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1Plasma Physics Laboratory, Princeton University,
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Abstract

Guiding center simulations are routinely used for the discovery of mode-particle resonances in

tokamaks, for both resistive and ideal instabilities and to find modifications of particle distribu-

tions caused by a given spectrum of modes, including large scale avalanches during events with a

number of large amplitude modes. One of the most fundamental properties of ideal magnetohydro-

dynamics is the condition that plasma motion cannot change magnetic topology. The conventional

representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field

through δ ~B = ∇× (~ξ × ~B) however perturbs the magnetic topology, introducing extraneous mag-

netic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian

displacement of the field due to the perturbation and conserves magnetic topology as it should.

In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories the

guiding center equations should include a correct Lagrangian treatment. Guiding center equations

for an ideal displacement ~ξ are derived which perserve the magnetic topology and are used to ex-

amine mode particle resonances in toroidal confinement devices. These simulations are compared

to others which are identical in all respects except that they use the linear representation for the

field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding

center equations does not result in extraneous mode particle resonances.

PACS numbers: 52.35.Bj, 52.35.Vd
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I. INTRODUCTION

Guiding center codes are routinely used to simulate the modification of particle distribu-

tions in fusion devices caused by a spectrum of unstable modes, including toroidal Alfvén

eigenmodes and other kinetic instabilities excited by a high energy particle population such

as an injected beam used for heating or thermonuclearly produced alpha particles[1–3].

A representation of the magnetic field perturbation which is linear in the ideal displace-

ment ~ξ does not preserve magnetic topology[4], creating magnetic islands which should not

be present, although unlikely to modify stability or growth rate calculations because the

islands occupy a fraction of the total plasma volume proportional to the ideal displacement

ξ, and the perturbed energy is proportional to ξ2, so the correction to the energy should be

of order ξ3. Unlike the calculation of plasma stability however, the modification of particle

distributions is caused by locally occuring resonances, and the total change in the distri-

bution is due to the number and size of these resonances, so the occurance of extraneous

resonances could be important. In this work we investigate whether the linear treatment

of the field perturbation also introduces extraneous mode-particle resonances which could

compromise the analysis of the effect of the modes on particle distributions. In order to

correctly find the effect of ideal modes on particle distributions one must find the equations

of motion using a full Lagrangian treatment of the field produced by the ideal displacement

~ξ.

The equilibrium field in a toroidal axisymmetric equilibrium has covariant and contravari-

ant representations, given by ~B0 = ∇ζ×∇ψp+q∇ψp×∇θ = g∇ζ+I∇θ+δ∇ψp with q(ψp)

the field line helicity, ψp the poloidal flux, θ and ζ poloidal and toroidal coordinates and ψp,

θ, and ζ forming a right handed coordinate system with Jacobian 1/Jp = ∇ψp · (∇θ×∇ζ).

The toroidal flux is ψ with dψ = q(ψp)dψp. The function g is a flux function, and we use

Boozer coordinates[5] with I = I(ψp). Contravariant bases for the coordinate system are

given by ~eβ = ∇β with β = ψp, θ, and ζ[6]. A magnetohydrodynamic (MHD) instability

is given by the plasma displacement ~ξ, producing a modification of the magnetic field, with

linear representation δ ~B = ∇× (~ξ × ~B).

In section II we find guiding center equations using the linear representation for the field

perturbation δ ~B = ∇ × (~ξ × ~B) and explore the mode particle resonances produced by

typical perturbations. In section III we find the modified guiding center equations using the
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FIG. 1: The radial dependence of the harmonics for ξψp used for the development and examination

of the guiding center equations.

full Lagrangian displacement representation for the field perturbation and compare these

results with those obtained using the linear representation of the field. In section IV are the

conclusions.

II. LINEAR PERTURBATION δ ~B = ∇× (~ξ × ~B)

Introduce an ideal perturbation with fluid displacement ~ξ giving a magnetic field pertur-

bation linear in ξ of the form δ ~B = ∇×(~ξ× ~B). Now expand ~ξ in the covariant basis ~ξ = ξα~eα,

and make a Fourier decomposition of ~ξ through ξψ =
∑

mn ξ
ψ
mnsin(Q), ξθ =

∑

mn ξ
θ
mncos(Q),

and ξζ =
∑

mn ξ
ζ
mncos(Q) with Q = nζ − mθ − ωt and ∇ · ~ξ = 1

Jp

∂α(Jpξ
α). In Fig. 1 is

shown a sample global harmonic for the representation of the displacements ξψp , ξθ, ξζ used

for the development and verification of the guiding center equations.

Write the guiding center Lagrangian for a charged particle in a magnetic field[6, 7]

L = ( ~A+ ρ‖ ~B) · ~v −H (1)

with ρ‖ = v‖/B, ~A the vector potential, ~v the particle velocity, and H the Hamiltonian

H =
ρ2

‖B
2

2
+ µB + Φ (2)
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with µ the magnetic moment and Φ the electric potential. The equilibrium vector potential

is ~A = ψ∇θ − ψp∇ζ and the perturbation δ ~A = ~ξ × ~B. Then ~ξ × ~B = ξαBβǫαβγJp~e
γ. The

Lagrangian becomes

L = (ψ~eθ − ψp~e
ζ + ξαBβǫαβγJp~e

γ + ρ‖Bα~e
α) · ~v −H. (3)

Using Bψp = 0, Bθ = 1/Jp, B
ζ = q/Jp this simplifies to

L = (ψ + ρ‖I − qξψp)θ̇ + (ρ‖g − ψp + ξψp)ζ̇ + (qξθ − ξζ)ψ̇p −H (4)

where we have dropped δ, not modifying the particle trajectory in the poloidal plane and

giving rise only to periodic oscillations in the toroidal precession.

Largange’s equations are

d

dt

∂L

∂q̇
=
∂L

∂q
(5)

giving
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with

A = q + ρ‖I
′
− ∂ψp

(qξψp) − q∂θξ
θ + ∂θξ

ζ

C = ρ‖g
′
− 1 + ∂ψp
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θ + ∂ζξ

ζ

F = ∂θξ
ψp + q∂ζξ

ψp (7)

which we invert to find
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. (8)

The antisymmetry of the matrix giving the time derivatives guarantees energy conserva-

tion in the absense of explicit time dependence. From

dH

dt
= ∂ψp

Hψ̇p + ∂θHθ̇ + ∂ζHζ̇ + ∂ρ‖Hρ̇‖ (9)
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we note that terms cancel one other due to this antisymmetry.

Significant tests of a numerical code for following particle trajectories in a toroidal confine-

ment device consist of Poincaré plots and the observation of energy conservation. Poincaré

plots using very low energy particles with zero magnetic moment and zero mode frequency

show detailed structure of the magnetic field, very sensitive to numerical errors. Kinetic

Poincaré plots indicate mode-particle resonances and the island structure of these reso-

nances is also very sensitive to numerical error. If the mode has zero frequency, then energy

conservation is a very sensitive test of the numeral integration scheme and if high energy

particles are used energy conservation tests also the correctness of the second order drift

terms. Another test is the fact that in the presence of a single mode, since H = H(nζ −ωt)

ωṖζ = n∂tH. (10)

This condition restricts the motion of particles in the Pζ , E plane due to the action of a

mode.

In Fig. 2 is shown a Poincaré plot of the magnetic field showing the islands produced

by the use of a linear representation of a large ideal perturbation. As shown in a previous

publication[4] this representation produces unwanted resonance islands near the rational

surface q = m/n, shown in the figure with a red line, which have width which is linear in

the perturbation amplitude.

A kinetic Poincaré plot provides a means of examining mode particle resonances. Points

are plotted in the poloidal cross section whenever nζ − ωnt = 2πk with k integer. The

toroidal motion then gives successive Poincaré points in the poloidal cross section ψp, θ,

or better, since Pζ and E are constant in the absence of perturbations, the Pζ , θ plane.

Individual modes produce islands in the phase space of the particle orbits, which through

phase mixing produce local flattening of the particle distribution. In addition, overlap of

these islands, the Chirikov criterion, leads to stochastic transport of particles. Such a plot

shows the canonical division of orbits into those following good Kolmogorov, Arnold, Moser

[10] (KAM) surfaces, isolated islands bounded by separatrices, and stochastic domains. In

an ideal situation with a single perturbation the separatrix is a well defined boundary, but

in an actual equilibrium it is broadened into a thin stochastic layer by toroidal coupling or

nonlinear coupling to other perturbations.

A general method for numerically determining the existence of or the destruction of good
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FIG. 2: A Poincaré plot using the linear ∇× (~ξ× ~B) for a zero frequency m/n = 3/2 perturbation,

showing the extraneous islands produced near the rational surface r/a = 0.7. A large perturbation

with ξ = 3 × 10−3 was used.

FIG. 3: Resonances in the Pζ , E plane (a) and a kinetic Poincaré plot (b) using the linear pertur-

bation representation ∇ × (~ξ × ~B). A perturbation of magnitude ξ = 4 × 10−4 was used, typical

for toroidal Alfvén modes.

6



KAM surfaces can be obtained using the method of phase vector rotation [8, 9]. Consider

following two orbits located nearby one another. Examine a Poincaré section in Pζ , θ and

define the angle χ to give the orientation of the vector joining them in this plane. If good

KAM surfaces exist χ can change by at most an angle of π, due to their relative velocity in

the angular coordinate. However two orbits within an island rotate around one another with

χ increasing with the rotation time abo ut the island O-point giving the bounce frequency

of a particle trapped in the wave.

In Fig. 3 is an example of the use of phase vector rotation to find all resonances for a

given value of µ. Shown is the Pζ , E plane, (a) with the locations of resonances marked.

Black indicates energy transfer from the particles to the mode, and red the opposite. There

are two principle resonance chains, extending over a large range of energy. The mode had a

frequency of 40 KHz and mode numbers of m/n = 3/2. Also shown with a thin red line is

the resonance surface q = m/n, where extraneous islands appear in the magnetic field due

to the use of the linearized form of the perturbed field. This plot is obtained by launching

a large number of pairs of particles, all orbits with magnetic moment µB = 4KeV , phase

vector rotation indicating the presence of a resonance. Also shown (b) is a Poincaré plot

obtained along the sloping line in (a) crossing the resonance at the left starting at 32 KeV.

This line satisfies ωṖζ = n∂tH, and particle motion induced by the mode takes place along

this line. There are no resonances observed in the vicinity of the surface q = m/n. Note

also that the mode particle resonances observed are much larger than the extraneous islands

produced in the magnetic field.

We point out also that simulations have been made with different amplitudes of ξθ and ξζ

with no discernable modification of resonance location or width. The resonances are entirely

determined by the amplitude of the cross field component ξψp .

III. FULL LAGRANGIAN REPRESENTATION OF THE PERTURBATION

To avoid the production of islands in the magnetic field near the rational surfaces use the

ideal MHD condition that the field is frozen into the plasma. Use the Lundquist identity[11,

12]

~B(~r, t) = ~B0(~r0, 0) + ( ~B0(~r0, 0) · ∇0)~ξ(~r0, t), (11)

7



where ~r = ~r0 + ~ξ. Thus the field at point ~r is given by the field at the point ~r0 = ~r − ~ξ,

ie the field has been carried along with the displacement ~ξ in a Lagrangian sense. We then

calculate the magnetic field using shifted coordinates, B(ψp − ξψp , θ − ξθ, ζ − ξζ) and then

find equations for the step in time.

Thus we wish to find equations of motion using the field evaluated at the point ~r0 = ~r−~ξ.

Write the Lagrangian for the coordinates of ~r0, which we donote by ψp0, θ0, ζ0, giving from

Eq. 4

L = (ψ0 + ρ‖0I)θ̇0 + (ρ‖0g − ψp0)ζ̇0 −H(ψp0, θ0, ζ0, ρ‖0) (12)

where all functions defining ~B, ie g, I, q are evaluated at ~r0.

The equations of motion for ψp0, θ0, ζ0, ρ‖0 given by this Lagrangian are
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with A = q + ρ‖I
′, C = ρ‖g

′ − 1, which we invert to find
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(14)

Now return to the particle coordinates ψp, θ, ζ. We easily find ψ̇p = ψ̇p0+ ξ̇ψp , θ̇ = θ̇0+ ξ̇θ,

ζ̇ = ζ̇0 + ξ̇ζ . In the absense of a perturbation we have ρ̇‖ = ρ̇‖0 but with the perturbation

the relation is not trivial because the change in the magnitude of the field requires a change

in ρ‖. To find ρ̇‖ in the presence of a perturbation use ωṖζ = nḢ. We have

dH

dt
= ρ‖B

2
dρ‖
dt

+
∂H

∂β

dβ

dt
(15)

where summation over β = ψp, θ, ζ is understood. Then from the Lagrangian Eq. 12 find

Pζ = gρ‖ − ψp + ξψp , giving

dρ‖
dt

=
n(∂H/∂β)dβ/dt+ ω(1 − g′)ψ̇p − ωξ̇ψp

ωg − nρ‖B2
. (16)
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FIG. 4: A Poincaré plot of the magnetic field using the full nonlinear Lundquist expression for

following orbits. The red line is the displaced rational surface q = m/n. A perturbation of

magnitude ξ = 3 × 10−3 was used.

In Fig. 4 is shown the Poincaré plot of the field with the same perturbation present as

in Fig. 2. The red line indicates the displaced rational surface q = m/n and of course the

field is given by a full Lagrangian displacement, including all orders of ξ, and includes no

extraneous islands.

In Fig. 5 is an example of the use of phase vector rotation to find all resonances for a

given value of µ, with the same parameters as used for Fig. 3. Shown is the Pζ , E plane,

(a) with the locations of resonances marked. The two principle resonance chains, extending

over a large range of energy are the same as shown in Fig. 3. Also shown with a thin red

line is the resonance surface q = m/n. A Poincaré plot (b) was obtained along the sloping

line in (a) crossing the resonance at the left starting at 32 KeV.

A number of such cases have been examined with different mode frequencies and different

values of magnetic moment µ, without discovering any extraneous resonances due to the use

of the linearized form of the perturbed magnetic field. In particular, no resonances have

been observed in the vicinity of the rational surface q = m/n.
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FIG. 5: Resonances in the Pζ , E plane (a) and a kinetic Poincaré plot (b) using the full Lagrangian

representation for the field. A perturbation of magnitude ξ = 4×10−4 was used, typical for toroidal

Alfvén modes.

IV. CONCLUSION

Guiding center equations are constructed for ideal MHD modes using both the represen-

tation of the field perturbation linear in ~ξ and using the full Lagrangian displacement to find

the field perturbation. No modification of the mode-particle resonance spectrum due to the

use of the linearized perturbation has been discovered. The particle resonances observed are

much larger than the size of the extraneous islands produced in the field, which are linear

in ξ, so probably particle drift makes it impossible for these small islands to produce any

resonances in the particle dynamics.

Both in the case of linear δ ~B = ∇× (~ξ × ~B) and with the full Lagrangian displacement

the size and location of the resonances is completely independent of the magnitudes of ξθ

and ξζ , it is only the cross field component of ~ξ that is relevant for mode-particle resonance.

This confirms the expectation that mode particle resonances with ideal modes can be safely

investigated using the representation ∇ × α~B shown to correctly give[4] the cross field

component of ~ξ.
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