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1Plasma Physics Laboratory, Princeton University,
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Abstract

One of the most fundamental properties of ideal magnetohydrodynamics is the condition that

plasma motion cannot change magnetic topology. The conventional representation of ideal magne-

tohydrodynamic modes by perturbing a toroidal equilibrium field through δ ~B = ∇×(~ξ× ~B) ensures

that δ ~B · ∇ψ = 0 at a resonance, with ψ labelling an equilibrium flux surface. Also useful for the

analysis of guiding center orbits in a perturbed field is the representation δ ~B = ∇×α~B. These two

representations are equivalent, but the vanishing of δ ~B · ∇ψ at a resonance is necessary but not

sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation

in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field

to all orders in ~ξ to conserve the original topology. The effect of using linearized perturbations on

stability and growth rate calculations is discussed.

PACS numbers: 52.35.Bj, 52.35.Vd
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The most rapidly growing instabilities in a plasma are the ideal modes, including in-

terchange, kink and ballooning modes. For this reason they are associated with some of

the most violent events occuring in plasmas, both in laboratory fusion experiments and in

astrophysical plasmas. There is a long history of theoretical analysis of stability to and the

calculation of growth rates for, ideal magnetohydrodynamic (MHD) modes[1–8]. One of the

most important properties of MHD plasmas is the condition that the magnetic field be frozen

in the plasma, ie that there can be no changes in the topology of the magnetic flux surfaces.

Instabilities are studied with two major methods, that of the use of an energy principle,

whereby stability of a system is guaranteed provided the energy is increased by any arbi-

trary plasma displacement, and the initial value approach, whereby an initial perturbation

is introduced and equations of motion developed to ascertain whether the instability will

grow. We demonstrate in this paper that in fact in both these methods using the pertur-

bation to lowest order destroys the frozen in condition, the magnetic topology of the initial

state is changed. To ensure topological invariance of the original flux surfaces the effect of

the perturbation must be calculated to all orders, or a full Lagrangian treatment used to

find the perturbed field. But normally in analytical and numerical instability calculations

or in the analysis of the effect of ideal modes on particle trajectories only the lowest order

perturbed field is used.

There are two representations of ideal magnetohydrodynamic modes used to describe

instabilities regularly observed in toroidal magnetic confinement devices, to carry out the-

oretical analyses of stability and growth rates, and to analyze the effect of these modes on

high energy particle populations. The first is δ ~B = ∇× (~ξ× ~B) with ~ξ the plasma displace-

ment, and the second δ ~B = ∇×α~B with α a scalar function of position and time, and where

~B is the equilibrium field. The second representation is particularly useful for the analysis

of guiding center equations for charged particles in a perturbed field. In this paper we relate

these two representations and show that they produce equivalent changes of the cross field

perturbation, the most important for the analysis of resonances, but to lowest order both

destroy the initial flux surface topology of the equilibrium.

The magnetic perturbation δ ~B = ∇× α~B with ~B the equilibrium field is convenient for

representing modes in low β plasmas, where β is the ratio of plasma to magnetic energy. For

resistive modes it exactly represents the cross field magnitude of the perturbation, respon-

sible for producing magnetic islands and most important for the production of resonances
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between high energy particles and MHD perturbations, and the guiding center equations for

charged particles in this field are readily derived[9]. The function α is also simply related

to the ideal MHD displacement ~ξ. Using a time dependent α to describe the perturbation

introduces an electric field parallel to ~B proportional to the mode frequency. But the rapid

mobility of the electrons shorts out the parallel electric field felt by the ions; nonzero par-

allel electric field is forbidden in ideal MHD, so a potential must be introduced to cancel

this field if the α form is to represent an ideal perturbation. The equilibrium field in a

toroidal axisymmetric equilibrium has covariant and contravariant representations, given by

~B = (∇ζ × ∇ψ)/q(ψ) + ∇ψ × ∇θ = g∇ζ + I∇θ + δ∇ψp with q(ψ) the field line helicity,

ψ the toroidal flux, ψp the poloidal flux, θ and ζ poloidal and toroidal coordinates and ψ,

θ, and ζ forming a right handed coordinate system with Jacobian 1/J = ∇ψ · (∇θ ×∇ζ).

Contravariant bases for the coordinate system are given by ~eβ = ∇β with β = ψ, θ, and

ζ.[9]

Expand α in a Fourier series of the form

α =
∑

m,n

αm,n(ψ) sin(nζ −mθ − ωt), (1)

with ω the mode frequency, giving

δ ~B · ∇ψp =
∑

m,n

mg + nI

J
αm,n cos(nζ −mθ − ωt). (2)

Now add an electric potential Φ to cancel the parallel electric field induced by d ~B/dt, with

∑

m,n

ωBαm,n sin(nζ −mθ − ωt) − ~B · ∇Φ/B = 0, (3)

and make a similar Fourier expansion of the potential Φ, giving a very simple expression if

one uses Boozer coordinates[10] with I independent of θ,

(gq + I)ωαmn = (nq −m)Φmn. (4)

If coordinates are used in which I is a function of θ there is instead a coupling of different

harmonics in this expression.

Now relate α to the ideal displacement ~ξ. We require that the cross field component of

the perturbation is exactly given by α,

∇ψ · [∇× (~ξ × ~B)] = ∇ψ · [∇× α~B]. (5)
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Use the identity ∇× (~ξ × ~B) = ~ξ∇ · ~B − ~B∇ · ~ξ + ( ~B · ∇)~ξ − (~ξ · ∇) ~B and the fact that

∇ · ~B = 0. Now expand ~B and ~ξ in the covariant basis ~ξ = ξα~eα, ~B = Bα~eα, giving

~eψ · ∇ × (~ξ × ~B) = ~eψ · [Bα∂α(ξ
β~eβ) − ξα∂α(B

β~eβ)]. (6)

All terms in ∂α~eβ cancel. To see this write ∂α~eβ = [αβ, κ]gκτ~eτ with the Christoffel symbol

[αβ, κ] =
1

2
[∂αgβ,κ + ∂βgα,κ − ∂κgα,β], (7)

from which we note the symmetry of this expression in α, β. These terms then become

[Bαξβ −Bβξα][αβ, κ]gκψ (8)

which is zero by symmetry.

We then have

~eψ · ∇ × (~ξ × ~B) = ~eψ · ~eβ[B
α∂αξ

β − ξα∂αB
β], (9)

and using ~eψ ·~eβ = δψβ and Bψ = 0 we have ~eψ · ∇× (~ξ× ~B) = Bα∂αξ
ψ. The right hand side

of Eq. 5 is simplified using ∇× ~B = ~j and ~j · ∇ψ = 0, giving finally

Bα∂αξ
ψ = ∇α · ( ~B ×∇ψ). (10)

Make a similar Fourier decomposition of ~ξ through ξψ =
∑

mn ξ
ψ
mnsin(Q), ξθ =

∑

mn ξ
θ
mncos(Q), and ξζ =

∑

mn ξ
ζ
mncos(Q) with Q = nζ − mθ − ωt. Again using Eq. 1

and ~B · ∇ = 1

qJ
(∂θ + q∂ζ) and the covariant representation for ~B, we have

αmn =
(m/q − n)

(mg + nI)
ξψmn. (11)

Thus alpha is simply related to the cross field component of the ideal displacement, and is

zero at the rational surface q = m/n.

Magnetic islands are produced by resonant perturbations of ~B directed across the flux

surfaces of an equilibrium, so the vanishing of αmn at the rational surface and Eq. 2 is

thought to exclude island formation. But the condition δ ~B · ∇ψ = 0 is a necessary but not

a sufficient condition to exclude the formation of islands. In Fig. 1 is an example of the

modification of magnetic flux surfaces by a single mode, showing islands appearing adjacent

to the rational surface r/a = 0.7. We have used a circular equilibrium, with major radius
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FIG. 1: A Poincaré plot of field lines for a linear ideal perturbation with m/n = 3/2, with

αm,n(rs) = 0 at the rational surface rs/a = 0.7 where q = 3/2. No island elliptic points form at

the rational surface, but hyperbolic points do, and islands form on each side of the surface.

R = 1, minor radius a = 1/4, andB = 1 at the magnetic axis, so the toroidal flux is ψ = r2/2.

The q profile is quadratic in minor radius r. The perturbation has m/n = 3/2, and α32(ψ) is

zero at the rational surface. The functional form taken was α32(ψ) = Aψ(ψw − ψ)(m− nq)

with ψw the value at the edge of the plasma. This function is smooth and square integrable.

We can find the nature of the magnetic field lines analytically. Let Q = nζ − mθ, use

the same circular equilibrium for which g = 1 and neglect I, which is second order in r/R.

dψ = ~B · ∇ψds, dθ = ~B · ∇θds, and dζ = ~B · ∇ζds, with s a parameterization of distance

along the field line give

dψ

ds
= −mαmn cosQ,

dQ

ds
= n−m/q +mα′

mn sinQ. (12)

with α′
mn = dαmn/dψ. Fixed points are given by dψ = 0, dQ = 0, or

αmn cosQ = 0, n−m/q +mα′
mn sinQ = 0. (13)

The first equation has two solutions. First consider αmn = 0, i.e. ψ = ψr, the rational

surface. The second equation then gives sinQ = 0. Expand ψ = ψr + x, and sinQ = ±y,
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cosQ = ±(1− y2/2), with x, y << 1 and drop terms of third order in Eq. 12 . We then find

ydx+ xdy ∓
q′

q2α′
mn

xdx = 0 (14)

or

q′x2

q2α′
mn

∓ xy = constant (15)

so these are hyperbolic points, located on the rational surface at mθ = kπ with k integer,

and with one separatrix lying along the x axis.

Similarly if cosQ = 0 we have Q = ±π/2, sinQ = ±1, and n −m/q = ±mα′
mn defines

surfaces ψ± located away from the rational surface. Again expanding ψ = ψ± + x and

Q = ±π/2 + y gives

xdx+
αmn(ψ±)q2

q′
ydy = 0 (16)

or

x2 +
αmn(ψ±)q2

q′
y2 = constant (17)

so these are elliptic points located at ψ± and mθ = ±π/2, clearly seen in Fig. 1. Since one

separatrix lies along the rational surface we can estimate the island width to be twice the

distance from the separatrix to the O-point, giving

∆ψ ≃
2α′

mnq
2

q′
, (18)

and thus these islands have a width proportional to the perturbation amplitude, not the

square root of the amplitude as do even parity resistive modes, so are much smaller. Ideal

MHD does not allow reconnection to occur, so evolution of a mode from an infinitesimal

initial state should not allow islands to evolve, but this condition is apparently not respected

by a linearized ideal perturbation of an equilibrium state. Note that this analysis is linear

in the perturbation, the obtained structure scales with the magnitude of the perturbation

but is essentially unchanged. For this m = 3 perturbation there appear three elliptic points

on each side of the separatrix.

Note that the equilibrium field has a continuum of fixed points along the rational surface.

Every point on this line satisfies dQ = dψ = 0.
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Now consider the field lines defined by the usual ideal MHD perturbation δ ~B = ∇× (~ξ×

~B). Use a simple large aspect ratio equilibrium with coordinates ψ, θ, φ with ~eβ = ∇β and

J = 1, and ~B = ~eφ+
1

q
~eθ. Write ~ξ = ξψ~eψ+ξθ~eθ+ξ

φ~eφ and ξψ = ξψmnsin(Q), ξθ = ξθmncos(Q),

ξφ = ξφmncos(Q), with Q = nφ−mθ. Then using ~eα × ~eβ = ~eγ with α, β, γ cyclic we find

~ξ × ~B = (ξθ − ξφ/q)∇ψ − ξψ∇θ + (ξψ/q)∇φ (19)

and

∇ψ · [∇× (~ξ × ~B)] = ∂φξ
ψ + ∂θξ

ψ/q

∇θ · [∇× (~ξ × ~B)] = ∂φ(ξ
θ − ξφ/q) − ∂ψ(ξψ/q)

∇φ · [∇× (~ξ × ~B)] = −∂θ(ξ
θ − ξφ/q) − ∂ψξ

ψ (20)

Then the field lines satisfy

dψ

ds
= −(m/q − n)ξψmn cosQ,

dQ

ds
= n−m/q + [(m/q − n)ξψmn]

′ sinQ. (21)

but using αmn = (1/q − n/m)ξψmn we again obtain Eq. 12, leading to the islands located

away from the rational surface.

To demonstrate how the topology is maintained provided one goes to all orders in the

perturbation magnitude, consider a fluid perturbation of velocity ~v, constant in time. Then

∂ ~B

∂t
= ∇× (~v × ~B) (22)

but one must iterate this equation to find successive orders (in ξ ) of the perturbed field

with

∂ ~Bn+1

∂t
= ∇× (~v × ~Bn) (23)

and at each order the fixed points for the map move closer and closer to the resonance

surface, and the resonance surface itself is perturbed in a sinusoidal fashion.

A better way to envision what happens is to use the ideal MHD condition that the field

is frozen into the plasma. Use the Lundquist identity[11, 12]

~B(~r, t) = ~B0(~r0, 0) + ( ~B0(~r0, 0) · ∇0)~ξ(~r0, t), (24)

where ~r = ~r0 + ~ξ. Use a simple circular large aspect ratio equilibrium field

~B0(~r0, 0) = φ̂+
r0
q(r0)

θ̂ (25)
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and take ~ξ = ~ξ0 sinQ with ~ξ0 a constant and Q = nφ−mθ. We then have

~B(~r0, t) = ~B0(~r0 − ~ξ, 0) + [ ~B0(~r0 − ~ξ, 0) · ∇0]~ξ(~r0, t) (26)

or

~B(~r0, t) = φ̂+
(r0 − ξr0 sinQ)

q(r0 − ξr0 sinQ)
θ̂ +

(

n−
m

q(r0 − ξr0 sinQ)

)

~ξ0 cosQ. (27)

We then have for the field line equations, using also ∇0θ = (θ̂/r0)d/dθ,

dr

dφ
=

(

n−
m

q(r0 − ξr0 sinQ)

)

ξr0 cosQ

dQ

dφ
= n−

m

q(r0 − ξr0 sinQ)
(28)

where we have used ∇ · ~ξ = 0 and ~ξ0 constant. The only fixed points are the degenerate

ones, lying on the displaced rational surface q(r0 − ξr0 sinQ) = m/n, there are no additional

fixed points in the field.

Two things are notable about the field. First, expanding Eq. 27 in powers of ξ one

obtains to lowest order the expressions leading to breaking of the topology. Secondly, if ~ξ

is divergence free the field line equations involve only ξr, and thus can also be expressed in

terms of α, meaning that these representations reproduce the same field to all orders.

It is possible that the small islands produced by the indiscriminate use of a perturbed

field in either representation have an effect on instability analysis or on the effect of ideal

modes on high energy particles. Numerical stability and growth rate codes which are linear

in ~ξ make use of the perturbed magnetic field to calculate magnetic energy and plasma

flow fields to calculate kinetic energy, and these are in error near the rational surface. If

the modification of the flow near this surface contributes significantly to the kinetic energy

some error could be present. It has been pointed out by Goedbloed and Dagazian [13] that

the use of the perturbed field ∇× (~ξ × ~B) rather than the plasma displacement ~ξ can lead

to errors concerning plasma stability, in particular arising from regions near the singular

surface q = m/n giving singularities in the integration of δW . This may be related to

the present work since the singular surface is improperly treated by a linear perturbation,

leading to the change in the magnetic topology near it. However no mention is made in this

work of a modification of magnetic field topology and it is not clear whether it is related to

the present result. The problem of the effect of the modification of the field line topology

on plasma stability will be examined in detail in a future publication.
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