landau damping, the ν → −0

limit corresponds to a different permittivity with a different sign of the imaginary part.

For example, for a Maxwellian plasma, the limit of ν → +0 corresponds to the classical

Landau damping with a non-vanishing damping rate, and the limit of ν → −0 corresponds

to a unstable case with a non-vanishing growth-rate. This conclusion is consistent with

previous results on collisional eigenmodes obtained by Ng et al. [7, 8]. The existence of such

a singularity begs the question of whether the Vlasov-Poisson system, as a collisionless limit

of the Fokker-Planck-Poisson system, is a physically well-posed model. Given the Vlasov-

Poisson system without knowing whether it is the limit of ν → +0 or limit of ν → −0

of the Fokker-Planck-Poisson system, it is difficult to determine if an perturbation will

be dumped or unstable. Of course, one may argue that the collision frequency is always

positive and it is meaningless to discuss the limit of ν → −0 . However, we emphasize that

negative collision frequency can never be ruled out. One can image, at least theoretically,

that an externally applied effect can have the tendency to move the system away from

the thermal equilibrium. For example, the effect of an appropriately designed RF system

can be approximated by a collision operator with a negative collision frequency [12]. With

these physical considerations in mind, it seems that we do have a singularity at hand. It
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is therefore interesting and necessary to investigate how this apparent singularity can be

resolved both mathematically and physically.
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11175179 and 11075162), ITER-China Program (2010GB107001), and Ministry of Education

(Grand No. IRT1190).

[1] D. D. Ryutov, Plasma Phys. Control. Fusion 41, A1 (1999). According to this article, ap-

proximately every third paper on plasma physics contains a direct reference to the Landau

damping.

[2] L. Landau, J. Phys. (Moscow) 10, 25 (1946).

[3] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, 1981).

[4] L. D. Landau, Soviet Physics JETP 7, 203 (1937).

[5] M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev. 107, 1 (1957).

[6] A. Lenard and I. B. Bernstein, Phys. Rev. 112, 1456 (1958).

[7] C. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett. 83, 1974 (1999).

[8] C. S. Ng, A. Bhattacharjee, and F. Skiff, Phys. Rev. Lett. 92, 065002 (2004).

[9] R. W. Short and A. Simon, Phys. Plasmas 9 3245 (2002)

[10] B. D. Fried and S. D. Conte, The Plasma Dispersion Function (Academic Press, London,

1961).

[11] J. Zheng and C. X. Yu, Plasma Phys. Control. Fusion 42, 435 (2000).

[12] N. Fisch, Rev. Mod. Phys. 59, 175 (1987)

8



 
 
 
 



The Princeton Plasma Physics Laboratory is operated 
by Princeton University under contract 
with the U.S. Department of Energy. 

 
Information Services  

Princeton Plasma Physics Laboratory 
P.O. Box 451 

Princeton, NJ 08543 
 
 
 
 

Phone: 609-243-2245 
Fax: 609-243-2751 

e-mail: pppl_info@pppl.gov 
Internet Address: http://www.pppl.gov 


	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4871
	Title: On the Singularity of the Vlasov-Poisson System
	Date: April, 2013
	authors: Jian Zheng and Hong Qin


