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Results from a free-surface MHD flow experiment are presented detailing the modifica-
tion of vortices in the wake of a circular cylinder with its axis parallel to the applied
magnetic field. Experiments were performed with a Reynolds number near Re ∼ 104 as
the interaction parameter, N = |j × B|/|ρ (v · ∇)v|, was increased through unity. By
concurrently sampling the downstream fluid velocity at sixteen cross-stream locations
in the wake, it was possible to extract an ensemble of azimuthal velocity profiles as a
function of radius for vortices shed by the cylinder at varying strengths of magnetic field.
Results indicate a significant change in vortex radius and rotation as N is increased.
The lack of deviations from the vortex velocity profile at high magnetic fields suggests
the absence of small-scale turbulent features. By sampling the wake at three locations
downstream in subsequent experiments, the decay of the vortices was examined and the
effective viscosity was found to decrease as N−0.49±0.04. This reduction in effective viscos-
ity is due to the modification of the small-scale eddies by the magnetic field. The slope of
the energy spectrum was observed to change from a k−1.8 power-law at low N to a k−3.5

power-law for N > 1. Together, these results suggest the flow smoothly transitioned to
a quasi-two-dimensional state in the range 0 < N < 1.

1. Introduction

Studying the flow past a cylinder is a classical experiment used to investigate the
transition to turbulence. However, in electrically conducting fluids turbulent structures
can change dramatically in the presence of a magnetic field due to their ability to support
internal currents. Experiments described in this paper investigate the transition that
occurs in the wake of an obstruction as an applied magnetic field is increased while
holding the fluid velocity constant.

The experiments presented in this paper considered flows with a Reynolds number
Re = v∞L/ν > 9000 where v∞ is the free-stream fluid velocity, L is the cylinder di-
ameter and ν is the kinematic viscosity. This value of Re falls into what is commonly
referred to as the shear-layer transition regime for hydrodynamic flows (Williamson 1996,
pp. 489,520-524). In this regime, the wake retains many of the features present in a Von
Kármán street, which evolves at lower Reynolds numbers (Re = 50 − 200) before the
transition to turbulence. However, in the shear-layer transition regime the discrete al-
ternating vortices of the Von Kármán street become localized regions of vorticity, with
small-scale three-dimensional turbulent features superimposed on larger vortex structures
with a size on the order of the obstruction diameter (Wei & Smith 1986; Williamson et al.
1995). Excellent visualizations of both laminar and turbulent Von Kármán streets are
included by Van Dyke (1982, p. 31,56–57). As a matter of convention, the larger regions
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Reynolds number Re ≡ |ρ (v · ∇)v|
|µ∇2v| Ratio of inertial to viscous terms

=
v∞L

ν

Interaction parameter N ≡ |j ×B|
|ρ (v · ∇)v| Ratio of electromagnetic to inertial terms

=
σLB2

0

ρv0

Hartmann number Ha2 ≡ |j ×B|
|µ∇2v| Ratio of electromagnetic to viscous terms

= h2B2
0

(
σ

µ

)
Table 1. Dimensionless parameters.

of circulation will be referred to as ‘vortices’ in this paper, which may in turn contain
smaller-scale ‘eddies’ due to the turbulent nature of the flow.

While small-scale, three-dimensional eddies are expected for a hydrodynamic flow in
this turbulent regime, the addition of a magnetic field imposes a constraint on the fluid
motion through Ohmic dissipation. In particular, eddies with vorticity misaligned with
the applied magnetic field, B, experience a torque exerted by the field while eddies
initially aligned with B elongate along the magnetic field lines (Davidson 1997, 2001,
pp. 122-132). By restricting fluid motion, the field causes the flow to become quasi-two-
dimensional (see Alemany et al. 1979), thereby affecting the energy cascade as proposed
by Kolmogorov and others for hydrodynamic systems (Kolmogorov 1941; Kraichnan
1967; Frisch 1995). The transition from three- to two-dimensional behavior of the flow was
observed to be a smooth function of the strength of the applied field in the experiments
described herein.

Ever since the work of Strouhal (1878), the flow separation of the fluid as it moves
past an object has been studied extensively over a wide range of both geometries and
Reynolds numbers in the laboratory (see Williamson 1996). Most work has focused on
hydrodynamic behavior, although some work was done on the effect of an applied mag-
netic field on an electrically conductive fluid. Several experimental groups investigating
MHD flows made point measurements in the wake behind a cylinder in various geome-
tries to study the fluctuation levels in addition to the shedding mechanism and shape
of the wake (Kolesnikov & Tsinober 1972; Papailiou & Lykoudis 1974; Lahjomri et al.
1993; Branover et al. 2004). Experiments were also conducted with a duct-flow experi-
ment using an array of probes at the wall to estimate the vorticity of structures in the
wake of a cylinder (Frank et al. 2001). However, earlier results did not include detailed
measurements of the internal velocity structure of the vortices. The results presented in
this paper complement the previous work by providing a look into the internal velocity
profile of vortices and allowing inferences to be made regarding MHD turbulence.

Kolesnikov, Sommeria and Moreau among others posited that the introduction of the
magnetic field creates a quasi-two-dimensional system through ohmic dissipation as de-
scribed above. Several groups experimentally and/or theoretically investigated this phe-
nomenon by artificially driving turbulent-like states (Kolesnikov & Tsinober 1974; Som-
meria & Moreau 1982; Sommeria 1986; Zikanov & Thess 1998; Alboussière et al. 1999;



MHD flow past a cylinder 3

Thess & Zikanov 2007; Klein et al. 2009). Sreenivasan & Alboussière (2002) in particular
studied the decay of an artificially created vortex subjected to an axial magnetic field
and found that for N � 1, the MHD forces arising from induced currents within the
flow dominate the damping of the vortex and render viscous dissipation almost entirely
negligible. However, Sreenivasan did not report detailed measurements for N 6 1, which
is the regime most closely examined in this work. Many of these previous experiments
observed a change in the spectral slope and/or reported to have seen evidence of the
so-called ‘inverse cascade’.

Several groups have also worked on computational modeling of the wake behind a
bluff body in MHD flow. In particular, Mück et al. (2000, p. 279) performed 3D MHD
simulations that showed the collimation of shed vortices at a moderate Reynolds number
of 250, indicating a clear transition to a two-dimensional state somewhere in the range
0.2 6 N . 1, qualitatively agreeing with experimental observations by Branover et al.
(2004, p. 294) showing the wake undergoing a transition in the range 0.5 < N < 1. Dous-
set & Pothérat (2008) presented results from a finite volume code at high Hartmann
number, and although the shedding frequency qualitatively agrees, the behavior of the
shed vortices varies considerably from the results presented in this paper. Direct quan-
titative comparison of the internal velocity profiles of the vortices with computational
results was not available.

2. Background

The introduction of an external magnetic field requires an additional term in the
Navier-Stokes equations. For closure, Ohm’s law, Faraday’s law, and Ampere’s law must
also be included along with the typical incompressibility condition. That is

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∇2v + j ×B, (2.1)

j/σ = E + v ×B, (2.2)

∇×E = 0, (2.3)

∇×B = µ0j, (2.4)

∇ · v = 0, (2.5)

where ρ is the fluid density, v is the velocity, p is the pressure, µ is the dynamic viscosity,
j is the current density, B is the magnetic field, σ is the conductivity of the fluid, E
is the electric field, and µ0 is the magnetic permeability of the fluid. The effects of the
induced magnetic field are negligible when Rm = µ0σv∞h � 1, where h is the fluid
depth. For experiments presented in this paper, Rm < 10−2. In this ‘inductionless limit’,
electric fields can be expressed as purely electrostatic as seen in 2.3 and a scalar potential
(E = −∇φ) can be introduced. The displacement current has also been neglected in
Ampere’s law, equation 2.4, giving rise to a solenoidal current density (∇ · j = 0).

As the applied magnetic field increases, the electromagnetic contribution to the Navier-
Stokes equations becomes more significant to the dynamics of the flow. The ratio of the
contribution of the electromagnetic term to the inertial term in equation 2.1 is often
referred to as the interaction parameter (also called the Stuart number), N . Similarly,
the ratio of electromagnetic to viscous forces is defined as the square of the Hartmann
number, Ha, as shown in table 1. In this work, the characteristic length, L, is defined as
the cylinder diameter, v0 is defined as the mean fluid velocity in the wake, v∞ is defined as
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the free-stream fluid velocity and B0 is defined as the magnitude of the applied magnetic
field. For Ha and Rm , h is taken to be the fluid depth due to the geometry of the
experiment.

Practically, because the flow velocity is held constant for each set of experiments (to
within 5%), N scales like B2

0 while Ha scales like B0. For N & 0.5 some of the effects
of the magnetic field are experimentally observed to saturate, in agreement with results
from other experiments in various geometries mentioned previously (see Harris 1960;
Lahjomri et al. 1993; Mück et al. 2000; Branover et al. 2004).

In order to quantify changes to the wake of the cylinder as N was increased, the vortex
velocity profiles measured in the wake were fit to a Rankine vortex velocity profile. This
vortex model consists of a core with constant angular velocity surrounded by a free vortex.
As will be shown shortly, the abrupt transition between these two regions gives rise to
viscous dissipation. The velocity profile for a Rankine vortex is given by vr = vz = 0 and

vφ(r) =

{
Γr/(2πR2), r 6 R
Γ/(2πr), r > R,

(2.6)

where Γ =
∮

vφ ds = 2πωR2 is the circulation of a vortex of radius R and angular velocity
ω. For this purely azimuthal flow, the velocity of a stationary vortex will evolve according
to

∂v

∂t
= ν∇2v,

∂vφ
∂t

= ν

(
∂2vφ
∂r2

+
1

r

∂vφ
∂r
− vφ
r2

)
.

(2.7)

Analytically, the viscous damping can be seen easily by noting that each region of the
Rankine vortex in equation 2.6 is a Taylor-Couette solution (v(r) = (c1r+c2/r)φ̂), which
satisfies both ∇2v = 0 and ∇ · v = 0. However, the discontinuous derivative at r = R
of the Rankine profile will result in a non-zero value of the Laplacian at the transition,
resulting in local damping. As the vortex viscously damps, the profile will deviate from
the constituent Taylor-Couette solutions, and will thereby undergo further damping away
from the peak as seen in figure 6(a). Heuristically, the time-scale for this dissipation can
be derived

∂v

∂t
= ν∇2v ∼ 4ν

R2
v,

using the half-width of the radius of the eddy as a typical length scale for velocity
gradients. This relation implies that viscous forces will gradually smooth out the profile
on the timescale of τ ≈ R2/4ν for a laminar vortex (Aboelkassem et al. 2005). However,
eddies within a turbulent vortex will interact more strongly than a laminar sheared flow
and will ultimately smooth the velocity profile faster, decreasing τ and increasing the
effective viscosity, νeff .

Sommeria & Moreau (1982) pointed out that at high Hartmann number, there is an
additional term to account for Hartmann damping that should be included in equation
2.7. Namely,

∂v

∂t
= ν∇2v − 2B

R

(
σν

ρ

)1/2

v. (2.8)

The effect of this additional term was observed in some results and will be addressed in
more detail in section 4.3. As a caveat, equation 2.8 was derived for duct flow with two



MHD flow past a cylinder 5

Parameter Symbol Value

Density ρ 6360 kg/m3

Kinematic viscosity ν = µ/ρ 2.98x10−7 m2/s
Conductivity σ 3.1x106 S/m

Table 2. Physical properties of Ga67In20.5Sn12.5 alloy (Morley et al. 2008).

Bv

x̂

ŷ
ẑ

Figure 1. Experimental setup showing vertical field aligned with cylinder axis and the
velocity probe array.

distinct Hartmann layers. Due to the free surface in this experiment, the Hartmann layer
at the surface of the fluid is slightly different, which may affect the direct applicability
of this additional damping term to these experiments.

3. Experimental Setup

The experiments described in this paper were conducted in a acrylic channel 80 cm
in length by 16 cm in width positioned horizontally in a uniform, vertical magnetic field
perpendicular to the free surface of the fluid. A static cylinder 19 mm in diameter was
placed in the flow with its axis aligned with the magnetic field as illustrated in figure
1. The cylinder diameter corresponded to a blockage ratio of about 12% and vortex
interaction with the walls of the channel was minimal. The working fluid was a gallium-
indium-tin eutectic described in table 2 that flowed through the channel with a depth of
about 1 cm at speeds around 15 cm/s.

An array of sixteen potential probes was inserted into the wake of the cylinder from
the free surface to make measurements of the downstream fluid velocity. The potential
probes operate by measuring the local EMF created from the motion of the conductive
fluid through the magnetic field. The measured value of the local potential represents the
average velocity over the distance between the probe tips, also called the probe width.
The spatial resolution of the probes was limited to about 4.5 mm compared to the 19
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mm cylinder diameter. Structures within the flow smaller than the probe width cannot
be resolved directly.

The operating principle of the potential probes can be derived from Ohm’s law (eq.
2.2). By inserting the probes into the core of the flow, j ≈ 0, yielding −E ≈ v × B.
Using this approximation and replacing E with −∇φ from the electrostatic assumption,
one obtains ∇φ = v×B. Integrating over the distance between probe tips (chosen to lie
in the proper orthogonal direction) the potential is found to be φ(vx) = vx dBz where

vx = 1
d

∫ d
0

vx(y) dy. Others (see Sommeria 1986; Kljukin & Thess 1998; Sreenivasan &
Alboussière 2002) have discussed the error arising from internal currents on the measured
potential. Experimentally, the probe signals were found to be indicative of the fluid ve-
locity for values of Ha > 5. The spatial averaging effect due to the finite probe width was
taken into account when fitting the velocity profiles, although this artifact was negligible
in most cases.

In theory, the probe separation could be reduced in order to increase the spatial resolu-
tion; however, this is technically difficult for two reasons. First, the measured potentials
are linear in probe width. By reducing the probe width, the signal is reduced by the
same factor, resulting in a higher signal-to-noise ratio and reducing the quality of the
measurements. Secondly, each of the probe tips has a finite thickness required for both
structural integrity and in order to ensure good electrical contact with the fluid. By de-
creasing the probe separation, more probes would need to be inserted into the flow to
characterize the wake. The additional probes would be more likely to disrupt the bulk
flow and compromise the measurements.

Sequential experiments were conducted with the cylinder located roughly three, five
and fourteen diameters upstream from the potential probe array. For each cylinder loca-
tion, the magnetic field was scanned from a value of 150 gauss to 2500 gauss, correspond-
ing to a range of 0.01 6 N 6 8 based on cylinder diameter and free-stream velocity or
5 6 Ha 6 100 as calculated based on the fluid depth. Time series from each of the probes
after amplification were recorded and the data logged via PC. For each set of experiments
at a fixed cylinder location, the volumetric flow rate was held constant as the magnetic
field was scanned. However, a 25% variation in the flow rate between experimental sets at
different cylinder positions was observed during the analysis. This variation in free-stream
velocity was due to the lack of a reliable global flow rate measurement at the time, but
was deemed inconsequential in regard to the fluctuations because the flow is well within
the shear-layer transition regime. The variation in flow rate is only directly relevant to
certain quantities identified in the following section. For a given cylinder position, the
fluid velocity varied no more than 5% as the magnetic field was scanned.

4. Results

The calibrated potential probes indicated flow velocities of 10.6, 13.5 and 11.6 cm/s
in the wake of the cylinder and free-stream velocities of 14.0, 17.8 and 13.9 cm/s for
experiments at three, five and fourteen diameters respectively. However, this variation
in the free-stream velocity and the systematic uncertainty in the absolute calibration of
the probe array does not affect the fluctuation amplitude nor the spectra of the probe
signals. Only the rotation rate, circulation and N are affected by the absolute calibration
of the probes. Where applicable, the uncertainties in calculated quantities have been
propagated throughout the analysis.
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(a)

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

(c)

−75 −50 −25 0 25 50 75
ξ

Figure 2. Contours of velocity fluctuations in the wake approximately three diameters behind
cylinder as a function of cross-channel position and time at (a) N = 0.01, (b) N = 0.66 and (c)
N = 1.85.

4.1. Identifying Vortices

In order to eliminate slight variations in absolute calibration from one probe to another
and to remove the background flow, the potential probes were self-normalized to pro-
vide the most self-consistent picture of the downstream velocity fluctuations across the
channel. The background flow is approximated as the time-average, 〈vx(y)〉, and the
fluctuation amplitude was defined as

ξ(y, t) =
vx(y, t)− 〈vx(y)〉

〈vx(y)〉
· 100.

By plotting ξ as a function of cross-stream position and time, the wake of the cylinder can
be visualized as seen in figure 2. Over the entire range of interaction parameter values,
a clear Von Kármán street was observed. Each pair of lobes represents a vortex passing
the fixed probe array in time.

Since the velocity probes only measure the stream-wise component of the velocity,
ξ(y, t) will only represent the azimuthal velocity of a vortex when the center of the
vortex is aligned with the probe array as it is convected downstream. Additionally, the
center of the vortex in the cross-stream direction must also be located in order to define
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Figure 3. Radial velocity profile of vortices at (a) low and (b) moderate and (c) high
interaction parameter, three diameters into wake. Profiles correspond to contours in Figure 2

r = 0. Therefore, each vortex must be found in two dimensions: x (down-stream) and y
(cross-stream).

In order to locate the center of the vortex in the x direction, local maxima in time of
the RMS = (

∫
|ξ(y, t)|2 dy)1/2 of the measured velocity profile were found. This point in

time coincides with the point when the vortex is centered underneath the probes and ξ
exactly matches the azimuthal component of the vortex velocity. The maxima in time are
indicated in figure 2 by vertical lines. Once the vortex probe-crossing time was found,
the zero-crossing point of the ξ-profile was identified with a linear interpolation. This
point indicated the location of the vortex in the y direction and is shown in figure 2
by horizontal dashes. The coordinates of the velocity profile were then shifted such that
r = 0 corresponds to the point where v = 0 using a linear interpolation. If any vortices
did not meet the criteria for selection, that is if the local maximum of the RMS was
ambiguous or the center of the vortex fell near the edge of the probe array, the vortex
was neglected and excluded from the aggregate profile.

The key advance to the approach outlined above is using the random location of
the shed vortices (in the cross-stream direction) to produce a statistical collection of
indicative profiles, effectively providing a high spatial resolution measurement of the
vortex velocity profile. That is, as the streamlines reconnect and each vortex separates
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Figure 4. Total circulation and chi-squared of measured profile from the average profile
versus interaction parameter five diameters into wake.

from the cylinder, the center of the shed vortex is slightly displaced a distance δ from
the centerline of the channel. Moreover, at high Reynolds number as the vortices are
convected downstream and the wake spreads, δ fluctuates relative to the probe positions.
Therefore, as the shed vortex flows past the fixed array of velocity probes, the probe
array is able to sample the internal velocity profile of each vortex at a slightly different
location. The result can be seen in figure 3, which shows the conglomerate velocity profiles
corresponding to the vertical lines seen in figure 2.

4.2. Vortex Characteristics

By implementing the technique described in section 4.1, an ensemble of velocity profiles
was collected. The average of the ensemble was assumed to be representative of the
average vortex for a given field strength and can be seen in figure 3.

For clarity, the velocity profile shown in figure 3 is the upstream component of vortices
with positive vorticity, even though the entire vortex profile was sampled and used in the
analysis. The complete velocity profile was approximately symmetric about the center of
the vortex. However, it was observed that the downstream component of the vortex (the
side of the vortex supplementing the fluid velocity) had a slightly different velocity profile
than the upstream component. This effect will not be discussed in the current paper. The
profiles corresponding to vortices of positive and negative vorticity showed no discernible
difference for a given vortex street (other than their sign) and were therefore combined
when discussing trends in radius, rotation and circulation.

The measured azimuthal velocity profile at low fields varies considerably as seen in
figure 3(a) and (b), likely due to the presence of small-scale turbulent eddies and the
effect of averaging over fine structures by the probes. However, by identifying at least 150
vortices of both positive and negative vorticity, a reasonable average can be calculated.
At higher field strengths, it was observed that vortices become much more consistent
and coherent, resulting in a very clear radial velocity profile with very little deviation as
shown in figure 3(c).

The presence of small-scale turbulent eddies was investigated by examining the spread
of the ensemble relative to the average velocity profile of the vortex. At low fields, the
individual radial velocity profiles have significant deviations from the averaged profile,
indicative of irregular, turbulent fluctuations on top of the global rotation. One metric
for the coherency of the vortex and by extension the absence of eddies is the variance
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Figure 5. Trends of (a) radius, (b) rotation and (c) circulation of vortices versus interaction
parameter at three and fourteen diameters into the wake.

or χ2 of the ensemble over the smoothed profile. Once the flow has become quasi-two-
dimensional, the fluctuations on top of the global rotation are dramatically reduced as
seen in figure 4.

Figure 4 also shows the measured circulation as a function of interaction parameter.
Excepting low N , the circulation of the vortices tends to remain constant until Hart-
mann damping alters the fluid motion at high N , to be discussed below. At low N , the
measurement of the circulation is unreliable because of the limited spatial resolution of
the velocimetry diagnostic explained as follows. The (hydrodynamic) Kolmogorov length
scale for these flows is

η =
L

Re3/4
≈ 25 µm.

Hence, many eddies much smaller than the spatial resolution of the potential probes will
exist at low N as a consequence of the turbulent cascade. Recall that the circulation
is essentially a metric for the total angular momentum of the vortex. Because of the
limitation in spatial resolution of the diagnostic, there is no contribution to the measured
angular momentum by eddies smaller than the probe width, resulting in a measured
circulation artificially depressed at N < 0.5. Figure 4 shows that above N ∼ 0.5, both the
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Figure 6. Viscous vortex damping seen in (a) simulation of Rankine profile, τ = R2/4ν and (b)
radial velocity profiles at N = 0.4 (0.7 kG) at three positions downstream in the wake. Dashed
lines represent the best fitting profiles from the simulations.

circulation and the calculated variance from the profiles plateau, indicating the absence
of eddies smaller than the probe separation distance and signaling the transition to a
quasi-2D state.

It was observed that at low magnetic fields, the rotation rate of the vortices increases
linearly with the field, while the radius of the core decreases to about 7.5 mm. This can be
observed in figures 5(a) and (b). As N increases above 2, Hartmann braking introduced
in equation 2.8 begins to play a factor in damping the rotation of the vortices, explaining
the roll-off of the rotation rate at the higher field strengths. This can be seen in figures
5(b) and (c) which shows the rotation rate and the the global angular momentum reduced
via a torque exerted by the magnetic field.

4.3. Vortex Decay

For a fixed flow velocity and location in the wake, the measured profiles were observed to
be far less damped for N ∼ 1 than for N < 1. This is clearly illustrated in figures 3(a) and
(c), where the vortex three diameters into the wake is much less damped at the higher
magnetic field from the lack of turbulent dissipation. As mentioned previously, the change
in damping is a result of the magnetic field restricting turbulent structures in the flow,
thereby reducing the effective viscosity and subsequent damping of the velocity profile.
Once the vortex profiles were collected at three positions in the wake of the cylinder, it
was possible to artificially examine the spatiotemporal decay of the vortices as a function
of the applied magnetic field. By looking only at normalized profiles, the results from
each of the three cylinder locations can be compared over the range 0.01 < N < 2.

The calibrated fluid velocity was used to infer the time from inception of the vortices
until they passed the probe array. This approach made it possible to examine the evolu-
tion of the velocity profile for a each field strength as seen in figure 6(b). These sequential
profiles were then used to calculate the effective viscosity. First, a relaxed Rankine profile
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Figure 7. Effective viscosity as a function of interaction parameter.

was fit to the experimental profile at three diameters into the wake. The experimental
profile was iteratively compared to simulated profiles evolving according to equation 2.7
with varying radii as a function of time as seen in figure 6(a). After identifying the
best-fitting profile (in both radius and time) for the experimental measurements made
three diameters into the wake, the experimental profiles from five and fourteen diameters
downstream were then fit in a similar manner to the temporal decay of the same seed
vortex of fixed radius and amplitude. From the ratio of the experimental time extracted
from the location of the cylinder relative to the probes and fluid velocity of the wake to
the simulated time corresponding to the best fit, the effective viscosity was calculated
for the remaining two locations. Figure 7 shows the effective viscosity decreasing with
N−0.49±0.04 over a range corresponding to 0.1 6 N 6 1.7, before Hartmann damping of
the vortices became prevalent.

Despite its presence at N > 2, the electromagnetic damping term in equation 2.8 was
neglected when comparing the decay of the experimental profiles for two reasons. First of
all, the contribution from this term was experimentally observed to be small at N 6 2 as
seen in figure 4 which shows no appreciable decrease in the circulation over the range of
interest. Secondly and perhaps more importantly, this linear damping term accounting
for Hartmann braking merely scales the amplitude of the entire velocity profile and does
not alter its shape. Only viscous damping broadens the velocity profile and accounts for
the outward shift in the peak velocity observed in figure 6. Figure 6(b) shows that the
experimental data undergoes a very clear outward shift in the maximum velocity as the
amplitude decays. Adding a linear damping term to account for Hartmann braking would
result in an unaccountable decrease in amplitude, resulting in poorly fitting profiles. For
these reasons, only turbulent viscous damping described in equation 2.7 was considered
when examining the decay of the vortices for an interaction parameter near unity.

The scaling of the effective viscosity agrees with the ‘Joule cone’ theoretical predictions
by Sommeria & Moreau (1982, p. 514), which suggest that the permissible region of phase-
space in the k⊥ − k|| plane scales as N−1/2 for N � 1, where k|| represents a variation
in the direction of B. Essentially, as N is increased, variations along B are restricted
by the magnetic field, causing the flow to become more quasi-two-dimensional. Although
this theory was derived for N � 1, these results may suggest that the scaling persists at
moderate N as well. This constraint on k|| and reduction in three-dimensionality could
perhaps explain the absence of small-scale structures as a consequence of the inverse
cascade in two-dimensional flow.
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Figure 8. Power spectra of probe signal from three diameters into the wake at two values
of N . Dotted lines indicate fit used to extract the power-law scaling. The vertical dashed line
represents the spatial resolution limit of the probes.

4.4. Signs of two-dimensionalization

Conceptually, the two-dimensionalization of the flow could be characterized by a number
of observables. The experiments in this paper exploit two particular features. First, by
measuring velocity fluctuations in the fluid, the energy spectra can be approximated. For
conventional hydrodynamic turbulence, this spectra is expected to follow a k−5/3 power
law, often called the Kolmogorov scaling of the energy cascade. Similar principles used
to derive the five-thirds scaling can be applied to two-dimensional turbulence, giving
rise to a k−3 scaling (neglecting logarithmic corrections). While subtle, this change in
spectral slope can be observed by looking at the power spectral density of the velocity
fluctuations. In this paper, Taylor’s hypothesis is employed to relate ω and k in order
to obtain the energy spectra as a function of wavenumber from time series of velocity
fluctuations.

As can be seen in figure 8, the energy spectrum of the flow was observed to transition
from a Kolmogorov-like hydrodynamic state with a near k−5/3 power law to a k−3.5 power
law as N was increased. The vertical dashed line represents the spatial limitation of the
probes. It can also be pointed out that the Strouhal number, a non-dimensional frequency
defined as St = fD/v∞ where D is the cylinder diameter, f is the shedding frequency
and v∞ is the free-stream fluid velocity, was observed to remain relatively constant as
the field strength was increased. The large peak of both curves near k = 0.1 in figure 8
represents the primary shedding frequency and illustrates the lack of dependence of the
shedding mechanism on the magnetic field for these values of interaction parameter.

Moreover, the smooth transition of the spectral slope between a hydrodynamic power-
law to a two-dimensional power-law was observed to occur over the range 0 < N < 1 as
seen in figure 9, agreeing with other evidence of the transition presented in this paper.
Due to the finite magnetic field required for the operation of the velocity diagnostic, a
pure ‘hydrodynamic’ measurement could not be made for comparison. However, figure 9
clearly indicates a trend towards γ = 5/3 as N → 0.

The second characteristic employed to examine the two-dimensionality of the flow is
the inverse-cascade and the corresponding enstrophy (Ω = 1

2 〈|ω|
2〉) cascade present in

two-dimensional flows. It is shown by others (see Frisch 1995; Kraichnan 1967; Sommeria
1986) that structures at small scales in a two-dimensional system will transfer energy to
the largest scale possible. This implies that small turbulent eddies will coalesce into large,
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Figure 9. Spectral slope of power spectra versus N showing smooth transition from 3D to 2D
turbulence.

coherent vortices, which could explain the trends in the spread of the measured velocity
profiles and in the global angular momentum. Particularly, recall that the measured
circulation increased at low N in figure 4. As explained in section 4.2, the diagnostic
could not resolve the contribution of eddies smaller than the probe width to the global
angular momentum. It can be argued that the majority of these eddies will have the same
sign vorticity as the vortex due to the shedding mechanism as the fluid separates from
the side of the obstruction. Making this assumption, if the eddies were to participate in
an inverse cascade to measurable scales, their angular momentum would be conserved,
resulting in an increase in the measured global angular momentum as observed in the
experiments.

The two-dimensionalization of the flow not only affects the measured circulation, but
also explains the trends observed in the radius and rotation rates of the vortices. It was
observed that the vortices tend to decrease in size as the magnetic field is increased until
the radius of the vortex matches the injection scale, as seen in figure 5(a). The observed
decrease in radius for N < 1 could be a result of the merging of the constituent eddies,
concentrating the circulation at the injection scale. In the hydrodynamic cases, the small-
scale eddies act to rapidly diffuse the vortex’s core of rotation, resulting in a larger region
of circulation. If the eddies were to merge in an inverse cascade at N ∼ 1, not only would
the effective viscosity go down, but the angular momentum of the merging eddies would
be conserved, resulting in the increased rotation rate as seen in figure 5(b).

5. Conclusion

The internal velocity profile of eddies shed from a vertical cylinder was presented as a
function of the applied vertical magnetic field. A novel approach for isolating the radial
velocity profiles of vortices in the wake of a cylinder was developed. From these velocity
profiles, the effects of the magnetic field on turbulent structures within the flow were
inferred.

The radii of vortices were observed to decrease with applied magnetic field, likely due
to a reduction in the effective viscosity as a result of the magnetic field altering small-scale
eddies. Meanwhile, the rotation rate of the vortices for values of interaction parameter
in the range of 0 6 N < 2 was observed to increase so as to conserve total angular
momentum (or global circulation, Γ) within the capabilities of the diagnostic resolution.
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At N > 2, Hartmann braking damped the motion of the vortices, resulting in a reduction
in Γ.

The prevalence of small-scale turbulent features has been shown to decrease signifi-
cantly as N approaches ∼ 0.5. Above this threshold, the magnetic field alters the evolu-
tion of the eddies as evidenced by both the decrease in the χ2 of the measured velocity
profiles and in the significant reduction in effective viscosity.

Results suggest the possibility of an inverse cascade as a consequence of the flow
becoming quasi-two-dimensional. Measurements of the velocity fluctuations in the wake
of a cylinder at moderate Re indicate the characteristic change in spectral slope associated
with two-dimensional turbulence. The transition in the spectral slope was observed to
occur as N approaches ∼ 0.5, coinciding with the transition observed with other metrics.
Further, the apparent lack of small-scale features in magnetized cases along with the
conservation of angular momentum suggests a mechanism through which small eddies
coalesce, a la an inverse cascade.

By examining the decay of the vortices, it was found that the effective viscosity scales
like N−0.49±0.04. The effect of the magnetic field on small-scale eddies, namely the coa-
lescence mentioned above along with the ‘Joule cone’ restriction on k||, is thought to be
the most probable explanation for the significant reduction in effective viscosity.

It is evident that the imposed magnetic field introduces a preferred direction for the
vorticity of vortices within the fluid, which results in macroscopic behavior significantly
different than that without a magnetic field.
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and several undergraduate interns to this work. Additionally, the authors would like to
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