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We report on the use of the recently-developed Mathematica package VEST (Vector

Einstein Summation Tools) to automatically derive the guiding center transforma-

tion. Our Mathematica code employs a recursive procedure to derive the transfor-

mation order-by-order. This procedure has several novel features. (1) It is designed

to allow the user to easily explore the guiding center transformation’s numerous non-

unique forms or representations. (2) The procedure proceeds entirely in cartesian

position and velocity coordinates, thereby producing manifestly gyrogauge invariant

results; the commonly-used perpendicular unit vector fields e1, e2 are never even in-

troduced. (3) It is easy to apply in the derivation of higher-order contributions to

the guiding center transformation without fear of human error. Our code therefore

stands as a useful tool for exploring subtle issues related to the physics of toroidal

momentum conservation in tokamaks.
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I. INTRODUCTION

The guiding center asymptotic expansion is both beautiful and revolting. Its beauty

stems from its simple physical underpinning; a strongly magnetized charged particle gyrates

around magnetic field lines much more rapidly than it drifts along or across them. This

simplicity allows the approximation to be applied in a greater variety of settings than perhaps

any other approximation scheme used in magnetized plasma physics. And in spite of the

approximation’s broad appicability, which might be expected to dilute its power, it affords

significant practical benefits. Perhaps most notably, it enables gyrokinetic codes, such as

those discussed in Refs. 1 and 2, to work on the drift, rather than gyroperiod, time scale.

The approximation begins to reveal its ugly side, however, when one endeavors to derive

successively higher-order contributions to the expansion3,4. Aside from the usual prolifera-

tion of terms common amongst higher-order perturbation expansions, the obstacles one en-

counters include vector identities involving spatially varying unit vectors such as b = B/|B|

and subtle issues related to gyrogauge invariance5. Moreover, attempts to taylor the expan-

sion to respect the Hamiltonian structure of the Lorentz force law encounter the so-called

order-mixing4,6 issue, whereby different components of the coordinate transformation one

seeks appear at different orders in the transformed Lagrangian, thus complicating the pro-

cedure used to find them.

These abhorrent features can be frightening to the uninitiated, meaning only a dedicated

minority have ever attempted delving into the calculation beyond the derivation of drifts

proportional to first derivatives of the magnetic field. The reluctant majority, up until fairly

recently7, could have justified their stance by proclaiming the higher-order corrections to

be practically unimportant, and therefore irrelevant. Recent advances, however, are making

it more and more clear that at least corrections proportional to second derivatives of the

magnetic field are important for resolving the physics of toroidal momentum conservation

in tokamaks8. For this reason, certain largely unexplored aspects of these higher-order

corrections now appear intriguing to study. In particular, the various representations of the

guiding center expansion should be explored further.

A representation of the guiding center expansion consists of a prescription for making all

of the apparently arbitrary choices one must make in the process of deriving the expansion.

Examples of different representations can be found In Ref. 4, where two representations are
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presented, or in Littlejohn’s work in Refs. 9 and 10. There is nothing unphysical about these

different representations - they merely arise from the fact that equations of motion which

are independent of gyrophase will remain so upon an arbitrary coordinate transformation

that commutes with the gyrosymmetry operation (see appendix B). Nevertheless, different

representations lead to guiding center equations of motion with different numbers of terms.

Thus, one could imagine optimizing the number of terms in the equations of motion over

the space of representations. It is also possible that different representations have different

times of validity. After all, Kruskal’s method11, which provides the mathematical basis for

the guiding center expansion, can only guarantee equations of motion valid for times of order

1/ǫ, where ǫ is the ordering parameter ρ/L12.

In order to enable the study of these issues, a process which would surely involve de-

riving the guiding center expansion in many different representations, we have developed,

implemented, and verified an algorithm to automate the guiding center calculation using

the newly-developed Mathematica package VEST (Vector Einstein Summation Tools)13. In

particular, we have slashed the time required to derive the expansion, and all but elim-

inated the possible taint of human-made algebra errors in the derivation of higher-order

contributions to the guiding center expansion.

While other authors have presented algorithmic procedures for deriving the guiding center

expansion in the past4,14,15, the algorithm we present here is novel due to the combination

of the following.

1) The algorithm has actually been implemented on a computer and used to derive the

guiding center expansion in two different representations.

2) Complicated, multi-term, vector identities are accounted for using the clever simplification

capabilities of VEST.

3) Issues related to gyrogauge invariance are completely avoided by working in cartesian

position and velocity coordinates. In particular, the only unit vector that plays a role is the

physical b = B/|B|.

4) Gyroaverages and Fourier expansions in gyrophase are implemented in these coordinates

using a coordinate-independent formulation of these operations.

5) The approach manages to be manifestly Hamiltonian while addressing the order-mixing

issue in a computationally attractive manner; for each m > n, the n’th-order contribution

to the perturbative coordinate transformation is determined without knowledge of any of
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the details of the m’th order contribution.

6) The manner in which we address the order-mixing issue obviates the high degree of

freedom in the form of the transformed Lagrangian.

In what follows, we will describe our algorithm and report on the equations of motion

generated in the two representations just alluded to. We will begin with four sections

describing what our algorithm is meant to do as well as our motivation for selecting an

algorithm with the novel features just described. In section II, we give a schematic overview

of Hamiltonian Lie transform-based perturbation theory in order to remind the reader of

the goal of the guiding center expansion. We then describe the motivation for selecting

our algorithm via a description of three difficulties we faced while developing it, and how

we overcame them. In particular, sections III, IV, and V are devoted to discussing the

difficulties presented by the order-mixing issue; the desire for manifestly gyrogauge invariant

results; and the task of computing gyroaverages and gyroharmonics, respectively. With all

of the motivations in place, we present our algorithm in section VI. Finally, in section VII,

we present the results of automatically performing the guiding center expansion with our

algorithm in two previously unstudied representations.

II. A SCHEMATIC FOR HAMILTONIAN LIE TRANSFORM

PERTURBATION THEORY

In this section, we will review the general structure and purpose of the guiding center

expansion, and thereby indicate precisely what our algorithm is meant to do. We then discuss

three key difficulties we faced while trying to develop the algorithm before actually presenting

presenting it. The purpose of these four sections is to provide a narrative explaining why

the algorithm looks the way it does. Readers only interested in the algorithm itself can skip

straight to section VI, but it may still be useful to skim these early sections in order to

become familiar with our notation.

We begin by recalling the coordinate-independent formulation of Hamiltonian dynamical

systems16. This formulation makes use of Cartan’s exterior calculus of differential forms; a

very brief overview of the latter is provided in Appendix A. The phase space M is assumed

to be an even dimensional smooth manifold17 equipped with a symplectic two-form ω. The

dynamical equations are then specified by a function H : M → R known as the Hamiltonian
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function via Hamilton’s equations

iXH
ω = dH, (1)

where XH is the vector field that specifies the time derivative of any particle’s phase space

location c(t) ∈ M , i.e. c′(t) = XH(c(t)). In any local coordinate system (zi) on M ,

Hamilton’s equations become

żiωij =
∂H

∂zj
, (2)

where żi are the components of the vector field XH = żi ∂
∂zi and ωij = ω( ∂

∂zi ,
∂
∂zj ).

In the guiding center problem, the phase space is the six-dimensional position-velocity

space, M = R
3 × R

3, equipped with the symplectic form ωǫ = −dϑǫ, where the one-form

ϑǫ is given in terms of the the magnetic vector potential A and the guiding center ordering

parameter ǫ by

ϑǫ = A · dx+ ǫv · dx. (3)

The equations of motion are then specified by the Hamiltonian function H = 1
2
ǫ2v · v. As

can be readily verified, the vector field XH(ǫ) in the natural cartesian coordinates on M is

given by

v̇(x, v) = v × B(x) (4)

ẋ(x, v) = ǫv.

Strictly speaking, the placement of the ordering parameter ǫ = ρ/L in ϑǫ, and therefore its

placement in the equations of motion, is only justified in appropriate dimensionless variables,

as discussed in Ref. 3. However, we can regard Eq. (4) as a dimensional equation if we think

of ǫ as a formal ordering parameter and if we normalize A by a particle’s charge-to-mass

ratio so that B has the dimension of frequency.

When ǫ = 0, which corresponds to the asymptotic limit where a particle undergoes gy-

romotion with zero gyroradius and vanishingly slow drift, the equations of motion given in

Eq. (4) are gyrosymmetric18,19 (see section IV for the precise definition of gyrosymmetric ten-

sors). Because the particle trajectories are periodic in this limit, Kruskal’s general theory11

tells us that we can asymptotically deform, or rearrange, the phase space M using a non-

unique ǫ-dependent near-identity transformation Tǫ : M → M such that the transformed

XH(ǫ), XH(ǫ′) ≡ Tǫ∗XH(ǫ), is gyrosymmetric to all orders in ǫ.
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The goal of the guiding center theory, and therefore the algorithm we will present later,

is to find such a Tǫ. Because performing this task requires a degree of ingenuity, a number

of useful methods have been developed. Of particular relevance to the present work are

those methods that employ Lie transforms. In these cases, one posits that the desired

transformation from the old phase space to the new, deformed phase space can be expressed

in the form20

Tǫ = ... ◦ exp(−Gn(ǫ)) ◦ ... ◦ exp(−G1(ǫ)), (5)

where, for each n, Gn(ǫ) : M → TM is a vector field that tends to zero as ǫ→ 0, and does so

more rapidly than does Gm(ǫ) with m < n. The requirement that the transformed equations

of motion be gyrosymmetric then reduces to a sequence of requirements on the Gn(ǫ). Thus,

the Lie transform approach to finding Tǫ reduces to finding a sequence of Gn(ǫ) that satisfy

the latter requirements.

One can derive these requirements in one of two ways. The direct method, which recently

made an appearance in Ref. 21 (also see Ref. 22), consists of formally computing the

transformed XH(ǫ), X ′
H(ǫ) = Tǫ∗XH(ǫ), using Eq. (5) and then demanding that the result

be gyrosymmetric to all orders. The Hamiltonian method, due to Littlejohn23, consists of

calculating the transformed dϑǫ and H , Tǫ∗dϑǫ and Tǫ∗H , and then demanding that each

of be gyrosymmetric to all orders. These two methods are related by the general fact that

if the ω and H appearing in Hamilton’s equations (1) admit a symmetry, then so does XH .

Each method also involves making a number of arbitrary decisions to completely determine

the Gn(ǫ); different choices lead to different representations.

In principle, either approach can be automated on a computer. Indeed, historically

this has been one of the advertised “features” of the Lie transform approach to perturbation

problems in general. However, the Hamiltonian approach has the advantage of automatically

providing the Hamiltonian structure of the equations of motion in the new arrangement of

phase space. It is for this reason that we pursue the Hamiltonian approach in the present

work.

III. DIFFICULTY 1: ORDER-MIXING

While developing the algorithm for automating the Hamiltonian Lie transform approach

to finding Tǫ, we encountered three key difficulties. In this section and the two that follow
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we will describe each in turn, as well as the manner in which we overcame each difficulty.

The first issue is rooted in the special form of ϑǫ given above. If one specifies the ǫ-

dependence of the Gn(ǫ) according to Gn(ǫ) = ǫngn, then the one-form ϑǫ on the deformed

phase space is given by

ϑ′ǫ =A · dx+ ǫv · dx+ ǫLg1(A · dx) +O(ǫ2), (6)

where Lg1 denotes the Lie derivative with respect to the vector field g1 (see appendix A).

In order to find one of the transformations guaranteed by Kruskal’s theory, the combination

v · dx+Lg1(A · dx) must be gyrosymmetric, modulo closed one-forms24. If we write g1 = gx1 ·

∂
∂x

+gv1 ·
∂
∂v

, this condition can be satisfied by choosing gx1 = 1
|B|
v×b, gv1 = anything. However,

as would become clear upon analyzing higher-order contributions to the transformed one-

form, there are in fact constraints on gv1 that destroy the apparent complete freedom in

its specificaiton. This is a special case of the more general order-mixing issue; the various

components of any given vector field gn appear at different orders in ϑ′ǫ.

From a computational point of view, order-mixing is bothersome. It obfuscates the extent

to which the choices one needs to make to find the various gn are coupled across n-values.

If the coupling were severe enough, then any algorithm one might construct to automate

these choices could be very complicated.

In order to overcome this difficulty, we designed our algorithm to satisfy

Resolution of Difficulty 1: The rule for determining Gn(ǫ) does not rely on any specific

knowledge of any component of Gm(ǫ) whenever m > n.

In section VI, the precise manner in which the algorithm accomplishes this will become

clear.

IV. DIFFICULTY 2: MANIFEST GYROGAUGE INVARIANCE

In order to understand the second difficulty we faced in developing a good algorithm for

automating the guiding center calculation, one needs to understand the usual definition of

a gyrosymmetric tensor. This definition refers to a special type of coordinate system on M ,

any instance of which we will call a fibered coordinate system. A fibered coordinate system
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on M consists of an open subset U ⊂ M , 5 smooth functions ξi : U → R, i = 1, ..., 5, and

one additional function θ : U → R mod 2π satisfying:

F125: The six functions ξi, i = 1, ..., 5, and θ define a valid coordinate system on U

F2: Holding the ξi fixed, θ parameterizes, in a left-handed sense relative to b, the zero’th

order (ǫ = 0) solutions to Eq. (4), which are called loops by Kruskal.

The standard example of a family of fibered coordinate systems used in guiding center

theory is constructed as follows. First find a smooth unit vector field e1 perpendicular to

the magnetic field, e1 · b = 0. e1(x) and e2(x) = (b × e1)(x) span the plane perpendicular

to b(x) for each x in the domain of definition, D ⊂ R
3, of e1, as depicted in Figure 1.

As shown in Ref. 18, D cannot always be taken to be the entire 3-dimensional domain

particles move through. A fibered coordinate system can then be defined on the open subset

of phase space U ≡ {(x, v) ∈M |x ∈ D and b(x) × v 6= 0}. Labeling the ξi according to

(ξ1, ξ2, ξ3) = x, ξ4 = v⊥, ξ5 = v‖, these functions are defined by the relation

x =x(x, v) (7)

v =v‖(x, v)b(x)

+v⊥(x, v) (cos(θ(x, v))e1(x) − sin(θ(x, v))e2(x)) .

A gyrosymmetric tensor can then be defined in terms of fibered coordinate systems as

follows. A tensor is gyrosymmetric if its components in an arbitrary fibered coordinate

system do not depend on θ. Note that one doesn’t have to look at a tensor in every fibered

coordinate system to check this property; it is enough to check in a collection of fibered

coordinate systems that cover M .

This standard definition of gyrosymmetric tensors motivates the standard approach to

deriving the constraints on theGn(ǫ). One first writes out the components of the transformed

dϑǫ and H in a family of fibered coordinate systems on M that cover M . Then one chooses

the local representatives of Gn(ǫ) to eliminate the θ-dependence in these components in each

coordinate system in the covering. For consistency, one also must demand that the local

definitions of Gn(ǫ) agree when changing from one fibered coordinate system in the covering
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FIG. 1. A typical arrangement of the perpendicular unit vectors e1, e2 for a uniform magnetic field

that points out of the page. The two sets of arrows represent e1 and e2. While in this case, e1 and

e2 are not required to vary in space, for a more general sort of magnetic field, they would be.

to another. The latter is one statement of the principle of gyrogauge invariance.

There is nothing conceptually wrong with this approach to finding the Gn(ǫ), and it can

be made to work. However, there is a very practical problem with proceeding in precisely

this manner on a computer. In order to verify that a given expression for Gn(ǫ) in a fibered

coordinate system constructed using some perpendicular unit vector e1 satisfies the principle

of gyrogauge invariance, it is often necessary to account for non-trivial vector identities

involving the perpendicular unit vectors e1 and b. Presently, there is no general method

that would allow one to do this on a computer in all cases one might encounter. Thus, one

cannot guarantee that the Gn(ǫ) produced by a computer following the above procedure will

manifestly exhibit gyrogauge invariance, i.e. it will not be obvious that Gn(ǫ) is gyrogauge

invariant, even if it actually is.

In order to avoid this issue, we have chosen to avoid using fibered coordinate systems

altogether.

Resolution of Difficulty 2: All tensors are expressed and manipulated in cartesian posi-
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tion and velocity coordinates.

By proceeding in this manner, the results generated by our algorithm (Gn(ǫ), for ex-

ample) will be expressed entirely in terms of v, |B|, b, and derivatives thereof, thereby

making our algorithm manifestly gyrogauge invariant; perpendicular unit vectors e1, e2 and

the gyrophase coordinate θ are never even introduced.

V. DIFFICULTY 3: COORDINATE-INDEPENDENT FOURIER

ANALYSIS

The third issue we wish to discuss arises as a result of our resolution of the difficulty

discussed in the previous section. If we demand that all tensors be expressed and manipu-

lated in cartesian coordinates, then how can we check if a given tensor is gyrosymmetric?

Moreover, how can we compute the gyroaverage and gyroharmonics of a tensor in these

coordinates?

A conceptually appealing way to answer these questions is to first derive some coordinate-

independent properties of the gyrosymmetry that would allow one to answer these questions

in an arbitrary coordinate system, and then specialize to cartesian coordinates. To our

knowledge, this interesting mathematical exercise has not been discussed elsewhere in the

literature, and so we will provide the details in the remainder of this section.

First notice that in a fibered coordinate system (ξi, θ) (this is shorthand for the sextuplet

(ξ1, ..., ξ5, θ)), a function f : U → R is gyrosymmetric if and only if

f(ξi, θ + ψ) = f(ξi, θ) (8)

for all constants ψ. If, for each ψ ∈ R mod 2π, we define the mapping Φψ : U → U using

the formula

Φψ(ξi, θ) = (ξi, θ + ψ), (9)

then the condition given in Eq. (8) can be re-expressed as

Φ∗
ψf = f (10)

for each ψ ∈ R mod 2π. Here Φ∗
ψ denotes the pullback operator on functions, Φ∗

ψf = f ◦Φψ.
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While the formula (8) only makes literal sense in a fibered coordinate system, the family of

mappings Φψ can actually be given a coordinate independent definition. Indeed, in cartesian

position and velocity coordinates we have26

Φψ(x, v) = (11)

(x, v · b(x)b(x) + cos(ψ)b(x) × (v × b(x)) + sin(ψ)v × b(x)).

Thus, gyrosymmetric functions f : M → R can be alternately characterized as those func-

tions that satisfy the analogue of Eq. (10), Φ∗
ψf = f for each ψ ∈ R mod 2π.

What about more general tensor fields? Because the pullback operator of a mapping

M → M is well defined on the entire tensor algebra, it is tempting to postulate that a

tensor field τ is gyrosymmetric if and only if Φ∗
ψτ = τ for all ψ ∈ R mod 2π. This is indeed

correct; it is a straightforward exercise to verify that this characterization is equivalent to

the usual one stated in the previous section.

What is going on here? If we fix a ψ ∈ R mod 2π, then the mapping Φψ : M → M can

be regarded as a global rearrangement, or relabeling, of points in M . If we regard Φψ as

pointing from the “new arrangement” to the “old arrangement”, then Φ∗
ψτ is nothing more

than τ , regarded as a tensor in the old arrangement of M , expressed in the new arrangment.

Thus, from this point of view, we see that gyrosymmetric tensors are precisely those tensors

whose form is invariant under any of the rearrangments in the family Φψ.

With this coordinate independent characterization of gyrosymmetric tensors in hand,

we now seek a corresponding coordinate-independent version of Fourier analysis in the gy-

rophase θ. The catch is that we do not desire to work with the gyrophase coordinate θ

directly as the latter is only defined in fibered coordinate systems. Instead we will use the

parameter ψ in the family of maps Φψ as a surrogate of sorts.

Given an arbitrary tensor τ , set τψ = Φ∗
ψτ . τψ can be regarded as a periodic tensor

field-valued function of the single variable ψ with period 2π. Therefore it admits a Fourier

expansion

τψ = 〈τ〉 +

∞
∑

k=1

(Πkτ) cos(ψ) + (Π̄kτ) sin(ψ), (12)
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where the tensor fields 〈τ〉, Πkτ , and Π̄kf are given by

〈τ〉 =
1

2π

∫ 2π

0

(Φ∗
ψτ)dψ (13)

Πkτ =
1

π

∫ 2π

0

(Φ∗
ψτ) cos(kψ)dψ

Π̄kτ =
1

π

∫ 2π

0

(Φ∗
ψτ) sin(kψ)dψ.

Note that Πkτ and Π̄kτ are not gyrosymmetric tensors. Instead they satisfy the identities

Φ∗
ψ(Πkτ) = cos(kψ)(Πkτ) + sin(kψ)(Π̄kτ) (14)

Φ∗
ψ(Π̄kτ) = − sin(kψ)(Πkτ) + cos(kψ)(Π̄kτ).

However, as the notation suggests, 〈τ〉 is indeed gyrosymmetric.

The Fourier inversion formula, Eq. (13), together with the invariance properties given

in Eq. (14), is sufficient to solve all of the linear partial differential equations that one

encounters while deriving expressions for the Gn(ǫ) in any coordinate system. Thus, we

have effectively solved the problem of performing Fourier analysis in θ in cartesian position

and velocity coordinates without ever referring to fibered coordinate systems. We have

incorporated this solution into our algorithm as

Resolution of Difficulty 3: Gyroaverages and gyroharmonics are calculated in cartesian

position and velocity coordinates using Eqs. (13) and (14).

VI. THE ALGORITHM

As discussed in section II, the goal of the algorithm is to find a transformation Tǫ in

the form given in Eq. 5 such that Tǫ∗dϑǫ and Tǫ∗H are each gyrosymmetric to all orders

in ǫ (section IV gives the general definition of a gyrosymmetric tensor). This Tǫ consists

of a concatenated sequence of transformations of the form exp(Y ). Thus, we are free to

think of Tǫ as the result of many intermediate transformations, each closer to the identity

transformation than the last. Our algorithm proceeds by finding expressions for these inter-

mediate transformations (which amounts to specifying a Gn(ǫ)), one at a time, according to

the following recursive procedure.
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Suppose that some finite number of intermediate transformations have been performed.

Let Θǫ and Hǫ denote the resulting one-form and Hamiltonian following this partial rear-

rangement of M , and assume they have the form:

Θǫ =ϑ0 + ǫϑ1 + ...+ ǫNϑN +
∞

∑

k=1

ǫN+kαk (15)

Hǫ =H0 + ... + ǫN−2HN−2 +
∞

∑

k=1

ǫN−2+khk,

where N > 1, the ϑj and Hj are all gyrosymmetric, and the αj and hj are not necessarily

so. Suppose further that Ξǫ = ϑ0 + ...+ ǫNϑN satisfies the three properties

ND127: dΞǫ is a non-degenerate two-form.

ND2: If β is an ǫ-independent one-form, then the vector field Y (ǫ) defined by iY (ǫ)dΞǫ = β

(i.e. Y is the application of the Poisson tensor defined by Ξǫ to β) is O(ǫ−2).

ND3: When β = −dH0, the leading order behavior of Y (ǫ) is given by |B|
ǫ2
ξ ≡ |B|

ǫ2
v × b · ∂

∂v
.

In this setting, which will serve as our inductive assumption, it is possible to find a trans-

formation exp(−G(ǫ)), for some small vector field G(ǫ), such that after this transformation,

the one-form and the Hamiltonian have the same form as in Eq. (15), but with N replaced

with N + 1, i.e. the one-form and Hamiltonian are each gyrosymmetric to one higher order

than previously. This also means that the transformed Ξǫ will automatically continue to

satisfy properties ND1-3. We will call a G(ǫ) that produces a transformation exp(G(ǫ)) with

the latter two properties a recursive vector field.

To see that one can in fact find many recursive vector fields under the inductive assump-

tion, let G(ǫ) be a vector field that solves the algebraic equation (see appendix C for a

solution method)

iG(ǫ)dΞǫ + ǫN+1α1 + ǫN+1dS = i〈G(ǫ)〉dΞǫ + ǫN+1 〈α1〉 , (16)

where S is the unique function with 〈S〉 = 0 (see section V for the definition of the general

tensor gyroaverage operator 〈〉) that solves the partial differential equation (see appendix D
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for a solution method)

h1 − |B|iξα1 − |B|iξdS = 〈h1〉 − |B|iξ 〈α1〉 . (17)

Note that the oscillatory part of G(ǫ), G̃(ǫ) = G(ǫ) − 〈G(ǫ)〉, is then uniquely determined,

but the gyroaverage 〈G(ǫ)〉 is left completely free. Constrain the latter so that it satisfies

i〈G(ǫ)〉dΞǫ = ǫN+1γ, (18)

where γ is any ǫ-independent gyrosymmetric one-form.

As is readily verified, such a G(ǫ) satisfies the following important properties.

P1: G(ǫ) = O(ǫN−1), but will be a rational function of ǫ.

P2: Upon applying the transformation exp(−G(ǫ)), the transformed one-form (modulo

closed one-forms) and Hamiltonian, Θ′
ǫ and H′

ǫ, become

Θ′
ǫ =ϑ0 + ...+ ǫNϑN (19)

+ ǫN+1 (〈α1〉 + γ) +O(ǫN+2),

and

H′
ǫ =H0 + ...+ ǫN−2HN−2 (20)

+ ǫN−1 (〈h1〉 + |B|iξγ) +O(ǫN).

Thus, the entire family of G(ǫ) just defined, a family which may be regarded as being

parameterized by the arbitrary gyrosymmetric one-form γ, consists of recursive vector fields.

With these recursive vector fields in hand, all that we must now show is that there is some

base case, consisting of a one-form and Hamiltonian in the form specified by Eq. (15), from

which our recursive algorithm can start. Unfortunately this base case clearly cannot be the

natural choice, Θǫ = A ·dx+ǫv ·dx and Hǫ = 1
2
ǫ2v ·v, as this pair is not in the form specified

by Eq. (15). However, this issue is easy to resolve. First, notice that if the transformed

1
ǫ2
H is gyrosymmetric, then H will be too. Therefore, remove the ǫ2 from the Hamiltonian.

Second, recognize that we are free to perform a preparatory transformation before finding

the Gn(ǫ). In particular, we can apply a preparatory near-identity transformation of the
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form exp(−ǫG0) that transforms Hǫ = 1
2
v ·v and Θǫ = A ·dx+ ǫv ·dx into the form specified

by Eq. (15) with N = 2. For instance, with

G0 = −
v × b

|B|
·
∂

∂x
(21)

+

(

(v · b)∇b · (b× v)

|B|
+

(v × b) · ∇b · vb

2|B|

+
(v · b)(b · ∇ × b)b× (v × b)

|B|

)

·
∂

∂v

then we arrive at the satisfactory starting point

Θǫ = A · dx+ ǫ(v · b)b · dx (22)

+
1

2|B|
ǫ2

(

v × b · dv − (v · b)[∇b · (v × b)] · dx

)

+O(ǫ3)

Hǫ =
1

2
v · v +O(ǫ).

To summarize, our algorithm for finding the Gn(ǫ) that generate Tǫ proceeds as follows.

1: Because any real calculation can only calculate a finite number of the Gn(ǫ), when

one stops calculating additional Gn(ǫ), the one-form and Hamiltonian will be of the form

specified in Eq. (15) with N = Nmax. Therefore, specify the desired Nmax.

2: Define three integers N , M , and l with initializations N = 2, M = Nmax − 2, and

l = 1.

3: Apply a preparatory transformation, such as that given in Eq. (21), so that the one-form

and Hamiltonian have the form specified in Eq. (15). Only the first M non-gyrosymmetric

terms must be calculated in each case.

4: Find a recursive vector field Gl(ǫ). Use Eq. (16) to find the unique oscillatory part

G̃l(ǫ), and specify the gyroaveraged part 〈Gl(ǫ)〉 using an arbitrary gyrosymmetric one-form

γl according to Eq. (18).

5: Store Gl(ǫ). Set l = l + 1, N = N + 1, and M = M − 1.

15



6: Using the recursive vector field just derived to specify the transformation, express

the new one-form and Hamiltonian in the form specified in Eq. (15). Only the first M

non-gyrosymmetric terms must be calculated in each case.

7: If N = Nmax, stop. Else, return to step 4.

Note that different representations of the guiding center expansion will be generated

for each choice of the sequence of gyrosymmetric one-forms γl. In particular, if one does

not attempt to constrain the form of the transformed Hamiltonian, the O(ǫ3) contribution

to the transformed one-form can be any gyrosymmetric one-form whatsoever, including 0.

Likewise, if one does not attempt to constrain the form of the transformed one-form, then

the O(ǫ) contribution to the transformed Hamiltonian can be specified arbitrarily (at least

away from those points in phase space where v × b = 0).

Finally, note that the presence of a preparatory transformation implies that the complete

transformation from the old phase space to the new, deformed phase space is given by

Tǫ ◦ exp(−ǫG0), with Tǫ = ... ◦ exp(−G2(ǫ)) ◦ exp(−G1(ǫ)).

VII. TWO NEW REPRESENTATIONS

To illustrate the use of our algorithm, we now turn to presenting the results of using it

to derive two previously unexplored representations of the guiding center expansion. Each

representation we present here will choose γl + 〈α1〉 = 0 in step 4, meaning each representa-

tion is closely related to the so-called Hamiltonian representation discussed in Ref. 4. The

two representations will differ in which preparatory transformation is used in step 3.

In each case, we will provide explicit expressions for the transformed one-form accurate

to all orders in ǫ. For the transformed Hamiltonians, we will provide H0, H1, and H2. This

information is enough to accurately express the transformed equations of motion up to and

including terms of order ǫ2. For the sake of brevity, we will not specify the Gn(ǫ). However,

we stress that, when equipped with a copy of our code, finding these vector fields that specify

the transformation would be a simple task for any interested reader. In fact, each of the

results below takes about fifteen minutes to derive on a laptop computer. We would also like

to stress that all of the following results have been checked directly by calculating how the
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one-form and Hamiltonian transform according to the Gn(ǫ) we derived and indirectly by

verifying that we reproduce the well-known first-order correction to the magnetic moment

adiabatic invariant, µ1 (see Ref. 28, for example):

µ1 =
1

|B|2

(

1

4
v · ∇b · (v × b)(v · b) (23)

−
3

4
(v × b) · ∇b · v(v · b) −

5

4
b× κ · v(v · b)2

+
1

2|B|
(v × b) · (v × b)∇|B| × b · v

)

.

Moreover, while we have not performed a direct comparison of our µ2 to existing expressions,

we have verified that the µ2 predicted by the Gn(ǫ) in each representation agree with one

another.

Example 1:

This representation will be defined by the use of the preparatory transformation already

given in Eq. (21) and by always choosing γl + 〈α1〉 = 0. The consequences of these choices

come in the form of a transformed one-form equal to that given in Eq. (22), thus simplifying

the form of the transformed Poisson bracket. In fact, by expressing Eq. (22) in the usual

sort of fibered coordinate system, we see

Θǫ = A · dx+ ǫv‖b · dx+ ǫ2µ[dθ − R · dx], (24)

where µ =
v2
⊥

2|B|
and R = (∇e1) · e2, meaning the transformed Poisson bracket is exactly the
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same as that given in Ref. 5. Meanwhile the transformed Hamiltonian is given by

H0 =
1

2
v · v (25)

H1 =
1

2
(v · b)µτ

H2 =µ2

(

15

16
(∇ · b)2 +

1

16
κ · κ+

1

4
b · ∇(∇ · b)

−
1

16
tr[∇b · ∇b+ ∇b · (∇b)T ]

−
3

4
∇ ln |B| · ∇ ln |B| +

1

4
κ · ∇ ln |B| +

1

4|B|
∇2|B|

)

+µ
(v · b)2

|B|

(

1

8
tr[3∇b · ∇b−∇b · (∇b)T ] +

1

8
(∇ · b)2

+
1

2
b · ∇(∇ · b) +

13

8
κ · κ−

3

2
κ · ∇ ln |B|

)

−
(v · b)4

|B|2

(

1

2
κ · κ

)

where µ = (v×b)·(v×b)
2|B|

, τ = b · ∇ × b, and κ = b · ∇b. Note that the H2 in this representation

differs from the H2 in Brizard and Tronko’s Hamiltonian representation4 (also see Ref. 6),

although it is similarly complicated. In order to recover the latter representation, it would

be necessary to choose 〈α1〉 + γl = dfl with appropriately chosen fl.

Example 2:

The second representation will also make the choice γl + 〈α1〉 = 0, but the preparatory

transformation exp(−ǫG0) will be specified by

G0 = −
v × b

|B|
·
∂

∂x
+

1

|B|

(

(v · b)(v × b) · ∇b (26)

− 2(v · b)∇b · (v × b) +
1

4
v · [∇b+ ∇bT ] · (v × b)b

+
3

4
b · κ× v(v · b)b

)

·
∂

∂v

This implies that the transformed one-form is given by

Θǫ = A · dx+ ǫ(v · b)b · dx (27)

+
1

2|B|
ǫ2

(

v × b · dv − (v · b)[∇b · (v × b)] · dx− µ|B|τb · dx

)

= A · dx+ ǫv‖b · dx+ ǫ2µ[dθ − (R +
1

2
τb) · dx].
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Thus, the transformed Poisson bracket is the same as that given in Ref. 6. The transformed

Hamiltonian is given by

H0 =
1

2
v · v (28)

H1 = 0 (29)

H2 = µ2

(

15

16
(∇ · b)2 +

3

16
κ · κ+

1

4
b · ∇(∇ · b)

+
1

16
tr[∇b · ∇b− 3∇b · (∇b)T ]

−
3

4
∇ ln |B| · ∇ ln |B| +

1

4
κ · ∇ ln |B| +

1

4|B|
∇2|B|

)

+µ
(v · b)2

|B|

(

1

8
tr[3∇b · ∇b−∇b · (∇b)T ] +

1

8
(∇ · b)2

+
1

2
b · ∇(∇ · b) +

13

8
κ · κ−

3

2
κ · ∇ ln |B|

)

−
(v · b)4

|B|2

(

1

2
κ · κ

)

.

VIII. DISCUSSION

We have reported, for the first time, on the automatic calculation of the guiding center

expansion using a computer. In particular, we have implemented a novel Lie transform-based

algorithm using the newly-developed Mathematica package VEST 13 and used it to derive

two new representations of the guiding center equations of motion to the order relevant for

studying issues related to the physics of toroidal momentum conservation in tokamaks. By

proceeding in this manner, we have avoided the pitfalls associated with hand-made algebra

errors and slashed the time required to perform the calculations from weeks to minutes.

Readers interested in obtaining the Mathematica notebook week used to carry out our

calculation can contact J. Squire via email at jsquire@princeton.edu.

There are a number of opportunities for extending this work. Because our algorithm

provides the necessary tools to explore many representations of the guiding center expansion,

it may be interesting to begin searching through different representations to find those with

desirable properties such as simple transformed equations of motion. Likewise, it may be

interesting to examine the time-validity of the transformed equations of motion in these

different representations to see if some are worse than others. Kruskal’s theory11 guarantees

1/ǫ time-validity in all representations, but there may be representations that can do better.
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Yet another suitable application of our code would be pushing the calculation to higher order

than previously calculated. For instance, it would be interesting to find µ3 and H3. Finally,

there should be no great difficulty in extending both our algorithm and our implementation

in Mathematica using VEST to treat the gyrocenter transformation theory that forms the

backbone of modern gyrokinetic theory.
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Appendix A: Elements of Exterior Calculus

In this appendix we will first list the basic identities commonly used when performing

calculations with the exterior calculus. Then we will give the component-form of the basic

operators d, LY , iY in the velocity phase space. For a much more thorough treatment of

this topic, refer to Ref. 16.

Let αk and βl be k- and l-forms on the manifold M , respectively. Let Y and Z be vector

fields on M . Then the following identities hold

αk ∧ βl = (−1)klβl ∧ αk (A1)

iY (αk ∧ βl) = (iY αk) ∧ βl + (−1)kαk ∧ (iY βl) (A2)

d(αk ∧ βl) = (dαk) ∧ βl + (−1)kαk ∧ (dβl) (A3)

LY (αk ∧ βl) = (LY αk) ∧ βl + αk ∧ (LY βl) (A4)

iY iZ = −iZ iY (A5)

LY = diY + iY d (A6)

dLY = LY d (A7)

dd = 0. (A8)

Let F : M → M and Φ : M → M be smooth mappings with a smooth inverses F−1 and

Φ−1. One example of this sort of mapping from the main text is Φψ, for fixed ψ, whose
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inverse is Φ−ψ. The exterior calculus operations behave very well with respect to mappings.

We will summarize this fact with a second list of identities.

F ∗Φ∗ = (Φ ◦ F )∗ (A9)

F ∗(αk ∧ βl) = (F ∗αk) ∧ (F ∗βl) (A10)

F ∗(iY αk) = iF ∗Y (F ∗αk) (A11)

F ∗(LY αk) = LF ∗Y (F ∗αk) (A12)

F ∗(dαk) = d(F ∗αk). (A13)

When F = exp(Y (ǫ)), with Y (ǫ) a vector field that tends to zero as ǫ→ 0, we also have the

asymptotic identities

exp(−Y (ǫ))∗τ = exp(Y (ǫ))∗τ (A14)

exp(Y (ǫ))∗τ = τ + LY (ǫ)τ +
1

2
L2
Y (ǫ)T + ..., (A15)

where τ is an arbitrary tensor.

The identities provided thus far, together with the fact that the wedge product is asso-

ciative, are sufficient to verify all of the coordinate-independent manipulations of differential

forms in the main text. In order to perform exterior calculus using VEST it is also useful to

have component-based expressions for the operators d, iY , and LY . Actually, the relevant

operators for the sake of performing the guiding center calculation are d on functions, iY on

one-forms, and iY d on both functions and one-forms.

Let Y = Y xi ∂
∂xi +Y vi ∂

∂vi , where the indices are summed from i = 1 to i = 3 (although we

do so by habit, there is really no need to distinguish between covariant and contravariant

indices in cartesian coordinates). Similarly, let α = αxidx
i + αvidv

i. Denote derivatives of

a scalar f with respect to the i’th spatial argument and the i’th velocity argument with f,i
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and f;j, respectively (note that ; does not denote a covariant derivative). Then we have

df = f,idx
i + f;idv

i (A16)

iY α = αxiY
xi + αviY

vi (A17)

iY df = f,iY
xi + f;iY

vi (A18)

iY dα = (αxi,j − αxj,i)Y
xjdxi (A19)

+ (αxi;jY
vj − αvj,iY

xj)dxi

+ (αvi,jY
xj − αxj;iY

xj)dvi

+ (αvi;j − αvj;i)Y
vjdvi.

Note that, by the identity given in Eq. (A6), the Lie derivative of a one-form, LY α =

diY α + iY dα, can also be calculated using these component expressions.

Appendix B: The Origin of Many Representations of The Guiding Center

Expansion

Suppose that a near-identity rearrangement of the phase space Tǫ : M →M is found that

renders the transformed Lorentz vector field X ′
H = Tǫ∗XH gyrosymmetric. As explained by

Kruskal11, at least one such transformation can be found using perturbation theory. In fact,

as soon as one transformation in found, many more can be generated easily. This implies

that there is much freedom in choosing Tǫ; each choice leads to a different representation of

the guiding center equations of motion in the sense that X ′
H will be different in each case.

In this appendix we will explain the origin of this freedom by completely characterizing it.

First note that if F : M → M is a rearrangement of phase space (not necessarily near-

identity) that commutes with the family of rearrangements Φψ that define the gyrosymmetry

(see section V), i.e. F ◦ Φψ = Φψ ◦ F for each ψ ∈ R mod 2π, then X ′′
H ≡ F∗X

′
H is also

gyrosymmetric. Indeed,

Φ∗
ψX

′′
H = Φ−ψ∗F∗X

′
H (B1)

= (Φ−ψ ◦ F )∗X
′
H

= (F ◦ Φ−ψ)∗X
′
H

= F∗Φ
∗
ψX

′
H = X ′′

H ,
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where we have used the fact that X ′
H is gyrosymmetric and F ◦ Φψ = Φψ ◦ F . This tells us

that, given one of the near-identity rearrangements of phase space guaranteed by Kruskal,

we can find many more by following the latter with any near-identity rearrangement of phase

space that commutes with Φθ.

In fact all of the rearrangements that fit into Kruskal’s theory can be found in this

manner. To be precise, suppose that Rǫ : M → M and Qǫ : M → M are two near identity

rearrangements that render XH gyrosymmetric, so that they fit into Kruskal’s theory. Then,

by definition, Φ∗
ψ(Rǫ∗XH) = Rǫ∗XH and Φ∗

ψ(Qǫ∗XH) = Qǫ∗XH . Thus, both Qǫ and Rǫ define

symmetry transformations on the original arrangement of phase space, Φ̄Q
ψ = Q−1

ǫ ◦Φψ ◦Qǫ

and Φ̄R
ψ = R−1

ǫ ◦ Φψ ◦Rǫ that leave XH invariant. Kruskal has proven in Ref. 11 that these

two symmetry transformations are in fact identical to all orders in ǫ; Φ̄ψ ≡ Φ̄Q
ψ = Φ̄R

ψ . It

follows then that the rearrangement F = Qǫ ◦R
−1
ǫ commutes with Φψ. But this is precisely

the rearrangement that sends Rǫ∗XH into Qǫ∗, which tells us that each representation of

the guiding center equations of motion can be reached from a given one by applying a

near-identity transformation that commutes with Φθ.

Note that if a rearrangement of the form exp(Y ), for some vector field Y , commutes with

Φθ, then it must be true that Y = 〈Y 〉. This is why one should expect complete freedom to

choose the 〈Gn(ǫ)〉 for each Gn(ǫ) appearing in the Lie transform ansatz given in Eq. (5).

Appendix C: A General Formula For Inverting Exact Lagrange Tensors

Defined On The Velocity Phase Space

Step 4 in our algorithm involves solving an algebraic equation of the form iXdΞ = −β for

the vector field X given a non-degenerate two-form dΞ and an arbitrary one-form β. In this

appendix we will present explicit expressions for the components of X = Xxi ∂
∂xi +Xvi ∂

∂vi in

terms of the components of Ξ = Aidx
i +Bidv

i and β = βxidx
i + βvidv

i.

We proceed by making use of the linear isomorphism between the space of vector fields

and the space of five-forms induced by the Liouville volume form

Ω =
1

6
dΞ ∧ dΞ ∧ dΞ. (C1)

This isomorphism is given by X 7→ iXΩ. One can easily prove that this is an isomorphism

using the fact that the non-degeneracy of dΞ implies that Ω is nowhere vanishing. The
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reason this isomorphism is useful is that it is easier to find X ≡ iXΩ than X. Indeed, upon

wedge multiplying dΞ ∧ dΞ into both sides of the equation iXdΞ = −β, we obtain

X = −
1

2
dΞ ∧ dΞ ∧ β. (C2)

By explicitly calculating the right hand side of the last expression in components, and then

inverting the isomorphism X 7→ iXΩ, we obtain

Xxn = −
1

D

(

ǫilkǫmjnβxmBk;l(Bi,j − Aj;i) (C3)

+ ǫlkmǫjinβvmAi,jBk;l

+
1

2
ǫkimǫjlnβvm(Bi,j −Aj;i)(Bk,l − Al;k)

)

Xvn =
1

D

(

ǫjilǫkmnβvmAi;j(Bk,l − Al;k) (C4)

+ ǫmjiǫlknβxmAi,jBk;l

+
1

2
ǫmjlǫkinβxm(Bi,j −Aj;i)(Bk,l − Al;k)

)

,

where the function D is defined by the relation Ω = Ddx1 ∧ dx2 ∧ dx3 ∧ dv1 ∧ dv2 ∧ dv3.

Appendix D: Solving The Equation for S

In order to complete step 4 in our algorithm, the partial differential equation

h1 − |B|iξα1 − |B|iξdS = 〈h1〉 − |B|iξ 〈α1〉 (D1)

must be solved for S given |B|, α1, h1, and the constraint 〈S〉 = 0. As is readily verified by

gyroaveraging the equation, an equivalent condition on S is that it be chosen to eliminate

the non-zero gyroharmonics of the quantity h1 − |B|iξα1 − |B|iξdS.

Let ν = h1 − |B|iξα1. Using Eq. (13), we see that the Fourier expansion of νψ = Φ∗
ψν is

given by

νψ = 〈ν〉 +
∞

∑

k=1

Πkν cos(kψ) + Π̄kν sin(kψ). (D2)

Using the identities LξΠkS = kΠ̄kS and LξΠ̄kS = −kΠkS, we also see that the Fourier

expansion of Φ∗
ψ|B|iξdS = |B|LξSψ is given by

|B|LξSψ =

∞
∑

k=1

|B|kΠ̄kS cos(kψ) − |B|kΠkS sin(kψ). (D3)
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Therefore, S must be given by

S =

∞
∑

k=1

ΠkS (D4)

=

∞
∑

k=1

−
Π̄kν

|B|k
.
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