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Abstract

The scrape-off layer plasma at the tokamak region is characterized by open field lines and often

contains large variations in plasma properties along thesefield-lines. Proper characterization of

local plasma conditions is critical to assessing plasma-material interaction processes occuring

at the target. Langmuir probes are frequently employed in tokamak divertors but are chal-

lenging to interpretation. A kinetic interpretation for Langmuir probes in NSTX has yielded

non-Maxwellian electron distributions in the divertor characterized by cool bulk populations

and energetic tail populations with temperatures of 2–4 times the bulk. Spectroscopic analysis

and modeling confirms the bulk plasma temperature and density which can only be obtained

with the kinetic interpretation.
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1 Introduction

Langmuir probes are notoriously difficult to interpret[1].Probe theory is well developed for low

density, low temperature, unmagnetized discharge plasmas[2]. Systems can be constructed or

even purchased with the capability of measuring electron distribution functions to a high-degree

of accuracy. In tokamak devices, however, comparison of Langmuir probe measurements with

other diagnostics often indicate inconsistencies. The ASDEX machine compared divertor Lang-

muir probe measurements with laser scattering diagnosticswhere it was found that the probe

temperatures exceeded laser scattering by a factor of≈ 2[3]. Similar comparison was made in

DIII-D with the Divertor Thomson System (DTS) where Langmuir probe measurements were

found to exceed the temperatures found by the DTS for the low-density conditions present in

this experiment[4]. In comparison with infrared thermography, calculated sheath heat transmis-

sion coefficients are often found to be at odds with fluid theory[5]. It has been hypothesized

that energetic tail populations could explain many observations of this type[6].

In simulating edge plasmas, Chodura showed that inclusion of recycling particles resulted

in non-Maxwellian distributions at the target plate[7]. Batishchev also found energetic tail

populations in both attached and detached plasma simulations[8]. Electrons were simulated

on a fluid background by Aho-Mantila using the ASCOT code again finding non-Maxwellian

distributions at the target[9]. The impact of non-Maxwellian electron distributions on diagnostic

interpretation is also an active area of research[10, 11].

Recent developments in probe theory now give the possibility of experimentally verify-

ing the distribution functions in the tokamak divertor. A kinetic probe interpretation has been

developed on gas discharge devices[2] and has recently beenextended to tokamaks (first on

CASTOR[12] and recently on NSTX[13]). This paper briefly reviews the criteria for fluid as-

sumptions to remain valid and the kinetic probe interpretation method. We then compare the

obtained plasma parameters to spectroscopic observationsto assess the validity of the kinetic

interpretation.
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2 Theory

The issue of the appropriate scale length can be simply illustrated by considering the equa-

tions describing the electron temperature in a scrape-off layer(SOL). In the case of conduction-

limited heat transport in the absence of energy sources, theelectron heat flux is given by the

following q‖ = −κ0T
5/2∂T/∂x [14]. Hereq‖ is the amount of power conducted in the direction

of the field line,x. An important parameter is the temperature scale length,LTe along the flux

tube which can be calculated as:

LTe =
T

∇T
=

κ0T
7/2

q‖
(1)

illustrating that as the plasma temperature decreases approaching a divertor target, that for con-

stant conducted power, the temperature-gradient scale-length also decreases with temperature.

Figure 1 shows just such a temperature and scale-length profile for typical NSTX parameters of

50MW/m2 parallel heatflux and a target temperature of 4eV.

[Figure 1 about here.]

The strong reduction of the temperature-gradient scale-length was considered by Chodura

and is now reviewed[7]. Collisionality is typically definedas a ratio of scale lengths, one of

which being the self-collision mean-free-path such thatν∗
SOL = L/λee[14]. Hereλee is the

mean-free-path for self-collisions andL is a characteristic scale length of the system. His-

torically, the entire SOL has been reduced to a single collisionality calculated for mid-plane

parameters[14] with the approximation ofν∗
SOL ≈ 10−16nuL/T

2
u used with temperature ineV,

density in m−3 and the flux-tube connection length inm used for the value ofL. Chodura

considered the fluid description and showed that the heat-carrying electrons have energies of

3–5Te. These electrons must be collisional enough to thermalize creating the criteria that the

collisionality of the thermal electrons must be of order 100or greater for fluid theory to be valid.

In addition, it was pointed out thatthe relevant scale length in such instances is the temperature

scale length of the plasma, not necessarily, the connectionlength of the flux tube.Figure 1 also

shows the electron-electron mean-free-path for the heat-carrying electrons for comparison with

the temperature-gradient scale-length. One can see that inthe conduction-limited regime the
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mean-free-path of these electrons exceed the gradient scale-length near the target plate. Rear-

ranging the eq. 1 and the definition for collisionality one finds an approximate scaling for the

temperature above which the fluid description is valid as (c.f. eq. 2.11 of [7]):

T 3/2
e &

1018q‖
κ0ne

(2)

For typical NSTX conditions found in this study of 50MW/m2 parallel heat flux and target

densities of 3.5×1020 m−3, one finds that the minimum temperature at the target is about15eV.

The Langmuir probe theory and methodology has been discussed at length in previous

works[12, 13]. In terms of scale length, when the probe perturbation scale is much smaller

than the energy scale-length of the local plasma, then the kinetic interpretation may be applied.

In these cases the kinetic equations can be manipulated to give the approximate distribution

function as[12]:

f(ǫ) ∝ (U)−3/2 dI

dU
(3)

wheref(ǫ) is the distribution function as a function of energy,U is the voltage andI is the

current from the probe.

The numerical method used for this study rely on taking the first derivative of the I-V char-

acteristic.Alternative techniques using integral methods may be applicable but are not consid-

ered here[15, 16]. In NSTX, the degree of turbulence can reduce the quality of data (defined

through moments of the time-series signals).We concentrate on applying the method near the

strike-point where fluctuating quantities vary by less than10% (defined by the ratio of the signal

R.M.S. to the mean) as monitored by nearby triple Langmuir probes[17]. When the fluctuation

level of the plasma is less than 10% and the skewness and kurtosis indicate Gaussian probabil-

ity distribution functions, then the analysis is carried forward. It is known that sheath-growth

can produce spurious tail populations in distribution functions derived from probe data[2]. In

the thin-sheath regime (the entire data set for this study),the expected onset voltage where the

expanding sheath would affect the first derivative of the I-Vcharacteristic is calculated using

the Child-Langmuir relations[18] and data from this regionare excluded from temperature fits.

Details of the probe theory and analysis methodology are reported in ref. [13].
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The OEDGE code suite is used for empirical plasma reconstruction of the available diagnostics[19].

Neutral hydrogen is modeled using the EIRENE code[20].

A collisional-radiative model is used to determine excitedstate populations for given plasma

density, neutral density and temperatures[21]. The CollRad code[21] is used to evaluate high-n

Balmer line-brightnesses from the divertor plasmas of interest here. Emission rates for each

line is then calculated from available transition probabilities[22].

3 Experimental Setup and Results

NSTX is a medium-size, spherical tokamak with major radius of 0.9 m and aspect ratio as

low as 1.2[23]. Typical toroidal field strength is 0.45T and 0.8MA plasma current. Plasma

discharges typically last about 1s, with heating power largely suplied by neutral beam injection

with 4MW input.

Figure 2 shows parameters of the discharge which will be considered in detail. The period of

time from 400–800ms shows the region defined as “flat-top” where the plasma is in a stationary

state in terms of current and input power. Strike-point control is used to maintain a given radial

position for the outer strike point. Natural variation in the discharge prevents perfect operation

of the controller and some variability is observed. The strike-point region is characterized by

large local gradients and the variability in the example Langmuir probeIsat signal is a result this

motion. The probe-voltage sweep-rate of 500Hz creates a complete I-V characteristic every 1

ms; much faster than the motion of the strike-point. This allows a single probe to cover a

significant distance with respect to the nominal strike-point position as reported by equilibrium

reconstructions.

NSTX performs regular wall-conditioning with the usage of evaporated lithium coatings.The

majority of plasma-facing components (PFCs) in the NSTX device consist of Union-Carbide

type “ATJ” graphite. In the lower divertor of NSTX, the liquid lithium divertor (LLD) was in-

stalled for further studies of high-Z components with lithium coatings in the solid and liquid

state[24]. Discharges under consideration operated with the outer strike-point impinging the

LLD. The high-density Langmuir probe array used for this study is located in-between one of

the four LLD plate segments.
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[Figure 2 about here.]

The kinetic interpretation of the I-V characteristics yield the following values for this dis-

charge: the plasmas can be characterized by a bi-modal distribution (i.e. two-temperature dis-

tribution): a cool bulk plasma in the range of 3–5eV and a higher energy tail population in the

range of 10–25eV. An example distribution for a single probe is shown in fig. 3.The density

at the sheath-edge of the local plasma is determined by the following:

nse =
I+sat

ec̄sAeff

(4)

wherec̄s is the ion sound speed,Aeff is the probe collection area ande is the electronic charge.

The dependence on temperature via the ion sound-speed provides a separation between the

classical probe method and kinetic probe interpretations.

To make a comparison between diagnostics, a large number of observations are collected

and compiled into a target-plate profile. The set of I-V analyses are averaged to provide a “best

estimate” for the type of plasma that would be viewed by a spectrometer for the integration

times of the diagnostic and the spatial extent of the viewingchord. The average bulk temperature

obtained from the kinetic interpretation from this set of probe observations is 3.4eV whereas the

classical interpretation yields 8.3eV as an average. Densities are 2.5×1020 m−3 and 1.6×1020

m−3 for the kinetic and classical interpretations respectively.

[Figure 3 about here.]

An example spectrum from the NSTX spectroscopy system[25] is shown in figure 4. The

presence of high-n Balmer lines is indicative of significant recombination — a low temperature

plasma process. Quantitatively, the density can be deducedfrom the amount of broadening

of each of the spectral lines. Voigt line profiles were fitted to each of the B6-B9 lines taking

into account instrumental functions and thermal broadening to obtain the Stark component as

was done in ref. [26]. The densities dervied from each of the lines were averaged together

to provide a single density of 3.6±1.5 × 1020 m−3. A total line brightness is computed by

numerical integration of the data in a narrow band about eachline.
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[Figure 4 about here.]

Both kinetic and classical probe interpretations were usedin OEDGE plasma reconstruc-

tions. For these reconstructions the full density and temperature profile available from the

Langmuir probes is used. The neutral solution from EIRENE for one set of density and tem-

perature varies from peak values of about 8.2×1018 m−3 with the classical probe values to

2.7×1019 m−3 with the kinetic probe analysis. The ratio of neutrals to ions varies in these

two cases from 0.08–0.13. We set the ratio to a constant 0.1 for convenience (using a varying

ratio in the following analysis does not significantly alterthe results). The CR-model is used

to determine the species populations using these ion and neutral quantities and the respective

plasma conditions. With the code, the temperature is scanned from 2–15eV. The result of the

analysis is a set of line-brightnesses for each temperaturecondition. For comparison, the lines

are normalized to the brightest line available (≈ 410 nm) to illustrate the change in spectra and

shown in figure 5. The observed ratios from the spectrometer can be bound between 3–5eV

from the CR-modeling.

[Figure 5 about here.]

Table 1 shows a summary of observations comparing the probe interpretations and results

from spectroscopic anaysis.

[Table 1 about here.]

4 Discussion and Conclusions

One sees that better agreement between independent diagnostics is found with the kinetic probe

interpretation. The very existence of the high-n Balmer lines suggests the presence of a low

temperature plasma and this is confirmed by the CR modeling results. The spectroscopic broad-

ening result for density is only weakly dependent on electron temperature providing a robust

result as the temperature itself is in question. The spectroscopic results and modeling essentially

confirm the validity of the kinetic interpretation showing acool bulk population.

The local temperature, even using the classical method, is below what one would expect

as valid for the fluid conduction model (≈ 4 eV vs.15 eV) and therefore violates the Chodura

7



criteria that was restated as eq. 2. Although this result maybe counter-intuitive considering the

high density and low temperatures present at the target plate, nevertheless one must consider

kinetic transport effects in such conditions.

This result could have significant impact on projections to ITER as it is essential to re-

duce the temperatures at the target plates to eliminate erosion by sputtering. This reduction

in temperature toward the targetis precisely where kinetic effects will occur. This effect was

already shown in modeling by Batishchev[8], and this work provides experimental evidence

that these kinetic effects do, indeed, occur. Earlier work showed, however, that the plasma-

to-floating potential difference is most strongly correlated with the amount of energy in the

higher-temperature electron population[13]. This indicates that despite the reduction to low

bulk temperatures, a tail population could create an elevated sheath potential leading to larger

than expected sputtering yields.

Studies of non-local electron transport effects have begunthrough the use of analytics and

numerical simulations. Non-local transport occurs when high-energy electrons pass to different

regions of the plasma due to the decrease in collision cross-section with increasing energy. A

velocity-dependent Krook model[27] has been applied usingthe OEDGE background plasma

as an initial condition. Comparison of the derived distribution functions using the velocity-

dependent Krook model reproduce a tail population with the correct temperatures as observed

in the probe results (details are left to a future publication).

In summary: non-Maxwellian electron energy distributionshave been observed in the NSTX

divertor. These observations have been obtained through the use of a kinetic probe interpreta-

tion method. OEDGE interpretive modeling has been applied to reconstruct the local plasma

and neutral solutions to aid spectroscopic interpretation. The characteristics of the bulk plasma

are confirmed with a combination of spectroscopic analysis and collisional-radiative modeling.

The existence of kinetic effects should not be unexpected considering these plasma conditions

violate the fluid-model criteria set forth by Chodura for conduction-limited electron transport.

Initial studies with analytics using the OEDGE fluid background as an initial condition have

also shown the generation of tail populations suggesting non-local electron transport could be

the root cause of the non-Maxwellian distributions, consistent with earlier simulations and the-
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oretical works.
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Table 1: Summary of Langmuir probe and spectroscopic analyses. “Bulk” values refer to those
obtained from the kinetic probe interpretation method.

Quantity Value Quantity Value
Classicalne 1.6×1020 m−3 ClassicalTe 8.3 eV

Bulk ne 2.5×1020 m−3 Bulk Te 3.4 eV
Broadeningne 3.6±1.5× 1020 m−3 CRM Te 3–5 eV
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