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In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is
obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence.
First, a balanced truncation (a model reduction technique that has proven successful in flow control design
problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a model-
based feedback controller is designed for the reduced order model using linear quadratic regulators (LQR).
Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The
controller is applied on the non-reduced, nonlinear MHW equations to stabilize the equilibrium and suppress
the transition to drift-wave induced turbulence.

I. INTRODUCTION

For several decades, toroidal devices have been used to
confine plasmas for the purpose of studying nuclear fu-
sion. During this time, an incredible number of compli-
cated dynamic behaviors have been uncovered in toroidal
plasmas, including but not limited to magnetohydro-
dynamic instability, kinetic instability, and microturbu-
lence.

The consequences of these resulting fluctuations in-
clude: non-uniformities, highly increased transport, and
possibly even macroscopic break up. Therefore, eliminat-
ing these instabilities and fluctuations by using feedback
control tools1–6 has been a topic of considerable interest.
Various theoretical and experimental tools have been de-
veloped and applied to plasma devices in order to stabi-
lize unstable modes and reduce transport.7–12

The Hasegawa-Wakatani13,14 (HW) system, which
couples plasma density and electrostatic potential
through an approximation to the physics of parallel elec-
tron motion, is a simple model that describes resistive
drift wave turbulence. It was first developed to inves-
tigate anomalous edge transport due to collisional drift
waves.15

Due to nonlinearity, drift waves can self-consistently
generate zonal flows, which in turn play a key role in the
regulation of the drift-wave turbulence and anomalous
transport. Traditionally, the mechanism was argued to
be the shearing apart of the drift-wave eddies.16,17 More
recently, another turbulence dissipation mechanism has
been proposed involving coupling of the unstable drift
waves to damped eigenmodes.18 This coupling can be
catalyzed by the zonal flows.19 The HW model contains
both of these mechanisms.

Several models have been used to study the coupling
of drift waves turbulence and zonal flow, including a

a)igoumiri@princeton.edu

predator/prey model proposed by Diamond, Rosenbluth,
and Hinton 20 a 4-dimensional model derived by Chen,
Lin, and White 21 , or a 10-dimensional model derived by
Kolesnikov and Krommes 22 . In this paper, the Modified
Hasegawa-Wakatani Model (MHW) is used by Numata,
Ball, and Dewar 23 for turbulence analysis.

Parallel electron motion is important for generating,
stabilizing, and destabilizing the zonal flow. That is han-
dled naturally in the 3D HW model. However, for com-
putational tractability, it is useful to study a 2D model,
as various authors have done.23,24 Originally, people just
replaced the parallel dissipation operator −D‖∇2

‖ with

a constant (thereby essentially assuming the presence of
a single, dominant, nonzero parallel wave number k‖).
However, that approximation is incorrect for zonal flows,
for which k‖ = 0. Therefore, in the MHW model, the

parallel term is taken to vanish for the zonal modes.24

To study stabilization of drift wave fluctuations, a lin-
ear forcing is introduced into the governing equations and
its effect is analyzed both theoretically and numerically.

Before diving into the control design for the model, a
simplified reduced-order model is built by performing a
balanced truncation25 that retains certain modes. The
retained modes are the most important ones in the fol-
lowing step, which is the controller design.

Our goal is to stabilize the unstable modes of this sim-
ple MHW model, assuming that their number is com-
putationally small. In reality, more complex dynamics
can occur where these unstable modes are numerous,
resulting in intractable chaotic dynamics. There is an
abundant literature on chaos control in general dynami-
cal systems,26–29 but those studies are exclusively focused
on controlling chaos through small variations in the sys-
tem parameter on which the nature of the dynamics de-
pends extensively. The feedback is used only to detect the
chaotic dynamics; then on the basis of that information
a sensitive system parameters are varied until the system
makes its transition to a regular dynamical state. This
methodology is attractive for theoretical studies or small
laboratory experiments, where feedback power is not an
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issue. However, for fusion plasmas, changes to parame-
ters such as the plasma pressure gradient are very energy
intensive and impractical.

In contrast, in this paper, linear feedback plays the
key role and is applied directly on the system in order
to control it. It is found to have a complete stabilizing
effect assuming that the controller is applied at the right
time (details will be discussed further).

The remainder of this paper is organized as follows.
In Sec. II, the MHW model is introduced for coupling
drift wave turbulence and zonal flow, its linearization and
its controlled developed version (as a state-space realiza-
tion) are both derived. In Sec. III, the model reduction
methodology and its background is discussed, the differ-
ent tools of control design are presented in Sec. IV, the
simulation setup is given in Sec.V, then the results of ap-
plication of both Sec. III and Sec. IV on the MHW model
are shown in Sec. VI. Finally, summary and conclusions
are presented in Sec. VII.

II. MODIFIED HASEGAWA-WAKATANI MODEL

As stated in Numata, Ball, and Dewar 23 , the original
HW model does not contain zonal flows when restricted
to 2D. This leads to consideration of the MHW model.

It describes the nonlinear dynamics of dissipative drift
wave turbulence coupled with zonal flow. It consists of
two partial differential equations describing the nonlinear
evolution of the ion vorticity ζ and density fluctuations
n.

A mean density gradient dn0(x)/dx is assumed in the
direction of −x. A constant equilibrium magnetic field
B = B0∇z is assumed. The equations are

∂ζ

∂t
+ {ϕ, ζ} = α(ϕ̃− ñ)− µ∆2ζ, (1a)

∂n

∂t
+ {ϕ, n} = α(ϕ̃− ñ)− κ∂ϕ

∂y
− µ∆2n, (1b)

where zonal and nonzonal components of a variable f are
defined as

zonal: 〈f〉 ≡ 1

Ly

∫
fdy, (2a)

nonzonal: f̃ ≡ f − 〈f〉, (2b)

where Ly is the periodicity length in y. ϕ is defined as
the electrostatic potential with ζ = ∆ϕ, ∆ = ∂2/∂x2 +
∂2/∂y2 is the 2D Laplacian, {a, b} ≡ (∂a/∂x) (∂b/∂y)−
(∂a/∂y) (∂b/∂x) is the Poisson bracket, µ is the dissipa-
tion coefficient, the background density n0 is assumed to
have a fixed exponential profile, so that the background
density gradient κ ≡ (∂/∂x) lnn0 is assumed constant,
α is the adiabaticity operator. In this 2D setting, α and
µ, and κ are considered to be time- and space-invariant
constants. Periodic boundary conditions are used. See
Sec. V A for more details.

A. Linearized Modified Hasegawa-Wakatani model around
zero

For simplicity, the unstable equilibrium point of (1) is
chosen as (φ0 = 0, ζ0 = 0, n0 = 0). The linearization
about this equilibrium is

∂ζ

∂t
= α(ϕ̃− ñ)− µ∆2ζ, (3a)

∂n

∂t
= α(ϕ̃− ñ)− κ∂ϕ

∂y
− µ∆2n. (3b)

The equations are rewritten in a matrix notation as

d

dt

(
ζ
n

)
= A

(
ζ
n

)
=

(
α∆−1 − µ∆2 −α

α∆−1 − κ ∂
∂y∆−1 −α− µ∆2

)(
ζ
n

)
. (4)

B. Controlled Modified Hasegawa-Wakatani model

The controlled version of the MHW equation is built
by considering an additional external electrostatic poten-
tial as the control input in the model. It can be realized
experimentally by introducing an electrode (a probe) in-
side the tokamak.30,31 The total electrostatic potential is
written as

ϕtotal = ϕint + ϕext, (5)

where ϕint is the internal potential, ϕext = Φu is the ex-
ternal potential added as the control input, u is a scalar,
and Φ is a given column vector that specifies the external
field’s spatial distribution.

This external potential is then injected into three of
the equations that constitute a basis for the derivation of
the MHW equations: the ion continuity, electron continu-
ity, and electron parallel momentum equations as follows.
The ion continuity equation becomes

∂tñi
G + V∗∂y(ϕint + ϕext) + (vE int + vEext) · ∇⊥ñiG = 0,

(6)
where ñGi denotes the internal ion gyrocenter density
fluctuations, the electron continuity equation becomes

∂tñe = −V∗∂y(ϕint+ϕext)−(vE int+vEext)·∇ñe−∇||u||e,
(7)

the electron parallel momentum becomes

u||e = D∇||(ϕint + ϕext − ñe), (8)

where V∗ is the diamagnetic velocity, vE is the E × B
velocity, ñe is the electron density fluctuations, ∇⊥ =
∂/∂x+ ∂/∂y and ∇|| = ∂/∂z are respectively the gradi-
ents perpendicular and parallel to the magnetic field B.
Finally, consider the gyrokinetic Poisson equation, which
is usually taken to be the statement of charge quasineu-
trality:

ñi = ñe. (9)
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Here ni is the particle (not gyrocenter) density fluctua-

tion. One has ñi = ñGi + ñpoli , where npoli is the ion po-

larization density. In the cold-ion limit, ñpoli = ρ2s∇2
⊥ϕ.

Here it is appropriate to just use ϕint. This can be ar-
gued in several ways. First, it is not hard to see that if
one tries to use ϕint +ϕext, the system is not controllable
because it will reduce to a simple change of variables,
and therefore no perturbation or forcing will be intro-
duced. Second, an external potential should be cancelled
by external charges. Those external charges are not de-
scribed here. Indeed, the physics of a probe (or array
of probes) inserted into a plasma is entirely nontrivial.
It is merely assumed that the external potential can be
adjusted at will; the plasma physics associated with the
response of the plasma to the probe is not considered.
Then this procedure (using just the internal potential in
Poisson’s equation) is completely analogous to the stan-
dard test-particle calculation that is done in elementary
plasma kinetic theory. That is, we will use

ñi
G = ñe − ρ2s∇2

⊥ϕint. (10)

After manipulation, the controlled linearized Modified
Hasegawa-Wakatani equations are deduced:

∂

∂t
ζ = α(ϕ̃− ñ) + αϕ̃ext − µ∆2ζ, (11a)

∂

∂t
n = α(ϕ̃− ñ) + αϕ̃ext − κ

∂ϕ

∂y
− κ∂ϕext

∂y
− µ∆2n.

(11b)

It can then be rewritten as seen in the previous section
Eq. (4), as

∂

∂t

(
ζ
n

)
= A

(
ζ
n

)
+Bu, (12)

where

B =

(
αΦ̃

αΦ̃− κ∂yΦ

)
. (13)

III. MODEL REDUCTION OF LINEAR
TIME-INVARIANT SYSTEMS

In the area of model-based feedback flow control of
fluids, substantial developments have taken place in the
last decade, for instance, Cattafesta et al. 32 , Choi, Jeon,
and Kim 33 and Sipp et al. 34 In many applications, the
focus is on how to apply actuation in order to maintain
the flow around a steady state or an orbit of interest, for
instance to delay the transition to turbulence.

Model-based linear control theory provides efficient
tools for the analysis and design of feedback controllers
such as Linear-Quadratic Regulators (LQR) and Linear-
Quadratic-Gaussian (LQG). However, a significant chal-
lenge is that models for flow control problems are often
very high dimensional O(105∼9), so large that it becomes

computationally infeasible to apply linear control tech-
niques. To address this issue, model reduction, in which
a low-order approximation model is obtained, is widely
employed.

In this section, various techniques for constructing
reduced-order models are briefly reviewed before concen-
trating on one method in particular, the balanced trun-
cation, which will be used for the control design.

A. Overview of model reduction techniques

Among many model reduction techniques, such as
singular perturbation or Hankel norm reduction meth-
ods, the projection-based method is a widely used ap-
proach, which involves projection of a model onto a set
of modes. These may be global eigenmodes of a linearized
operator,35 modes determined by proper orthogonal de-
composition (POD) of a set of data,36 and variants of
POD, such as including shift modes.37 In particular, an
efficient projection-based method for linear control sys-
tems is balanced truncation.25 Compared to most other
methods, including POD, balanced truncation has key
advantages, such as a priori error bounds and guaran-
teed stability of the reduced-order model if the original
high-order system is stable.

While this method is computationally intractable for
systems with very large state spaces (& 105), recently an
algorithm for computing approximate balanced trunca-
tion from snapshots of linearized and adjoint simulations
has been developed38 and successfully applied to a vari-
ety of high-dimensional flow control problems39–41 (with
state dimension up to 107).

In this method, sometimes called balanced POD
(BPOD), one obtains two sets of modes (primary and
adjoint) that are bi-orthogonal, and uses those for pro-
jection of the governing equations. BPOD typically pro-
duces models that are far more accurate and efficient
than standard POD models, in the sense that the num-
ber of modes needed to capture the dynamics in BPOD is
much less than that in POD. Detailed comparisons have
been given by Rowley 38 and Ilak and Rowley 39

One of the difficulties that BPOD users can face oc-
curs when they deal with experimental data: the main
restriction is that balanced POD requires snapshots of
impulse-response data from an adjoint system, which is
not available for experiments. To address this issue, an-
other technique exists, called the eigensystem realization
algorithm (ERA).42 For linear systems, ERA theoreti-
cally produces exactly the same reduced-order models as
balanced POD, with no need of an adjoint system, and
at an order of magnitude lower computational cost.

For simplicity, our numerical problem will have a small
dimension state space, so the exact balanced truncation
can reasonably be applied without worrying about the
computational tractability.
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B. Balanced truncation of stable systems

A stable linear time-invariant state-space system is de-
scribed as follows:

ẋ = Ax+Bu,

y = Cx,
(14)

where x ∈ Rn is the high-dimensional state (for instance,
the state variables at all grid points of the simulation),
u ∈ Rp is a vector of inputs (for instance, actuators or
disturbances), and y ∈ Rq is a vector of outputs (for
instance, sensor measurements, or other measurable
quantities as linear functions of the state).

For such a system, concepts of controllability and ob-
servability can be defined, which are quantified by a pair
of symmetric, positive-semidefinite matrices

Wc =

∫ ∞
0

eAtBB†eA
†tdt, (15a)

Wo =

∫ ∞
0

eA
†tC†CeAtdt, (15b)

called controllability and observability Gramians, where
daggers denote adjoint operators.

The controllability Gramian Wc provides a measure of
the influence of input history on the current state (i.e.
to what degree each state is excited by inputs), and the
observability Gramian Wo measures the influence of an
initial state on future outputs with zero control input
(i.e. to what degree each state excites future outputs).
The larger eigenvalues of the controllability (observabil-
ity) Gramian correspond to the more controllable (ob-
servable) states.

A balanced truncation involves first a coordinate trans-
formation T , called the balancing transformation, that
simultaneously diagonalizes these matrices. That is, un-
der a change of coordinates x = Tz, the transformed
Gramians become

T−1Wc(T
−1)† = T †WoT = Σ, (16)

where Σ = diag(σ1, . . . , σn). The diagonal entries are
called Hankel singular values, and are customarily or-
dered so that σ1 ≥ · · · ≥ σn ≥ 0.

A reduced-order model may then be obtained by trun-
cating the states that are least controllable and observ-
able. That is, if T =

[
T1 T2

]
, and x = Tz = T1z1+T2z2,

then a reduced-order model is obtained by setting z2 = 0,
yielding a model of the form

ż1 = Arz1 +Bru,

y = Crz1,
(17)

The resulting reduced-order balanced model retains
the most controllable and observable states and is there-
fore suitable for capturing the input-output dynamics of
the original system.

Quantitatively the balanced truncation procedure
guarantees an a priori upper bound of error between
the original system and the reduced-order model. If
G(s) = C(sI − A)−1B denotes the transfer function of
the system (14), and Gr(s) denotes the corresponding
transfer function of the approximation Eq. (17), then

||G−Gr||∞ < 2

n∑
k=r+1

σr. (18)

In addition, any reduced-order model Gr with r states
satisfies

||G−Gr||∞ > σr+1, (19)

where σr+1 is the first neglected Hankel singular value
of G. This is a fundamental limitation for any reduced-
order model. The two inequalities (18) and (19) provide
a priori error bounds which will be used in Sec. VI.

C. Balanced truncation of unstable systems

Balanced truncation has been extended to linear, un-
stable systems40,43 by decomposing the system into a sta-
ble subsystem and an unstable subsystem.

Consider the state-space system defined in Eq. (14).
If it is unstable, the system can be decoupled into an
ns-dimensional stable subsystem and an nu-dimensional
unstable subsystem. Then the balanced truncation may
be applied on the stable subsystem. The number of un-
stable eigenvalues is typically small (if it isn’t, then the
control task is especially difficult), so this approach is
usually computationally feasible.

Consider R =
[
Ru Rs

]
being the matrix of right eigen-

vectors (where the columns of R are eigenvectors) and

L =

[
Lu

Ls

]
being the left eigenvectors (where rows of L

are eigenvectors). The state x can be expanded as

x = xu + xs, (20)

where xu ∈ Rn is in the unstable eigenspace (image of
Ru, a subspace of dimension nu) and xs ∈ Rn is in the
stable eigenspace (image of Rs). The projection onto the
stable subspace is then

Ps = I −RuLu (21)

where Ru and Lu ∈ Rn×nu are matrices of right and
left unstable eigenvectors that have been normalized such
that LuRu = Inu

(and of course, LuRs = 0). Thus,
xs = Psx.
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The reduced-order model is calculated on the stable
subspace, so a balancing transformation T =

[
T1 T2

]
is

found, xs can then be written

xs = T1z1 + T2z2, (22)

where T1 has r columns, corresponding to the modes kept
(so z1 ∈ Rr), and T2 has n − r columns, corresponding
to neglected modes (so z2 ∈ Rn−r). Define also

T−1 = S =

[
S1

S2

]
, (23)

so that P1 = T1S1 is the projection onto the image of T1,
an r-dimensional subspace of Rn.

The state in the reduced-order model is then

xr =

[
Lux
z1

]
=

[
Lu

S1Ps

]
x. (24)

In this notation, the approximation to the full state is
then[

Ru T1
]
xr = RuLux+ T1S1Psx = xu + P1xs, (25)

That is, the unstable part of the state is captured exactly,
and the stable part is the projection onto the r balancing
modes.

Note that, in order to compute xr, only the right and
left unstable eigenvectors Ru and Lu need to be com-
puted, not the stable eigenvectors. This is thus compu-
tationally tractable even when the state dimension n is
very large, as long as the number of unstable eigenvalues
is small.

IV. FEEDBACK CONTROL DESIGN USING REDUCED
ORDER MODELS

Once the reduced-order model is obtained and vali-
dated, standard techniques from linear control theory
can be applied in order to design controllers for the low-
dimensional system. These controllers are designed on
the reduced models, then applied to the full-dimensional
linearized model, and lastly tested on to the original non-
linear model to determine if the controller can suppress
disturbances in the neighborhood of the unstable equi-
librium.

A. Full-state feedback control design

A standard linear control technique is used in order to
obtain stabilizing controllers: a linear state feedback u =
−Krxr is used such that the eigenvalues of Ar − BrKr

are in the left half of the complex plane. The gain Kr is
chosen to minimize the quadratic cost function

J [xr, u] =

∫ ∞
0

(
x†rQxr + u†Ru

)
dt, (26)

where Q and R are positive weights computed as follows.
Q is chosen such that the first term in the integrand above
represents a weighted norm of the output y = Crxr, thus
Q = q ∗ C†rCr, where q is a adequately chosen weight
(scalar). Since u is a scalar (only one actuator), the
weight R is a scalar too, and so may be taken to be 1
without loss of generality.

Once this controller Kr is designed, It is implemented
on both the full linear and nonlinear system. The con-
trol implementation steps are sketched in Fig. 1: first
compute the reduced-order state xr, using the expression

xr = Ψx where Ψ =

[
Lu

S1Ps

]
and T1 (the transformation

matrix), then the control input is given by u = −Krxr.

ẋ = Ax + Bu

ΨKr

x ∈ Rn

xr

−
u ∈ Rp

K

ẋ = f(x) + Bu

ΨKr

x ∈ Rn

xr

−
u ∈ Rp

K

FIG. 1. Schematic of the implementation of the full-state
feedback control in the full linear (top) and full non linear
(bottom) simulations. The entire state is first projected onto
the unstable eigenvectors and the stable subspace of the bal-
anced modes in order to compute the reduced-order state xr.
The state is then multiplied by the gain K, computed based
on the reduced-order model using LQR to obtain the control
input u = −KrΨx.

B. Observer-based feedback control design

In most engineering applications, the state of the full
system is unknown, and thus a full-state feedback con-
troller that updates the control input based on the the
current state is not directly applicable. Instead, one typ-
ically uses an observer-based feedback controller to up-
date the feedback control inputs based on the sensor mea-
surements (outputs).

As before, using the reduced-order model, an observer
is designed using a quadratic estimator known as the
Kalman filter. This method is optimal if the errors in
representing the state xr and the measurements y are
stochastic Gaussian processes. Such errors typically arise
from inaccuracies in the model, external disturbances,
and sensor noise. The method gives us an estimate x̂r
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of the state xr that is optimal in the sense that it min-
imizes the mean of the squared error; for more details,
see Skogestad and Postlethwaite 44 .

ẋ = Ax+Bu+ w

y = Cx+ v

Full linear model

˙̂xr = Arx̂r −Bru− L(y − Crx̂r)

Observer

Kr

Controller

x ∈ Rq

x̂r

−
u ∈ Rp

v, w

−1

Compensator

ẋ = f(x) +Bu+ w

y = Cx+ v

Full nonlinear model

˙̂xr = Arx̂r −Bru− L(y − Crx̂r)

Observer

Kr

Controller

x ∈ Rq

x̂r

−
u ∈ Rp

v, w

−1

Compensator

FIG. 2. Schematic of the implementation of the observer-
based feedback control in the linear (top) and nonlinear (bot-
tom) simulations. The control input u and the sensor mea-
surements y are used as inputs to the observer, which recon-
struct the reduced-order state x̂r. This state is then multi-
plied by the gain Kr to obtain the control input u. Both
the controller and the observer gains Kr and L are computed
based on the reduced-order model.

The disturbances w comes from the model truncation
and ignoring the nonlinear terms in the reduced-order
model (linearization). The sensor noise v (error in mea-
surements) comes from our output projection (our output
is the projection of the approximated state onto the finite
balanced truncation modes deduced previously).

The reduced-order model dynamics with process and
sensor noise included is defined as follows:

ẋr = Arxr +Bru+ w,

y = Crxr + v.
(27)

Again, both disturbances and sensor noise are Gaussian
processes whose variances are

Q = E(ww†), w = Pbalf(x)− PbalAx, (28a)

R = E(vv†), v = y − CPbalx, (28b)

where E(.) is the expected value, Pbal(.) is the projection
onto the Balancing modes, Pbal = T1S1. The resulting
estimator has the form

˙̂xr = Arx̂r −Bru− L(y − Crx̂r),

ŷ = Crxr,
(29)

where ŷ is the estimated output and L is the observer
gain. The estimator is then used along with the full state
feedback controller designed previously to determine the
control input; a schematic is shown in Fig. 2.

V. SIMULATION SETUP

A. Numerical parameters

The nonlinear and linearized Hasegawa-Wakatani
equations are solved in a two-dimensional slab geometry
with doubly periodic boundary conditions for simplicity.

The grid size used is 16 × 16 with the computational
domain given by [0, Lx]×[0, Ly] and Lx = Ly = 22, where
lengths are normalized by ρs, the ion sound Larmor ra-
dius with ρs ≡ vsiω

−1
ci where vsi ≡

√
Te/m is the ion

sound velocity in the cold ion limit and Te is the electron
temperature.

The time, ion vorticity and density fluctuation also
have been normalized as follows:

ωcit 7→ t, eϕ/Te 7→ ϕ, n/n0 7→ n, x/ρs 7→ x. (30)

B. Input and output

The system is actuated by a localized external elec-
trostatic potential in the center of the slab. Its shape
is given in Fig. 3. From Eq. (13), the initial condition
used for each of the ion vorticity and density fluctuation
simulations can be deduced. It is then shown in Fig. 4.

The control objective is to prevent drift wave turbu-
lence by stabilizing the unstable steady states of our
model by using the unique actuator defined in Fig. 3,
and designing a robust controller. An example of a pair
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FIG. 3. Actuator localized at the middle of our square plate
and modeled as a distribution of the external potential ϕext

that is added to the system. It is determined by the function
f(r) = 2

(
1− r2/γ2

)
exp

(
−r2/γ2

)
where r2 = (x− Lx/2)2 +

(y − Ly/2)2 and γ = 5 is a given parameter.

of unstable eigenvectors is shown in Fig. 5.
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FIG. 5. Representation of the two unstable eigenvectors of the
linearized equations. The left part represents its real part, the
right its imaginary part.

Table.I summarizes the three numerical cases studied
in the following section. Both α and µ values are fixed,
the density gradient κ is varied for each case, which gives
us 3 different cases of right half plane (unstable) eigen-
values in the system.

TABLE I. Summary of the 3 systems that will be reduced
then stabilized with only one actuator: for fixed α and µ,
only κ is varied and obtain 3 different cases with 2, 4, or 8
right half plane (unstable) eigenvalues.

Case RHP poles κ α µ

1 2 0.20 0.1 0.2

2 4 0.25 0.1 0.2

3 8 0.28 0.1 0.2

VI. RESULTS

The balanced truncation technique is applied to the
MHW equations. In particular, a reduced-order model of

the system is obtained, actuated by a localized external
electrostatic potential in the center of the slab.

Using this reduced-order model, feedback controllers
that stabilize its unstable steady states are developped;
first, a full-state feedback controller is designed, then
improved by developing a more realistic and practical
observer-based controller that uses fewer measurements
of the model to reconstruct the entire ion vorticity and
density fields.

The goal is to show that these well-known flow con-
trol techniques can be applied to this simplified plasma
physics model, so that new methods for equilibria stabi-
lization can be obtained, and savings of computational
time and memory can be achieved. Those are very im-
portant especially in this domain, where computational
requirements are typically large.

A. The nonlinear MHW equations

We begin by simulating the nonlinear MHW equations,
in order to understand the fluctuations that we are at-
tempting to stabilize. We find dynamics of coupled drift
waves and zonal flows.

Figure 6 shows the transition of both ion vortic-
ity and density fluctuation from a horizontally uniform
state (drift waves) to an almost vertically uniform state
(zonal flow); the sequence then repeats.

Figure 7 shows the same information about the density
but focused on one point in the center of the grid, but
for longer times, so the coupling between drift waves and
zonal flow can be clearly seen in terms of amplitude of
one point of density fluctuation, but also in terms of the
whole kinetic energy distribution.

Having insights into the physics and understanding the
coupling of drift waves and zonal flow can help to bet-
ter design the controller. This idea will be discussed in
Sec. VII.

The aim of our paper is not to explain the complex
coupling between drift waves and zonal flow; the nonlin-
ear simulation is only used to obtain a big picture of the
phenomena in a particular case (here case 1 of Table.I), it
will help to compare the model before and after applying
the controller, and see whether a stabilization of these
oscillations is possible near the unstable equilibrium.

B. Reduced-order models and validation

Once the balanced truncation is applied, the error be-
tween the original and the reduced-order model is calcu-
lated, and compared to its bounds (which were discussed
in Sec.III B), and to errors from POD and BPOD models
(two other model reduction techniques seen in Sec.III A).
The results are represented in Fig.8. The balanced trun-
cation method is the one that gives the best approxima-
tion (least error) to the original model.



8

−1.5 −1 −0.5 0 0.5 1 1.5−0.4 −0.2 0 0.2 0.4

ion vorticity ζ
t 1

t 2
t 3

density n

FIG. 6. Ion vorticity and density fluctuation (in color) of the
full non linear MHW equations at different times with the
B-matrix as the initial condition.

After validation, Table.II shows for the three studied
cases, the new reduced dimensions obtained, once the
balanced truncation is applied. These dimensions have
significantly decreased.

TABLE II. Summary of the 3 new reduced systems.

Cases r Reduced dim. of state

1 4 512 7−→ 6

2 6 512 7−→ 10

3 12 512 7−→ 20

C. Full-state feedback control

After designing a reduced-order model as described
in Sec. VI B, a full-state feedback controller is then de-
signed, in which it is assumed that vorticity and density
can be measured everywhere.
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FIG. 7. The output correspond to the density fluctuation that
occurs in the center of the square geometry with no control
applied on the system.
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FIG. 8. Error ||G − Gred||∞/||G||∞ for balanced truncation
(©), balanced POD (4), POD (�), and upper and lower
bound for the model reduction scheme.

The controller is built as in Sec. IV, using a LQR with
Q = q ∗ C†rCr, and implementing it in the full linear
system, as well as the full nonlinear system as shown in
Fig. 1.

By choosing q ≈ 10 for the first case study in Table I,
the LQR is able to move the right half plane eigenvalues
to the left without destabilizing the already stable left
half plane ones. q is chosen by numerically experimenting
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with different values, and then for each value, deduce the
LQR controller and visualize the modified eigenvalues of
the Ar −BrKr matrix. Thus, q is chosen to be the best
value that puts the right half plane eigenvalues of both
the reduced and full linear models as far to the left as
possible without destabilizing the other modes.

Figure 9 compares the density fluctuation in the center
of our slab predicted by the reduced, full linear and non
linear models with inputs taken from the first case study
defined in Table I and Table II.

At times t < 0, the nonlinear system evolves freely
without any control applied on it, the coupling effect is
then observed while the reduced and full linear models
exhibit just exponentially growing amplitudes that are
not shown here. At time t = 0, the controller is turned
on and immediately for time t > 0, the controller im-
mediately damps the oscillations for all three systems,
and their controlled dynamics become very close to each
other. Therefore, the unstable steady state can be sta-
bilized. More importantly, the reduced-order model pre-
dicts the outputs accurately when compared to the full
linear or nonlinear system.
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FIG. 9. Full Linear model with 2 eigenvalues in the right half
plane (RHP)

Figure 10 compares the density fluctuation in the cen-
ter of the slab at two different controlling times with in-
puts taken from the second case study defined in Table.I
and Table.II.

The nonlinear system evolves freely, and then at time
t = 2000, the controller is turned on (the output response
is represented in red), the controller immediately damps
the oscillations. But when the controller is turned on at
time t = 2300, ( the output : density in the center, is
represented in blue), the controller is not able to damp
the oscillations and stabilize the system due to the fact
that it went too far from the attraction basin of our equi-
librium point.

In order to see that, Fig. 11 (Top) shows the distance
from the equilibrium for the 2 cases: the one inside the
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FIG. 10. Full Linear model with 4 eigenvalues in the right
half plane (RHP)

basin of attraction of the equilibrium point (control time
at t = 2000) and the one outside the basin of attraction of
the equilibrium point (control time at t = 2300). It can
be seen that for the first case, the distance from the zero
point tends to converge to zero, whereas in the second
case, this distance keeps oscillating and diverges.

Figures 11 (middle and bottom) show the projection
of the state on the 7th and 8th modes of the balanced
truncation reduced-order model for two different time in-
tervals indicated by the grey areas of the top figure and
noted (B) and (C) respectively. These two time intervals
are chosen to illustrate when the solution is the closest
and furthest of the equilibrium point respectively.

In (B) the stable solution is converging to the equi-
librium point at (0, 0) whereas the unstable solution is
initially approaching and then diverging from (0, 0). In
(C) the stable solution is still converging to (0, 0) whereas
the unstable solution is following a complex path, some-
times being apparently close to the equilibrium point,
but the projection on different modes would reveal that
the distance is much larger.

For the controllable case, Fig. 12 shows a comparison
of the reduced-order, full linear and nonlinear centered
output of our system. Once again the oscillations are
damped and stabilized and the dynamics of all three sys-
tems are approximately similar. This demonstrates that
the reduced-order model is accurately predicting the full
dynamics.

Finally, as the parameter κ increases to 0.28, two more
pairs of eigenvalues cross into the right-half plane (simul-
taneously). One of these pairs turns out to be uncontrol-
lable, as can be verified by the Popov-Belevitch-Hautus
(PBH) test,44 so it is not possible to stabilize the equi-
librium with our choice of actuation (shown in Fig. 4).
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FIG. 11. Full Linear model with 4 eigenvalues in the right
half plane (RHP): phase space plot

D. Observer-based feedback control

In practice, the full-state feedback control of the sys-
tem is not directly useful, since it is not possible to mea-
sure the entire ion vorticity and density fluctuation fields.
Therefore considering a more practical approach; the re-
duced order models obtained from Sec. VI B are used to
design dynamic observers based on density fluctuation
measurements at a small number of sensor locations.

A 6 (resp. 10) modes reduced order model with 2 (resp.
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FIG. 12. Full Linear model with 4 eigenvalues in the right
half plane (RHP): controllable case

4) and 4 (resp.6) modes describing the dynamics on the
unstable and stable subspaces respectively, is used to de-
sign the Kalman Filter for producing an optimal esti-
mate of the density fluctuation and ion vorticity fields
based on Gaussian approximations of error terms (28a)
and (28b). This estimate is then used along with reduced
order model controller to determine the control input as
shown in Fig. 2. The results of this observer-based con-
troller, which is also called a compensator, are shown for
different sensors locations, in Figs. 14 and 15.

Two cases of measurements are considered here:

• measurement of the whole density field, thus the C
matrix defined in Eq. (14) can be written as

C = [0 I] (31)

• measurement of only four points of the density field
as shown in Fig.[13] , thus the C matrix can be
written as

C =


0 · · · 1 · · ·

· · · 1 · · ·
· · · 1 · · ·

· · · 1 · · · 0

 (32)

Even though these sensors may not be realizable in ap-
plications, they serve as a reasonable testing ground for
our models.

Only the second case study results, which contains 4
RHP eigenvalues are shown here, as it contains some in-
teresting constraints on special controlling times when it
came about designing the Full state feedback. The mea-
surements will be done one time only of the density field,
the other time, 4 points of density only.

Figure 14 shows a comparison of the outputs from the
reduced-order, full linear, and nonlinear models when
only the density field is measured. The oscillations are
still damped and stabilized and the responses agree well,
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Slab of plasma studied

sensors

FIG. 13. sensors location

indicating that the reduced-order linear model is a good
approximation to the full nonlinear system.
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FIG. 14. Output feedback: 4 RHP poles/ Full density only

Figure 15 shows us a comparison of the outputs from
the reduced-order, full linear and nonlinear models when
only 4 density points are measured. The oscillations are
damped and stabilized quicker for the linear models than
the nonlinear model where it wiggles a little more and
increases before converging to the equilibrium point. The
dynamics of the 3 systems are approximately similar until
a certain point (a transition behavior of the nonlinear
system) but at the end, the controller will be able to
control the nonlinear system with only 1 actuator and 4
sensors.

The compensator again stabilizes the unstable equi-
librium point and furthermore the observer reconstructs
the reduced order model states accurately. Initially the
observer has no information about the states ( the initial
state estimate is x̂ = 0), but it quickly converges to and
follows the actual states.

Finally to test the robustness of the resulting con-
troller, a Nyquist44 plot of the loop gain of the input sen-
sitivity function (input loop transfer function) is drawn
for each unstable case (2 or 4 right half plane eigenval-
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FIG. 15. Output feedback: 4 RHP poles/ 4 density points

ues) which corresponds to Figs. (16) and (17) respec-
tively. These plots show the loop transfer function for
different outputs considered: measuring density and vor-
ticity (full-state), measuring the full density field, and
measuring density at four spatial locations.

The gain (GM) and phase margins (PM) can be de-
duced from the plots and are given in Table. III. It in-
dicates the amount by which the actual dynamics can
differ from our model (either in gain or phase), before
the closed-loop system loses stability. The cases with
only 4 sensors have very small stability margins, indicat-
ing that our model needs to be very accurate in order for
the controllers to stabilize the equilibrium.

The small stability margins for the cases with only 4
sensors indicate that the controllers are unlikely to work
in practice unless the model is very accurate. However,
the cases where the full density field is known are.

More details about the tools and theory behind it can
be found in Astrom and Murray 45

TABLE III. GM and PM deduced from the loop gain of the
sensitivity function

Cases num. of sensors Gain Margin Phase Margin

1 pair of 512 82.2 56.6◦

RHP e-values 256 41.3 56◦

4 1.26 11.8◦

2 pairs of 512 19.3 54.3◦

RHP e-values 256 13.5 53◦

4 1.32 13.9◦

VII. SUMMARY AND DISCUSSION

The numerical methods for developing a reduced-order
model of the input-output dynamics of linear unstable
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systems are briefly presented in this paper. It is as-
sumed for simplicity that the dimension of the unstable
eigenspace is small and the corresponding global modes
can be numerically computed. Building the reduced or-
der model treats the unstable subspace exactly, and trun-
cates from the stable subspace only.

These techniques have been frequently used in fluid
control community. The aim of this work has been
to introduce and extend these methods to the plasma
physics community. Stabilizing controllers based on the
reduced-order linear models were developed and applied
on unstable state and it was showed that when it works,
the models obtained agreed well with the actual simula-
tions.These linear controllers applied to the full nonlinear
simulations were fairly successful at suppressing the drift
wave turbulence.

A 10 modes reduced-order observer which recon-
structed the density and vorticity fields accurately was

designed along with an optimal controller, and was able
to suppress the drift wave turbulence and stabilize the
two fields in the neighborhood of the equilibrium point.

Even if the actuator and sensors considered here are
not practically realizable, the methodology presented can
be extended to a more practical actuation. If given a
different equilibrium point than zero, using and ampli-
fying the zonal flow as an actuation would be a smart
choice because of its stabilizing effects; once actuated,
the zonal flow can reduce the drift wave turbulence as
seen in Figs. 6 and 7. This actuation may be a more
physical particular way of actuating our plasma slab for
this special case where we have an attenuation effect.

Also, adding more actuators and improving their de-
sign will provide better control. Here, the whole study
was done with only one actuator and in some cases, we
were able to stabilize the whole density and vorticity
fields with it.

Furthermore, the choice of sensor locations was not op-
timal either for our given actuator, and different choices
for sensor measurements could lead to improved perfor-
mance.

Finally, a motivation for the choice of our model prob-
lem was to show all the possibilities of these control de-
sign techniques for a simple model. In the future, for
more realistic tokamak models, it may help to make the
entire stabilization procedure more automated and rigor-
ous, rather than manually tuning the system as we have
done here.
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