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Abstract

The numerical methods used in the full particle-orbit following SPIRAL code are described and a

number of physics studies performed with the code are presented to illustrate its capabilities. The

SPIRAL code is a test-particle code and is a powerful numerical tool to interpret and plan fast-ion

experiments in Tokamaks. Gyro-orbit effects are important for fast ions in low-field machines such

as NSTX and to a lesser extent in DIII-D. A number of physics studies are interlaced between the

description of the code to illustrate its capabilities. Results on heat loads generated by a localized

error-field on the DIII-D wall are compared to measurements. The enhanced Triton losses caused

by the same localized error-field are calculated and compared to measured neutron signals. MHD

activity such as tearing modes and Toroidicity-induced Alfvén Eigenmodes (TAEs) have a profound

effect on the fast-ion content of Tokamak plasmas and SPIRAL can calculate the effects of MHD

activity on the confined and lost fast-ion population as illustrated for a burst of TAE activity in

NSTX. The interaction between Ion Cyclotron Range of Frequency (ICRF) heating and fast ions

depends solely on the gyro-motion of the fast ions and is captured exactly in the SPIRAL code. A

calculation of ICRF absorption on beam ions in ITER is presented. The effects of high harmonic

fast wave heating on the beam-ion slowing-down distribution in NSTX is also studied.
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I. INTRODUCTION

In toroidal fusion devices the motion of the particles is determined by the Lorentz equa-

tions. The particle motion consists of the fast gyro-motion with typical frequencies in the

MHz range for ions, the drift motion with typical frequencies in the range of up to a few

hundred kHz for ions, and the precessional motion which is typically on the order of a few

kHz for ions. The fast gyro-motion is often neglected and the orbits are calculated at the

center of the gyro orbit because the inclusion of the gyro motion makes the calculations very

expensive in CPU time [1–4]. In the guiding center approximation the magnetic moment

of the particles, which is an adiabatic invariant [5, 6], is taken to be conserved while the

magnetic and electric fields and other relevant plasma properties are calculated at the guid-

ing center location. The assumption made in guiding center theory is that the gyro-orbit is

small compared to the characteristic scale length of the fields, a condition that is usually met

for thermal ions in present day large Tokamaks. Fast ions, however, can have substantially

larger Larmor radii that can become comparable to the characteristic scale lengths of the

plasma profiles, turbulence, and MHD structures such as Alfvén eigen modes and therefore,

the guiding center approximation is not valid anymore [7]. This is especially the case in

spherical Tokamaks such as NSTX with their low toroidal fields. Another consequence of

averaging over the fast gyro-motion in the guiding center approximation is that the inter-

action between ion cyclotron waves (ICRF) and the ions is not captured in guiding center

calculations. A full orbit treatment of the particle motion can capture interaction between

particles and ICRF.

With the advance of high speed parallel computers it has become possible to follow

the full orbits of fast ions in toroidal geometry and use statistically relevant ensembles of

test particles to study the interaction between waves and particles without the limitations

imposed in guiding center theory. The motion of charged particles in electromagnetic fields

is governed by the Lorentz equations:

dv

dt
=

q

m
(v × B + E)

dr

dt
= v t (1)

with m the mass, q the charge, r the position, and v the velocity of the particle while B

and E are the magnetic and the electrical fields at the particle position.
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Apart from the electromagnetic forces the fast ions are also affected by the thermal plasma

through which they move. At high energies the fast ions suffer drag from thermal electrons

that slow them down without a significant change in direction while less frequent collisions

with thermal ions are responsible for changes in the travel direction of the fast ions, known

as pitch angle scattering.

In this paper a description of the SPIRAL code is given and is interlaced with results

from physics studies to illustrate the code capabilities. The SPIRAL code is written in the

C language [8] and it makes use of the Numerical Algorithms Group (NAG) library rou-

tine: nag ode ivp adams gen (d02cjc) [9] which is a highly accurate, variable order, variable

stepsize modified Adams method for solving the differential equations. When particles are

followed in static magnetic fields only for ∼ 50 ms, their energies are usually conserved bet-

ter than 10−5. Due to the nature of the problem, following a large number of independent

test particles on their paths through the plasma, parallel processing of individual orbits is

straight forward and we have used the MPI package [10] to handle the parallel processing.

The execution time increases linearly with the number of test particles and scales inversely

with the number of CPUs on which the code is running. Great care has been taken that

(partial) results are stored on disk as soon as they they are available and can be monitored

during the run. When a computer failure occurs during a run, the SPIRAL code can very

easily be restarted from the point, avoiding loss of CPU time.

In section II the implementation of the equilibrium magnetic fields is discussed. Equi-

librium solvers usually give the relevant fields on a discrete spatial mesh and a robust

interpolation routine is presented that obtains the fields between the mesh points under

the condition that Maxwell’s equations are satisfied. In this section single particle orbits

in NSTX and DIII-D are studied and it is shown that gyro-motion effects are significant in

NSTX while they are small in DIII-D.

Slowing-down and pitch angle scattering are discussed in section III and 3D equivalents

of the 2D equations for pitch angle and slowing-down as given in [11] are derived.

For an accurate comparison between simulations and experimental results it is important

to use realistic fast-ion distribution functions that reflect the ones present in the experiments.

It is (almost) impossible to measure the full spatial and velocity distribution of the fast ions.

Therefore, the SPIRAL code has the capability to either read a given fast-ion distribution

or generate it internally as discussed in section IV and a study in NSTX is presented on the
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effects of a tearing mode on the beam-ion distribution.

Toroidal-symmetry breaking fields are ubiquitous in Tokamaks. They arise from the finite

number of toroidal field coils, from ferritic steel that is needed for strength, or they can be

induced deliberately with external field coils for shaping the plasma edge and suppressing

Edge-Localized modes (ELMs). In section V the numerical techniques are discussed that

were used to implement those error fields in the SPIRAL code in such a way that Maxwell’s

equations are satisfied accurately. Instead of using a Fourier harmonic decomposition of

the ripple fields we have chosen to specify the ripple fields on a cylindrical mesh so that

highly localized perturbations, which are poorly described by a finite number of Fourier

harmonics, can be included as well as conventional toroidal ripples. In this section two cases

are presented. In the first case the effects of a highly localized magnetic perturbation from a

scaled mock-up Test Blanket Module (TBM) for ITER in DIII-D on the neutral beam ions

and on the 1 MeV tritium population are simulated and compared to observations. In the

second study the effects of Resonant Magnetic field Perturbations (RMPs) on the beam ion

confinement in NSTX are simulated to investigate whether the effects are large enough to

observe RMP-enhanced beam-ion losses and/or changes in the confined fast-ion population

that can be measured with the Fast Ion Dα (FIDA) diagnostic [12].

In section VI the implementation of MHD modes and RF waves in the SPIRAL code

is discussed. MHD activity can have large effects on the fast-ion population via resonant

interactions. Resonances between fast ions and a Reversed Shear Alfvén Eigenmode (RSAE)

in DIII-D are studied. In addition, the effects of short (< 1ms) bursts of Torodicity-induced

Alfvén Eigenmode activity, which are often observed in NBI-heated discharges in NSTX, on

the neutral-beam slowing-down distribution are investigated (section VIA).

One of the major heating schemes proposed for ITER is Ion Cyclotron Range of Frequency

(ICRF) heating where RF waves interact with the gyromotion of the ions. Because this

interaction involves the gyromotion of the particles it cannot be calculated with particle-orbit

following codes that use the guiding center approximation which neglects the gyromotion.

Because the full gyromotion is retained in the SPIRAL code, the interaction between the

ICRF waves and ions appears naturally in the simulations. Two studies in ICRF absorption

by fast-ions are discussed in section VIB. The first one is a a study for ITER in which

an estimate is calculated for the parasitic absorption of ICRF on the deuterium beam-ion

slowing-down distribution (section VIB). As a second example the interaction between High
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Harmonic Fast Waves (HHFW) and neutral beam ions in NSTX are studied. Because of

NSTX’s low magnetic field a large number of harmonic ICRF resonances are present in the

NSTX plasma and particles can interact with several of those along their drift orbits. A

preliminary study is presented of HHFW effects on a beam-ion slowing down distribution

showing that a significant fraction of the energetic beam-ions is lost due to the HHFW

(section VIB). Conclusions are drawn in section VII. Where possible, comparisons between

full orbit and guiding center calculations will be made but an exhaustive study between the

two calculations is beyond the scope of this paper.

II. EQUILIBRIUM MAGNETIC AND ELECTRICAL FIELDS

For an accurate calculation of charged particle orbits in plasmas, the magnetic and electric

fields should be known accurately in the region where the particle moves. The equilibrium

magnetic fields in Tokamaks are usually calculated on a discrete mesh with equilibrium

codes such as EFIT [13] and q-solver. SPIRAL can read the output from those codes,

which consist of the poloidal flux function, Ψp(R, Z), and the diamagnetic correction to the

toroidal magnetic field. The radial and vertical components of the poloidal magnetic field

are obtained by taking the derivatives of Ψp with respect to R, and Z:

BR =
1

R

∂Ψp(R, Z)

∂ Z

BR = − 1

R

∂Ψp(R, Z)

∂ R
(2)

Taking accurate numerical derivatives from a function that is given on a finite mesh is

difficult because it has to preserve the divergence-free condition as dictated by Maxwell’s

equations which translates in this case to ∂RBR(R, Z) + ∂ZBZ(R, Z) = 0 because of the

toroidal symmetry. In SPIRAL we have solved this problem by fitting a 2-D Chebyshev

polynomial expansion [14] to the given discrete points of the poloidal flux function:

Ψp(R, Z) =
∑

i

∑

j

aijTi(R)Tj(Z) (3)

Once a good fit is obtained, usually 15 to 30 radial and vertical terms are needed, derivatives

can be obtained analytically by rearranging the expansion coefficients (see appendix A).

It can be shown easily that the magnetic field obtained in this way is divergence free as
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FIG. 1: (a) A full orbit (red) and its guiding center orbit (blue) for a 90 keV deuteron in NSTX.
The particle was launched at the LFS mid plane parallel to the magnetic field. (b) The parallel
and (c) the perpendicular velocities along the drift orbit.

required by Maxwell’s equations up to the computer accuracy over the entire region where

the Chebyshev expansion is valid.

We will now study two single particle orbits in the equilibrium fields of NSTX and DIII-

D and find that full orbit effects are significant in NSTX while in DIII-D the effects are

minimal. The particle orbit in a typical equilibrium field for NSTX is shown in fig. 1 where

A 90 keV deuteron which is the maximum NBI injection energy in NSTX, was launched at

R=1.4 m and Z=0.0 m with its velocity anti-parallel to the local magnetic field (or pitch,

v‖/v = 1.0, where the pitch is defined parallel to the plasma current which is opposite to the

toroidal magnetic field direction in NSTX). Both the full orbit (in red) and guiding center

orbit (in blue) are shown where the latter is obtained from the full orbit by evaluating the

instantaneous guiding center which is given as:

Rgc = Rp −
mv × B

qB2
(4)

where B is taken at Rp, the particle location. There are two things noteworthy about this

orbit. First, the gyro frequency is only 12 times higher than the drift frequency which violates

the assumption made in guiding center theory that the gyro-frequency is much higher than

the drift frequency. Second, it can be seen from fig. 1 that the full orbit has excursions of

up to 3.7 cm away from the guiding center orbit which can be understood as follows: at the

launch point the Lorentz force is zero because particle velocity is parallel to the magnetic
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FIG. 2: (a) A full orbit (red) for a 80 keV deuteron in DIII-D. The particle was launched at the
LFS mid plane parallel to the magnetic field. (b) The parallel and (c) the perpendicular velocities
along the drift orbit.

field (fig. 1b). Only when a perpendicular velocity component develops (fig. 1c), a magnetic

force arises and pulls the particle back onto its poloidal orbit.

When this orbit is calculated with the guiding center equations the projection of the orbit

onto the poloidal plane is virtually the same as the instantaneous guiding center (eq. 4) with

deviations between the two orbits of less than one millimeter. Notably in the guiding center

calculation the parallel velocity of this particle remains constant along the orbit because

its magnetic moment was chosen to be zero at the start. As a consequence, a poloidal

transit of the guiding center in the guiding center calculation is completed slightly faster

than one transit in the full orbit calculation. This difference is reflected in the poloidal

transit frequency which is 388.2 kHz for the full orbit calculation and 398.6 kHz in the

guiding center approximation, a difference of more than 10 kHz (or 2.6%). This difference

is not caused by numerical differences between the guiding center and full orbit calculations

because the same parametrization of the magnetic fields was used in both calculations.

The orbit for an 80 keV deuteron in DIII-D is shown in fig. 2 where the particle was

launched at the LFS mid plane at R=2.12 m with its velocity anti-parallel to the local

magnetic field line (pitch: v‖/v = 1.0 because the plasma current is opposite to the toroidal

magnetic field direction). In this case the gyro frequency is more than two hundred times

higher than than the drift frequency and therefore, guiding center theory is more accurate
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FIG. 3: A full orbit (red) and its guiding center orbit (blue) for an 80 keV deuteron in DIII-D for
which the frequency spectra in fig. 4 were calculated. (a) Poloidal and (b) top view. The particle
was launched at the mid-plane at x=2.12 m, y=0.0 m with a pitch of 0.8 and followed for one
poloidal transition.

than in the NSTX case. This is also reflected in the difference between the the full orbit and

guiding center orbit where the maximum difference between the two orbits is 1.2 mm which

is indistinguishable in fig. 2a. The perpendicular velocity that the particle develops in this

case is a very small fraction (less than 4%) of the initial parallel velocity as can be seen in

figs. 2b and c and therefore, the poloidal transit frequency difference between the full orbit

calculation (66.378 kHz) and the guiding center calculation (66.430 kHz) is small, 52 Hz.

Key particle orbit frequencies, such as the poloidal transit frequency, and toroidal transit

and precession frequencies, which are quintessential for wave-particle interaction studies,

are determined in the SPIRAL code by using a two dimensional Fourier transform of the

poloidal and toroidal projection of the particle orbit. For the poloidal frequencies the radial

and vertical coordinates are treated as real and imaginary quantities, respectively, for the

complex Fast Fourier Transform. The output is a spectrum with the bounce frequency

and its harmonics centered around zero frequency while the cyclotron frequency and its

harmonics form broad structures at higher frequencies. The broadening is caused by the

varying magnetic field along the particle orbit. In a similar way the toroidal frequencies are

obtained from the projection of the particle orbit in the mid-plane.

Poloidal and toroidal spectra for the orbit depicted in fig. 3 are shown in fig. 4. The orbit

is for an 80 keV deuteron launched at the mid-plane at x=2.12 m, y=0.0 m with a pitch of

0.8. The fundamental cyclotron frequency is clearly visible between ±12 and 18 MHz while

the second and third harmonic cyclotron harmonics are visible at twice and three times the

fundamental frequency, respectively. The poloidal bounce frequency at 49.6 kHz and its
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FIG. 4: spectra of the poloidal (a) and toroidal (c) projection of the particle orbit shown in fig. 3.
with a zoom around zero frequency in (b) and (d). The poloidal bounce frequency, fb, is indicated
in (b) while in (c) the toroidal transit frequency, ft is shown.

harmonics are visible in fig. 4b while the toroidal transit frequency at 191.6 kHz is visible

in fig. 4d together with its harmonics.

Static electrical fields in plasma equilibria arise from plasma rotation and pressure gra-

dients:

E(R, Z) = −∇Φ = vplasma ×B + ∇p/q (5)

with vplasma the bulk plasma toroidal velocity, p the plasma pressure, q the charge of the

fast ion, and B the equilibrium magnetic field. These static electrical fields can be included

in SPIRAL calculations as an electrical potential function Φ(Ψp).

III. SLOWING DOWN AND PITCH-ANGLE SCATTERING

Before discussing perturbative fields that are included in SPIRAL we will first discuss

slowing-down and pitch-angle scattering in 3-D geometry and the particle distributions that

can be included in the code.

On their journey through the plasma the fast ions lose energy to the background thermal

plasma. At high fast-ion velocities the energy loss is mainly to the electrons without sub-

stantial scattering but when the fast ions approach thermal velocity the interaction with the

thermal ions becomes important and the ion-interaction gives rise to pitch-angle scattering.
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Traditionally, slowing-down and pitch-angle scattering are written in guiding center for-

malism as a collision operator, C, for a distribution of energetic particles, f :

Cf = νd∂λ(1 − λ2)∂λf − ν

v2
∂v(v

3 + v3
c )f (6)

with v = |v|, λ = v‖/v the particle pitch, ν the collision rate given by:

ν =
neZeff e2q2

f ln Λ

4πǫ2mimfv3
c

(7)

where ne is the electron density and the Coulomb logarithm, ln Λ, is given by Λ = 12πneλ
3
D

with λD the Debye radius [15, 16] and νd the pitch-angle scattering rate given by:

νd =
v3

c

2v3
ν (8)

where the critical velocity, vc is calculated as:

v3
c =

3
√

π

4

me

mi

(

2KBTe

me

)3/2

(9)

with me, (mi, mf) the electron (plasma, fast ion) mass, qf the charge of the fast ion and Te

the electron temperature. From the collision operator (eq. 6) the slowing down equation:

dv

dt
= −ν

(v3 + v3
c )

v3
v (10)

can be obtained. This equation is valid in both the guiding center formalism with v =

(v‖, v⊥) and in full orbit formalism with v = (vx, vy, vz) and it is valid for velocities above the

thermal velocity of the bulk plasma. In SPIRAL the slowing-down term turns off gradually

when the particle reaches thermal velocity to avoid unrealistically low energies as can be

seen in the inset of fig. 5a.

The slowing down time quantifies the time it takes to thermalize the particle and one

can specify the velocity slowing down time, τv, or the energy slowing down time, τE which

is half the velocity slowing down time. The velocity slowing down time can be calculated

from eq. 10 as:

τv = − |v|
|dtv|

= −1

ν

v3

(v3 + v3
c )

(11)

In the high energy limit (v ≫ vc) this becomes τs = 1/ν but when the velocity is near the

critical velocity the energy slowing down time shortens as is shown in fig. 5b. In SPIRAL

measured electron temperature and density profiles are used. Therefore, the scattering rates

and critical velocities are dependent on the location of the particle in the plasma.
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FIG. 5: (a) Particle energy as function of of time for a deuteron that was launched at 1 MeV and
(b) the slowing down time calculated from eq. 11. When the particle reaches thermal velocity the
slowing-down is switched off in the SPIRAL code.

Pitch angle scattering in guiding center theory has been derived in [11] for an ensemble

of fast ions. The new pitch, λn, is calculated from the old one, λo, at discrete time steps,

∆t, as:

λn = λo(1 − 2νd∆t) ±
√

(1 − λo)2νd∆t (12)

where the time step is chosen in such a way that νd∆t ≪ 1 and the ± sign is determined

randomly at each time step. This operator fulfills the condition that |λn| ≤ 1 − νd∆t. In

fact this constraint is slightly too restrictive because it can be shown that there is a small

region in pitch space close to |λn| = 1 that cannot be reached by the particle. This region

is given by: |λn| > 1 − νd∆t and can be removed by ignoring the factor of two in the first

term of eq. 12. Removing this factor does not influence the random-walk process due to the

pitch angle scattering because the random process is governed by the second term in eq. 12.

In contrast to pitch angle scattering in the guiding center approximation with two velocity

components, the full orbit treatment requires scattering in three dimensions. In this section

we derive the full 3-D pitch angle scattering from geometrical considerations and obtain the

3-D equivalent of eq. 12. We will also derive the 2-D pitch angle scattering equation (eq. 12)

without the extra factor of two in the first term.

In the 3-D equivalent of pitch angle scattering as depicted in fig. 6, the fast ion is scattered

over a small angle, ∆θ, into a velocity cone around its original velocity, vold. The location on

the cone, indicated with φ, is in this case the random variable and averaging is performed

11



P
1

P 2

B

V old

V new

v

v
||

⊥∆

∆
θ

∆θ

φ
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by taking a large number of small scattering time steps along the particle orbit.

For the 3-D pitch angle scattering we can choose without the loss of generality the fol-

lowing coordinate system: (p0 = v̂‖o, p1 = v̂⊥o, p2 = p0 × p1) with v̂‖o and v̂⊥o unit vectors

defined by the particle velocity parallel and perpendicular to the magnetic field before scat-

tering. The parallel and perpendicular scatter angles are now given by: ∆θ‖ = ∆θ sin(φ) and

∆θ⊥ = ∆θ cos(φ). From fig. 6 it can be seen that the new parallel velocity after scattering

becomes:

v‖n = v cos(θ + ∆θ‖) cos(∆θ⊥) (13)

while the new perpendicular velocities along the p1 and p2 axis become:

v⊥p1
n = v sin(θ + ∆θ‖) cos(∆θ⊥)

v⊥p2
n = v sin(∆θ⊥) (14)

which corresponds to a rotation of the old velocity vector over an angle pair (∆θ‖, ∆θ⊥) and

therefore, the new pitch, |λn|, after scattering is naturally restricted to equal or less than

one.

Using now the fact that |∆θ| ≪ 1 and expanding the geometrical functions in eqs. 13

and 14 we obtain the following expressions for the three velocity components:

v‖n = v(cos(θ) cos(∆θ‖) − sin(θ) sin(∆θ‖)) cos(∆θ⊥)

≈ (v‖o(1 − ∆θ2
‖/2) − v⊥p1

o∆θ‖)(1 − ∆θ2
⊥/2)
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v⊥p1
n = v(cos(θ) sin(∆θ‖) + sin(θ) cos(∆θ‖)) cos(∆θ⊥)

≈ (v‖o∆θ‖ + v⊥p1
o(1 − ∆θ2

‖/2))(1 − ∆θ2
⊥/2)

v⊥p2
n = v sin(∆θ⊥) ≈ v∆θ⊥ (15)

These equations are implemented in the SPIRAL code where the angle, φ, is drawn from a

uniform distribution between 0 and 2 π.

We can recover the Monte Carlo collision operator (eq. 12) from the 3-D results of eq.15

by noting that the expectation of the parallel scattering angle is < ∆θ2
‖ >φ= ∆θ2/2 where

< · >φ stands for averaging over φ along the full circle while averaging over the perpendicular

scattering angle gives: < ∆θ⊥ >φ= 0. After substituting those values in eq. 15 we obtain

for the parallel component:

v‖n = v‖o(1 − ∆θ2/4) ± v⊥p1
o∆θ/

√
2 (16)

where the ± sign which arises from the square root of ∆θ2/2 acts as the random variable in

the scattering process. If we now identify ∆θ2/4 with νdτ we get:

v‖n = v‖o(1 − νdτ) ±
√

v2
⊥o2νdτ (17)

which is the same result as in eq. 12 except for the factor two in the v‖o term.

The spread in pitch of an ensemble of particles that is initialized at the same location

and with the same pitch angle should follow a square-root behavior with time. Both the

guiding center and the 3-D formulation follow that behavior and are in excellent agreement

with each other as can be seen from fig. 7 where the spread in pitch of an ensemble of 2500

particles, initialized with zero pitch was followed in time.

There is an important difference in pitch angle scattering between the guiding center and

full orbit formalism that can affect the calculated orbits. In the guiding center formalism,

the orbit of the guiding center is continuous during the scattering while the particle orbit has

(small) discontinuous jumps because v⊥ changes discontinuously when the particle scatters.

This can be seen from the expression for the gyro radius, ρ = v⊥/ωc. Those discontinuities

in the particle orbit are physically unrealistic. In full 3-D geometry, the scattering takes

place at the particle location and therefore, the orbit of the particle is continuous which is

physically correct while the guiding center orbit has discontinuous jumps at each scatter.

13



Monte Carlo
3−D geometry

0 5 10 15 20
time [ms]

0.0

0.1

0.2

0.3

0.4

0.5

w
id

th
 o

f p
itc

h 
an

gl
e 

di
st

rib
ut

io
n

FIG. 7: Spread of pitch angle distribution as function of orbit following time. The solid line is a

square-root fit to the data.

IV. PARTICLE DISTRIBUTIONS

Single particle orbit studies are useful to gain insight in the details of the particle-plasma

interaction but statistically significant ensembles of particles are needed for fast-ion transport

studies. A number of fast-ion distributions can be generated by SPIRAL such as a fusion

alpha birth profile and two-temperature Maxwellian distributions. Fast-ion distributions

can also be read from an external file. This option is very useful to import the distribution

functions as calculated with other codes such as the TRANSP/NUBEAM [17, 18] package.

The SPIRAL code has been used to calculate accurate statistical representations of the

beam-ion slowing-down distributions in an NSTX discharge with and without the presence

of a magnetic fluctuations. This study was motivated by the observation of a low frequency

mode that caused a substantial changes in measured FIDA signals. The changes in the

FIDA signals are indicative of changes of fast ion distribution function. SPIRAL was used

to determine the fast-ion redistribution associated with modes of tearing or ideal kink nature.

Here we report results from the tearing mode case, while the detailed analysis of the ideal

kink effect is discussed in ref. [19].

The TRANSP/NUBEAM package was used to generate the beam-ion birth profile for

the SPIRAL simulations from the three beam sources that operated at 90 kV acceleration

voltage. In fig. 8 the distribution of the Larmor radii at the particle birth time for the
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FIG. 8: Distribution of Larmor radii for 90 keV beam-ions at birth for a typical NSTX discharge.

The full-energy component (red) consists of 43.3% the injected particles while the half energy

component (blue) consists of 39.5% and the third-energy component (green) contains 17.1% of the

injected particles.

three energy components of the beam is shown. Larmor radii of up to 19 cm are present at

birth which should be compared to the characteristic radial size of the mode (see fig. 9a)

which is on the order of 2 cm on the low-field side and around 10 cm at the high-field side.

Because the Larmor radii are larger or comparable to the characteristic mode structure

the guiding center approximation is not valid here and a full orbit treatment of the wave

particle interaction is needed. Moreover, the Larmor radii are also significant compared to

the characteristic scale length of the equilibrium field (∼0.5 m) which is outside the validity

of guiding center theory.

In the calculations 30000 particles were taken from the 3-D beam-ion birth profile as

calculated by the TRANSP/NUBEAM package and distributed uniformly in time between

0 and 25 ms. All of the particles were then followed until they reached 25 ms which is more

than twice as long as the average energy slowing-down time. Two runs were made. In both

runs the toroidal ripple, the radial electrical field from the plasma rotation, slowing-down,

and pitch-angle scattering were included but only in the second run the tearing mode was

included along the lines explained in the following sections. We have used an m/n = 4/1

mode as shown in fig. 9a with an amplitude B̃r/B = 8 · 10−3, and a mode frequency of

10 kHz. When the mode was taken into account the beam-ion losses increase from 17 to

23%. The calculated slowing down distribution of the confined particles for the case without

the mode is shown in fig. 9b while in fig. 9c effects of the mode on the distribution are taken
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FIG. 9: (a) Radial magnetic field fluctuation of a tearing mode that was used to calculate the

slowing-down distribution (b) without and (c) with the mode from the TRANSP/NUBEAM depo-

sition profiles indicated in pink. (d) the difference between the slowing-down distributions without

and with the mode present.

into account. In fig. 9d the difference between the distribution with and without mode is

shown. From this figure it can be seen that the mode mainly affects the distribution below

35 keV with pitches between 0 and 0.5 which corresponds to mainly trapped ions, while the

distribution at higher energies and a more parralel pitch is hardly affected by the tearing

mode. The FIDA system of NSTX which registered clear changes in the fast ion distribution

in the experiment is not sensitive to the part phase space where the calculated changes occur

due to the tearing mode. When a kink mode was used as was reported in ref. [19] changes

in phase space were found that were compatible with the FIDA measurements.

V. STATIC PERTURBED MAGNETIC FIELDS

Toroidal ripple and error fields are common phenomena in Tokamaks and it has been

shown that those fields can contribute significantly to fast ion losses [20]. Harmonic expan-
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FIG. 10: Toroidal magnetic ripple field for NSTX (left) and the TBM mock-up in DIII-D (right)
both at the mid-plane low-field side plasma edge. From the given radial (bR) and vertical (bZ)
components the toroidal component (bϕ) is reconstructed (black line) and compared to the given
field (red crosses).

sions in the toroidal angle are frequently used in particle orbit following codes to include

those ripple fields [21]. For ripples generated by a finite number of toroidal field coils such an

approach works well but in some cases a toroidally and poloidally localized perturbation is

created which cannot be decomposed adequately with a manageable number of harmonics.

Such highly localized perturbations are expected in front of the test blanket modules (TBM)

in ITER because of the significant amount of ferritic steel that is used in those modules [22].

Two examples of toroidal ripple fields are shown in fig. 10 where a conventional ripple in-

duced by a finite number of toroidal field coils is shown for NSTX while a localized ripple

in DIII-D that was deliberately induced by a set of coils to create the expected (scaled)

fields in ITER induced by one pair of TBMs. The fields in DIII-D were used to to study the

impact of such localized perturbed fields on the plasma performance [23] and first wall heat

loads [24].

In order to include both the harmonic and localized ripples accurately in the SPIRAL

code, the radial, bR(R, ϕ, Z), and vertical, bZ(R, ϕ, Z), components of the ripple field are

given at a number of toroidally equally spaced planes on an unstructured mesh in (R, Z).
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On each toroidal plane a 2-D Chebyshev polynomial fit is made for the bR and bZ while the

toroidal component of the ripple field, bϕ(R, ϕ, Z), is computed from the condition that the

magnetic field is divergence free. For the interpolation in the toroidal direction we have used

a quadratic polynomial around each given toroidal plane:

bi
x(R, ϕ, Z) = bi

x(R, Z) + ui
x(R, Z)ϕ + vi

x(R, Z)ϕ2 (18)

with x either R or Z, and i the index of the ith plane. We demand further that the radial and

vertical fields and their derivatives are continuous half way between two adjacent planes. In

order to calculate the toroidal field we expand the functions bi
x(R, Z), ui

x(R, Z), and vi
x(R, Z)

of eq. 18 into a finite sum of Chebyshev polynomials and from the condition that the magnetic

field is divergence free we can solve the unknown Chebyshev coefficients of the functions ui
x

and vi
x. This involves differentiating the expansions of bi

x, ui
x, and vi

x with respect to R and

Z, summing the various components, integrating with respect to ϕ and making use of the

facts that the field is periodic in ϕ and that the Chebyshev polynomials are orthogonal. All

those operations are performed analytically using the Chebyshev expansion coefficients and

therefore, the ripple field is guaranteed to be divergence free in the calculations down to the

numerical precision of the computer. In most ripple calculations it is sufficient to include

about 10 to 15 coefficients in the radial and vertical direction to describe the ripple fields

accurately as is shown in fig. 10 for a conventional toroidal ripple in NSTX and a localized

perturbation in DIII-D created by the TBM mock-up coils. In this figure it can be seen that

the reconstructed toroidal field perturbation in SPIRAL is in excellent agreement with the

one that was given.

Three examples of SPIRAL calculations with static magnetic fields are given here. In

the first example heat loads on the TBM surface are calculated and compared to measured

temperatures. Full orbit effects in this case only become apparent near the wall at the

point where they are lost [24]. In the second example simulated triton losses are compared

with neutron signals that were measured during the TBM mock-up experiments in DIII-

D [23]. Full orbit simulations are needed in this case because the tritons are born in the

plasma at 1 MeV and have gyro radii of up to 0.2 m in the DIII-D magnetic fields. In

the third simulation the effect of Resonant Magnetic Perturbations (RMP) on the beam-ion

confinement is studied for optimizing measurable signals in the planning phase of NSTX

experiments. Because of the low magnetic fields in NSTX only full orbit calculations can
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FIG. 11: Heat loads due to beam-ion losses on the protective tiles (outlined in yellow) of the TBM
mock-up experiment in DIII-D as calculated with the SPIRAL code.

give accurate predictions for those experiments.

Heat loads on the carbon tiles that protect the TBM mock-up coils in DIII-D were

calculated in the presence of the highly localized TBM error fields as shown in fig. 11. Tile

temperature rises were then calculated from the simulated heat loads and compared favorably

with measured tile temperature rises. Details of this experiment are given in [23, 24]. The

heat load was caused by 60 to 80 keV beam ions that are lost shortly after injection before

the ions have time to slow down significantly. In order to calculate accurately the location

where the particle impacts the wall, it is important to take into account the full particle

orbit because the Larmor radius, in this case up to about 4 cm at the point of impact, is

comparable or larger than the characteristic TBM field gradient scale lengths near the tile

surfaces. The heat loads from the SPIRAL simulations reproduce the measured temperature

increase at the back of the 2.5 cm thick protective carbon tiles in the TBM experiments as

was reported in [24].

When NBI is injected in DIII-D, a small fraction of the fast deuterium beam-ions react

with the thermal deuterium plasma:

Dbeam + Dplasma →











3He + n (2.56 MeV) 50%

P + T (1.01 MeV) 50%

By measuring the 2.56 MeV neutron signal one can deduce the 1.01 MeV triton birth rate

in the plasma because of the equal branching ratios of the two reactions. In DIII-D those

1.01 MeV tritons have a large Larmor radii (fig. 12), up to 20 cm, they are marginally

confined, and the orbits of the confined tritons are very sensitive to perturbations of the
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FIG. 12: A 1.01 MeV triton orbit (red) and its instantaneous guiding center orbit (blue) in DIII-D
as calculated with the SPIRAL code.

magnetic field. The confined tritons slow-down and react with the thermal deuterium to

form 4He and a 14.1 MeV neutron. Therefore, the ratio between the 2.56 MeV and 14.1 MeV

neutrons can be used as a sensitive measure for the triton confinement. In the DIII-D TBM

experiments it was found that this ratio decreased by 33±5% [23] when the TBM error fields

were engaged.

For a SPIRAL simulation of the triton burn-up measurements we have simulated a typical

DIII-D H-mode discharge (pulse 140153) with 5.8 MW of NBI power injected in which the

TBM fields were applied. The triton birth profile was obtained from a TRANSP run for this

shot. Two SPIRAL runs were made, one without and one with the TBM fields present. In

both cases 5000 test particles were followed for up to 100 ms. The energy slowing down time

of those 1 MeV tritons is 175 ms, so at the end of the simulation the confined tritons had

reached an energies of 600 keV or lower. In priciple the tritons should have been followed

to around 70 kev, the energy where the DT fusion cross section peaks but for reasons given

below the triton population that is left after 100 ms is on well confined orbits.

Many tritons are born on unconfined orbits and 53.8% are lost within the first 0.1 ms of

the simulations as can be seen in fig. 13. The large majority of the particles that are lost

immediately, are born on trapped orbits with large banana widths. In fact after 0.1 ms all

the trapped particles are lost and only passing particles are confined. In the simulations

without the TBM fields another 0.6% of the initial tritons is lost due to pitch angle scattering

resulting in a confined triton population fraction of 45.6% after 100 ms. When the TBM
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FIG. 13: The confined triton fraction in the SPIRAL simulations as function of time for a simulation
without (green) and with the TBM fields present (red).

fields are present, significant losses occur after 0.1 ms. Those losses vanish at around 100 ms

as can be seen in fig 13. There are two reasons for the the vanishing loss rate: i) the region

of phase space where TBM-induced losses can come from is depleted and because the tritons

are well above the critical energy, the depleted phase-space region is not refilled by pitch

angle scattering and ii) the effect of slowing-down on the drift orbits is a shift of the orbits

to the plasma center and hence co-going particles move away from the low-field side plasma

edge where the TBM error fields are located. At the end of the simulation with the TBM

fields only 30.6% of the original triton population is still in the plasma which is a reduction

of 33% compared to the run without TBM fields present. This reduction compares very well

with the observed value of 33±5% as reported in [23].

Resonant Magnetic field Perturbations (RMPs) can be beneficial for controlling ELM

activity but they can have a detrimental effect on the fast-ion confinement, leading to in-

creased losses and fast-ion redistribution. The SPIRAL code has been used in the planning

phase of the experiments to investigate at which RMP field amplitudes the effects of fast-ion

loss and redistribution become observable in NSTX experiments.

For this study a standard NSTX high-density H-mode discharge was used. The fast

ion beam birth profile was obtained from TRANSP/NUBEAM for beam source C with

a tangency radius of 0.49 m (fig. 14). Particle starting times were distributed uniformly

between zero and 25 ms and all the 10000 particles were then followed until they got lost or

reached 25 ms. Slowing-down and pitch angle scattering were included in the calculations
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FIG. 14: NSTX plasma shape with the beam birth profile as obtained from TRANSP/NUBEAM
for source C with a tangency radius of 0.49 m.

0.0 0.5 1.0 1.5
RMP coil current [kA]

20

30

40

50

nu
m

be
r 

of
 lo

st
 b

ea
m

 io
ns

 [%
]

NSTX pulse 142293

FIG. 15: RMP-induced beam ion losses as function of the current through the RMP coils.

where the energy slowing down time varied from 23 ms in the core to less than 12 ms near the

edge. When the amplitude of the RMPs which were added perturbatively to the equilibrium

magnetic fields was varied the beam ion losses increased as can be seen in fig. 15. The RMP

field is expressed as coil current where a coil current of 1.5 kA gives a radial magnetic

perturbation of 3 mT at the LFS plasma edge as can be seen in fig. 16a. The RMP induced

losses are concentrated just below the mid-plane at the LFS. When we integrate the losses

to the low-field side wall between the mid-plane and 0.5 m below the mid-plane as a function
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FIG. 16: (a) The radial RMP field at the plasma boundary and (b) calculated beam-ion losses
below the LFS mid-plane without RMP (blue) and with 1.5 kV RMP (red).

of toroidal angle we can clearly see the the the loss pattern is modulated with the n=3 RMP

as is shown in fig. 16b for the 1.5 kA calculation. Peak heat loads in that region of up to

200 kW/m2 for a 1 MW beam are predicted when the RMPs are present while the heat loads

are less than 20 kW/m2 for a 1 MW beam without the RMPs present. The minimum heat

load that an infrared camera which is installed on NSTX can detect is less than 100 kW/m2

so it is concluded that RMP generated heat loads can be detected.

With the FIDA diagnostic the confined beam-ion population can be measured [12]. The

interpretation of the FIDA signals is not straightforward because of its complicated weighting

function in phase space. In the FIDA system on NSTX vertical viewing cords are used which

favor low-pitch particles (|v‖/v| < 0.6) in an energy range between 30 and 60 keV. For a

quantitative interpretation of the FIDA signals, fast-ion distributions from amongst others

TRANSP and SPIRAL can be used in the FIDASIM code [25] to calculate the FIDA response

to those distributions. For the RMP loss study we have used the fast-ion distribution as

calculated with SPIRAL (fig. 17a) in the FIDASIM code to predict the FIDA light that is

observable as shown in fig. 17b. From this figure it can be seen that the RMPs decrease the

confined beam-ion population sufficiently to detect changes in the FIDA light. Therefore,

based on the SPIRAL simulations, it was concluded that enhanced RMP induced beam-ion
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FIG. 17: (a) FIDA signal without (blue) and with (red) RMPs as obtained with the FIDASIM
code with the (b) the beam ion distributions calculated with SPIRAL as input.

losses can be detected experimentally on NSTX from both temperature measurements of

the first wall for the lost ions and FIDA measurements for the confined fast ions.

VI. TIME-VARYING MAGNETIC AND ELECTRIC FIELDS

Simulating the interaction between electromagnetic waves and fast ions is of paramount

importance to understand the fast-ion transport in Tokamaks and therefore, a spectrum

of electromagnetic waves can be included in SPIRAL calculations where we have made a

distinction between ideal MHD waves that have no electrical field component in the direction

of the local magnetic field and Radio-Frequency (RF) waves in the ion-cyclotron range of

frequency that are launched into the plasma for heating and/or current drive purposes. In

general RF waves have an electrical field component parallel to the magnetic field.

In SPIRAL the electromagnetic waves are taken as harmonic waves in the toroidal direc-

tion (c.f. ref. [26]):

Ẽ(R, ϕ, Z, t) = e(R, Z) exp(−i(nϕ + ωt))

B̃(R, ϕ, Z, t) = b(R, Z) exp(−i(nϕ + ωt)) (19)

24



with e(R, Z) and b(R, Z) the complex fields that describe the poloidal distribution of the

wave fields, n the toroidal mode number and ω the mode frequency. The electric field Ẽ and

magnetic field B̃ are related to each other by Maxwell’s laws.

Ideal MHD codes such as NOVA [26, 27] calculate amongst other quantities the plasma

displacement, ξ, on a mesh inside the plasma. The plasma displacement can be used to

obtain the electrical and magnetic wave fields for the mode from:

Ẽ =
dξ

dt
× B = −iωξ × B

dB̃

dt
= −iωB̃ = ∇ × Ẽ

or

B̃ = ∇ × (ξ × B) (20)

Evaluating the Ẽ from ξ and B can be done accurately. However, extracting B̃ from eq.20 is

numerically highly inaccurate because the curl operator requires the subtraction of large but

almost equal terms. These terms have to be known with a very high precision to calculate B̃

accurately. Ideal MHD codes usually give as an output the fluctuating magnetic field which

is calculated accurately inside NOVA. We have used the plasma displacement together with

magnetic fields as calculated by NOVA as input of the MHD fluctuations for SPIRAL.

The plasma displacement and fluctuating magnetic fields are given by NOVA on a dis-

crete mesh and we have used again Chebyshev polynomial expansions to interpolate those

quantities. The fluctuating electrical field is obtained from the plasma displacement and

equilibrium magnetic field followed by a Chebyshev polynomial expansion:

Ẽ = −iωξ × B =
∑

i

∑

j

ẽijTi(R)Tj(Z) (21)

Depending on the size of the structures in the MHD fields, 50 to 100 basis functions are

needed for each coordinate. The ideal MHD condition, Ẽ · B = 0 is fulfilled automatically

in this way and tests have shown that the fitted electrical fields satisfy this condition better

than 10−4. The accuracy of the ideal MHD condition was improved further during the

orbit calculations by adding tiny corrections to the fluctuating electrical field that forces the

parallel electrical field to zero. This correction for Ẽ‖ is usually less than 0.1 V/m while Ẽ⊥

is typically 103 V/m or higher for TAEs.

In a similar manner the radial, B̃R, and vertical, B̃Z , components of the magnetic field

as calculated by NOVA are interpolated with Chebyshev polynomials and the toroidal field
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component, B̃ϕ, is calculated analytically from the divergence free condition imposed by

Maxwell’s equations and the Chebyshev coefficients of B̃R and B̃Z . The integration over

the toroidal angle is analytically simple because of its harmonic dependence (eq. 19). Nu-

merically, the procedure for obtaining the toroidal field component is robust because it does

not depend on subtle cancellations of large terms as was the case with the curl operator.

When following a particle through the plasma we have to evaluate now two complex fluc-

tuating fields, Ẽ(R, Z) and B̃(R, Z), which can be done efficiently at each (R, Z) location:

the Chebyshev basis functions are evaluated once followed by the multiplication of the co-

efficients for each of the twelve field components. The complex fields are then multiplied by

the toroidal and harmonic dependence, exp(−i(nϕ + ωt)) and the real part is used in the

orbit following calculations.

Fitting the fluctuating electrical and magnetic fields independently that were obtained

in accordance with Maxwell’s equations by NOVA does not guarantee that the fitted fields

obey Maxwell’s laws but where possible comparisons were made and the fitted fields were

consistent. Moreover, It can be seen from eq. 20 that the electrical field fluctuation am-

plitude is proportional to the mode frequency while the magnetic fluctuation amplitude is

independent of the mode frequency. Hence, for low frequency MHD activity the perturbed

magnetic fields are dominant while at high frequencies the perturbed electrical fields become

dominant. Therefore, small deviations of the independently fitted fields from the constraints

of Maxwell’s equations are tolerable because usually only the magnetic or the electrical field

fluctuations are dominant. The alternative, evaluating the curl operator in eq. 20, is less

accurate as discussed earlier.

A. MHD activity

A Reversed Shear Alfvén Eigenmode as calculated with the NOVA code is shown in

fig. 18 where the radial (a), surface (b), and the parallel (c) components of the fluctuating

magnetic field are shown together with the radial (d) and surface (e) components of the

electrical field. The parallel electrical field is zero within the numerical accuracy of the

calculation. In fig. 18f a deuteron orbit is shown where the deuteron was followed for 1 ms.

During this time interval the mode frequency increased linearly from 67.5 to 93.5 kHz. The

particle was launched on the mid-plane at a major radius of 1.95 m with an initial energy of
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major radius of of a deuteron moving in the RSAE shown in fig. 18.

74 keV. After a number of poloidal passages the particle starts to resonate with the mode

during a number of poloidal transits as can be seen from the velocity and energy traces in

fig. 19. It quickly gains energy (fig. 19c) with a significant change in perpendicular velocity

(fig. 19a) while the parallel velocity is not affected (fig. 19b) and its orbit shrinks by about

three centimeters as can be seen in fig. 19d.
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Resonant interactions between MHD modes and fast particles are important for fast-ion

transport in plasmas where the linear resonances are given by:

ωMHD = pωt + nωφ (22)

with ωMHD the frequency and n the toroidal mode number of the mode, ωt the particle

poloidal transit frequency, ωφ the toroidal transit frequency, and p the bounce harmonic

number [28–30]. At a given location, the transit frequencies depend on the energy and pitch.

The resonances can be determined in energy-pitch phase space by scanning the energy and

pitch at a fixed initial location as is shown in the red diamonds in fig. 20 for the RSAE of

fig 18 at 85 kHz where the poloidal and toroidal transit frequencies were determined with

the Fourier method as discussed above.

The resonance condition, however, does not give information on the strength of the

interaction between the particle and the wave. This information can be obtained by studying

the energy exchange between the mode and the particle. As a numerical experiment, we

have launched particles at the mid-plane at a major radius of 1.95 m, scanned the pitch and

energy, and recorded the minimum and maximum energy excursion that the particle makes

during a 3 ms time interval due to the RSAE where we have used a very low RSAE amplitude

with a maximum density fluctuation of ñ/n=10−4 to obtain only the linear resonances as

given by eq. 22. From fig. 20 it can be seen that the locations where the mode exchanges
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particles were launched at the mid-plane at R=1.95 m and a pitch of v||/v = 0.5.

energy with the RSAE coincide very well with the resonances as calculated from eq. 22. A

good coupling between the particle and the mode occurs for resonances with a pitch between

-0.25 and 0.05 and 0.25 and 0.75. Outside those pitch ranges the interaction between wave

and particle becomes weak.

When we increase the RSAE amplitude to an experimentally more realistic value of

ñ/n=4 10−3, the resonances broaden as can be seen in fig. 21 and new fractional resonances

appear due to the non-linear interaction between the particle drift orbit and the mode as

explained in ref. [31]. The effect of the increased number of resonances and the broadening is

that the resonances can overlap more easily, leading to chaotic particle orbits and enhanced

fast-ion transport (see ref. [31]).

TAEs appear regularly in NSTX as short (less than 2 ms as shown in fig. 22b) bursts

when NBI heating is applied. Those modes reach large transient amplitudes and the mode

frequency is changing rapidly as can be see in in fig. 22a. Those modes affect the fast-ion

population and in the following we will show how the SPIRAL code can model the fast-ion

redistribution in the presence of those TAE bursts.

In the time period preceding the TAE bursts the plasma was quiescent while 6 MW of

NBI was injected from all three beam sources so that the fast-ion distribution at the onset

of the TAE burst can be described well as slowing-down distribution. This slowing-down

distribution was calculated with SPIRAL from the NBI-birth profile as obtained from the

TRANSP/NUBEAM codes by loading 30000 particles from all three energy components
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a redistribution of the fast ions at the mid-plane. The yellow line in (d) indicates the location of
the magnetic axis.

uniformly in time between 0 and 50 ms. Those particles were then followed with SPIRAL

until 50 ms where slowing-down and pitch-angle scattering were included. Particles that

approach the thermal energy, in this case set at twice the local temperature, before they

reached 50 ms were not followed any longer and marked as thermalized. The resulting

slowing-down distribution is shown in fig. 23a as the parallel and perpendicular velocity

components. This distribution was then modified by the burst of TAEs after 2 ms as shown

in fig. 23b while particles were being added from the birth profile with the same rate as

during the first 50 ms (i.e. the beams continued to fuel the plasma during the TAE bursts

with the same rate as before). It can be seen in fig. 23b that some particles get accelerated

in both the parallel and perpendicular direction to above the beam-injection energy and

that a fraction of the particles, mainly with low pitch (v‖/v) values get lost to the plasma

boundary. The lost particle rate clearly coincides with the onset and growth of the modes
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FIG. 23: Simulated parallel/perpendicular phase space for (a) a beam-ion slowing down distribution
at the onset of the TAE burst and (b) after the TAE burst. The black dots represent confined
particles while the orange dots represent particles lost to the last closed flux surface. The beam
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thermal plasma and is drawn at 3 keV which is three times the central electron temperature.
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FIG. 24: Evolution of the confined fast-ions between -25 and 25 cm around the mid-plane due to
the TAEs as shown in fig. 23.

as can be seen in fig. 22c and in total 18% of the fast ions are expelled in 2 ms.

The modes have also a significant effect on the confined fast ion distribution as is depicted

in fig. 24 where we show the evolution of the confined fast ions between -25 and 25 cm around

the mid-plane. When the n=2 TAEs amplitude increases after 0.2 ms and the n=4 and 6

TAEs appear, the fast-ion profile collapses and broadens towards the high-field side. This

is more clearly in fig. 22d where the mid-plane distribution minus the distribution at the

on-set of the TAEs is shown. The collapse of the peak is visible as a trough (in blue) that

forms at a major radius of 1.1 m while a ridge (in white) becomes visible around 0.8 m
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FIG. 25: Evolution of the confined fast-ions between -25 and 25 cm around the mid-plane due to
the TAEs as shown in fig. 23.

when the TAEs are excited. Such changes can be measured with the the FIDA diagnostics.

The change in the distribution is a reflection of changes in the different particle classes as

shown in fig. 25. When the TAEs become active a fraction of particles on stagnation orbits

which are located on the low-field side are changed into passing orbits which traverse the

high-field side. This explains the broadening of the distribution. The particle population on

stagnation orbits is also found to be sensitive to getting lost which contributes significantly

to the flatting of the distribution as shown in fig. 24. The fraction of trapped particles and

particles on potato orbits is only slightly affected by the burst of TAE activity as can be

seen in fig. 25.

B. ICRF fields

In contrast to ideal MHD modes, externally launched RF fields for plasma heating and

current drive have in general an electrical field component parallel to the magnetic field

direction. The full-wave code TORIC [32] can calculate the ICRF fields in Tokamaks and

its output routines were adapted to create an output file with RF fields that can be read

directly by SPIRAL. In SPIRAL the TORC fields are fitted in the same way as for the

MHD modes but without the restriction of a vanishing parralel electrical field component.

Because SPIRAL is a full orbit code, the interaction between the gyro-motion of the particle

and ICRF fields is included naturally. This is different from guiding center codes where a

kick-operator has to be constructed to include the RF interaction [33, 34]. In this section
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FIG. 26: (a) The radial electric field for 20 MW of ICRF heating in ITER at 52.5 MHz where
the fundamental 3He resonance is located near the plasma center (white). A trapped 500 keV
deuterium orbit is indicated in purple together with its resonance at the high field side (black).
(b) The deuterium energy, (c) the gyro frequency at the particle location and (d) the particle’s
parallel velocity. for the depicted orbit.

we will show results from two simulations in which RF fields are included. The first one is

a study of ICRF absorption by NBI ions in ITER in which only the fundamental resonance

layer exists in the plasma [35]. In the second study results are presented for High Harmonic

Fast Waves (HHFW) in NSTX where multiple overlapping resonances are present in the

plasma [36].

One of the plasma heating schemes for ITER is a 20 MW ICRF system. This system can

be tuned to 52.5 MHz which is the on-axis fundamental resonance frequency of 3He minority

plasma species (fig. 26a). The 3He should absorb most of the power but the 52.5 MHz

deuterium resonance is also present in the plasma near a major radius of 5.2 m as shown in

fig. 26a and deuterium ions which form a slowing-down distribution from the 1 MeV beams

can absorb some of the ICRF power thereby reducing the heating efficiency of the on-axis

3He minority heating. In fig. 26a an orbit of a deeply trapped 500 keV deuterium particle

is shown that passes through the resonance layer. The energy of this particle during one

poloidal transit is shown in fig. 26b together with the local deuterium cyclotron frequency
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FIG. 27: Details of the energy trace for the first crossing of the ICRF resonance layer as shown in
fig. 26b.

at the particle location (fig. 26c) and its parallel velocity (fig. 26d). From fig. 26b it can be

seen that the particle gets a kick in energy when it crosses the Doppler shifted resonance

layer where the duration of one kick is about 1 µs or 50 gyro periods as can be seen in

fig. 27. Note also that away from the resonance a beat wave between the gyro motion of the

particle and the ICRF frequency can be seen. The Doppler effects on high-energy particles

are significant; in this case the resonance is shifted from 52.5 MHz to 50 MHz on the outer

leg while resonance occurs at 54 MHz on the inner leg. From fig. 26a it can be seen that

the 50 and 54 MHz resonance layers are some 20 to 30 cm away from the 52.5 MHz layer

and therefore, it can be concluded that the ICRF resonance layers for energetic beam ions

in ITER can be substantially broadened due to Doppler effects.

For a high 3He minority heating energy efficiency the deuterium beam-ions should not

absorb energy from the ICRF field. We have calculated the energy exchange between the

ICRF waves and the beam ions by following 10000 particles drawn from the beam-ion deu-

terium slowing-distribution as obtained from TRANSP for 1 ms in SPIRAL with the 20 MW

RF field as modelled with TORIC. From the energy gain of this ensemble the total absorbed

power for the beam ions was calculated as 0.08 MW which is small compared to the 20 MW

input power from ICRF and so it can be concluded that ICRF power absorption on beam

ions in ITER is not important. The 0.08 MW compares well with the 0.06 MW as found

with the TORIC code in which the fast ion distribution was approximated by a Maxwellian

distribution.

In contrast to conventional Tokamaks, multiple resonances for High Harmonic Fast Wave
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FIG. 28: (a) The radial electric field for 1 MW of HHFW heating in NSTX at 30 MHz. The
different harmonic layers are shown in white and labeled with their harmonic number. The orbit in
yellow is for a trapped 20 keV deuteron while its instantaneous guiding center is depicted in blue.
(b) The deuterium energy, (c) the gyro frequency at the particle location and (d) the particle’s
parallel velocity. for the depicted orbit.

(HHFW) heating are present in spherical Tokamaks like NSTX as can be seen in fig. 28a

where all the resonances between the second and the 11th harmonic are present. The drift-

orbits of the particles usually intersect more than one resonance and therefore, the particles

can interact with multiple resonances. In fig. 28a the orbit of a 20 keV deuteron is shown

that was launched at the upper turning point on the 5th harmonic resonance layer. Despite

crossing all of the harmonic layers between five and eleven, it only exchanges energy at the

5th harmonic layer (fig. 28b and c) where it bounces and its parallel velocity is zero as can

be seen in fig. 28d. The duration of the kick in this case is about 3 µs or 18 gyro periods.

At the other resonance layers the particle lingers for much shorter periods, often less than

one or two gyro periods, and therefore, it does not interact effectively with those layers.

Similar to the ITER case, the HHFW can couple to a population of fast ions that is

created with NBI heating in NSTX and reduce the HHFW heating efficiency. We have used

the SPIRAL code to estimate the amount of power that is absorbed by the beam ions. For

this study we calculated the fast-ion slowing down distribution from the beam deposition
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FIG. 29: Simulated parallel/perpendicular phase space for (a) a beam-ion slowing down distribution
just at the start of HHFW injection and (b) after applying 1 MW of HHFW heating for 1 ms. The
black dots represent confined particles while the orange dots represent particles lost to the first
wall. The beam injection energy was 90 keV (edge of yellow circle) while the half and third energy
components are at the boundaries of the purple and green circles. The red circle in the middle
represents the thermal plasma and is drawn at 3 keV which is twice the central temperature.

profile by loading 20000 particles uniformly over a 50 ms time interval. Those particles

were then followed to 50 ms without the RF fields present resulting in the slowing down

distribution shown in fig. 29a. This distribution was then followed from 50 to 51 ms in

the presence of the 1 MW of HHFW power. During this interval beam ions from the birth

profile were also loaded with the same rate as in the first 50 ms to simulate the continued

beam fueling. The resulting distribution is shown in fig. 29b where the black dots represent

particles that were confined at 51 ms while the particles that were lost during the 1 ms

HHFW heating phase are marked with orange dots. From this figure it can be seen that the

particles only gain perpendicular velocity from the HHFW in contrast to interactions with

MHD activity where both parallel and perpendicular velocity changed (fig. 23).

The parallel and perpendicular energy distribution spectra (fig. 30) show the formation

of a high energy tail in the perpendicular energy (fig. 30a). The majority of the accelerated

ions are lost during the 1 ms HHFW heating interval while the parallel confined energy

distribution (fig. 30b) is hardly changed by the HHFW. The lost ions, however, have gained

parallel energy which can be understood from their orbits. The parallel energy of trapped

particles varies between zero at the bounce points to a maximum on its outer leg as can be

derived from the velocity trace shown in fig. 28d. The HHFW increases the perpendicular

particle energy near the bounce point. This increases the size of the drift orbit and the
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FIG. 30: (a) the perpendicular and (b) parallel energy spectra of all the particles before (red) and
after (green) 1 ms HHFW heating. In blue the spectrum of the confined particles at 1 ms is shown.

maximum parallel energy of the particle at its largest major radius. Those accelerated

particles then get lost at the LFS near the mid-plane with an increase in parallel energy

that was obtained from HHFW at the bounce point.

From the 1 MW of HHFW power that was used in this simulation 21 kW (or 2.1% of the

injected HHFW power) was absorbed by the fast ions and 16 kW of that power was lost to

the wall. Although a small amount of HHFW power is carried away by the accelerated fast

ions, the impact of the waves is very severe for the fast ion population. In the 1 ms when the

HHFW are present 13% of the fast particles are lost. In a separate run where NBI injection

into a HHFW heated plasma was simulated for 5 ms it was found that up to 53% of the

injected particles were lost while in the absence of the HHFW power only 13% of the ions

were lost as first-orbit losses. Therefore, HHFW heating in combination with NBI heating

seems to lead to a decreased plasma performance in NSTX.

The parallel energy gain is also reflected in the increase in Larmor radii as shown in

fig. 31. The separation between the different HHFW harmonics (fig. 28a), about 16 cm in

this simulation, is comparable or smaller that the gyro radii of the high-energy particles and

therefore, particles can interact with two resonance layers at one gyro orbit. The effects of

this harmonic overlap is currently being investigated theoretically [37].

In order to model the interaction between HHFW and NBI accurately, the effects of the

fast-ion currents generated by the NBI and HHFW on the dielectric tensor must be included

in the calculation of the HHFW fields. In the TORIC code the dielectric tensor is currently
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FIG. 31: Distribution of the Larmor radii for the confined particles at the start (red) and at the
end of HHFW heating (blue). The Larmor radius distribution of the confined and lost particles
are indicated in green.
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FIG. 32: Energy gain as function of the particle energy at the start of the 1 ms HHFW heating for
an NBI slowing-down distribution as shown in fig. 29. The black marks represent particles that
are confined after 1 ms while the orange dots represent the lost particles.

calculated from a Maxwellian distribution. For an accurate comparison between the sim-

ulations and experiments the TORIC code is being modified to include non-Maxwellian

distributions in the calculation of the dielectric tensor [38]. Because the RF waves modify

the fast ion distribution which in its turn modifies the dielectric tensor and hence the TF

fields in the plasma, an iterative procedure between SPIRAL and TORIC is being developed

to study the HHFW-induced modifications of the fast-ion distribution and its feed-back to

the RF fields in the plasma for detailed comparison between simulations and experiments.
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The HHFW couples most efficiently to the high-energy particles from the slowing down

distribution and not to the bulk thermal plasma as can be seen in fig. 32 where particles with

initial energies above 10 keV get accelerated significantly. The thermal plasma temperature

in the center used in the simulations was 1.5 keV while the distribution above 10 keV is

part of the non-Maxwellian beam-ion slowing down distribution. This again highlights the

point that non-Maxwellian distribution functions should be taken into account in the RF

field calculations for a detailed with experiments.

VII. CONCLUSION

In this paper we have given a description of the numerical methods used in the full

particle-orbit following SPIRAL code together with a number of physics studies performed

with the code to illustrate its capabilities. Full-orbit effects are important for fast-ion ex-

periments in low-field machines such as NSTX. The SPIRAL code is written as a tool to be

used in the analysis and interpretation of fast particle experiments and it is also useful in

the planning phase of experiments to investigate their feasibility.

Apart from the toroidally symmetric equilibrium magnetic fields, time independent

toroidal ripple fields, electric fields arising from the plasma rotation, and time dependent

magnetic electric fields from MHD modes and ICRF antennas can be included in the SPI-

RAL code. Pitch angle scattering in 3D and slowing down effects, which are important for

fast-ion transport studies are also included in the code. Realistic first walls for different

machines can be selected in the code so that particle losses and heat loads in the first wall

can be studied accurately. A large number of variables are written in the output file for

access with a post processor code so that the results can be studied in detail.

In this paper we have shown some results of studies performed with the SPIRAL code

where full-orbit effects play a role. The exact location of hot spots created by fast-ion losses

depend on the gyro-radius, especially in combination with strong magnetic field gradients

which are present close to the wall in the TBM experiments in DIII-D. Finite gyro-orbit

effects are also dominant for the calculation of the 1 MeV tritium burn-up experiments in

the presence of the TBM fields.

Fast-ion gyro radii in NSTX are large because of its low magnetic field while the typical

scale of TAEs are on the order or smaller than those gyro-radii which justified a full-orbit
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treatment for the interaction between TAEs and fast ions. It was found that a short burst

of TAEs can re-distribute the fast ions and induce significant losses.

The interaction between ICRF and/or HHFW and fast ions depends solely on the gyro-

motion of the fast ions. We have shown for an ITER plasma that the wave-particle inter-

action occurs naturally in the SPIRAL calculations while in a preliminary study for NSTX

we found that the HHFWs couple efficiently to the energetic beam ions. The beam-ions

got accelerated where their gyro- and drift-orbits increase so that they do not fit into the

machine any more and get lost to the wall.

Although, where possible, comparisons between full orbit and guiding center calculations

were made, an exhaustive study between the two calculations is beyond the scope of this

paper. For unambiguously studying the differences between the two approaches one has to

make sure that the differences do not arise from small differences in the magnetic and/or

electrical fields in the different codes.
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APPENDIX A: CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials are defined on the interval [−1.0, 1.0] by the following recur-

sion relation:

Ti+1(x) = 2 xTi(x) − Ti−1(x)

with T0 = 1.0 and T1 = x and they form an orthogonal set on their interval. Their range is

bounded by [−1.0, 1.0] and together with the fact that the extrema are distributed uniformly

the Chebyshev polynomials are well suited for numerical work. When a function is expressed

as a sum of Chebyshev polynomials:

f(x) =
∞
∑

i=0

ai Ti(x)

where a simple coordinate transformation is made to map the finite range of the function

onto the interval [−1.0, 1.0] where the Chebyshev polynomials are valid. When the function

is needed up to a certain numerical accuracy, ǫ, the sum can be truncated from where the
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coefficients, ai, are less than ǫ. The uniform spread of the extrema then guaranties that the

function is accurate up to ǫ on its whole range.

The integral of a Chebyshev polynomial can be expressed as a the sum of two Chebyshev

polynomials:
∫

Ti(x) dx =











1
2(i+1)

Ti+1(x) − 1
2(i−1)

T|i−1|(x) i 6= 1

1
4
T2(x) i = 1

(A1)

where one of the polynomials in one order higher and the other one order lower than the

original polynomial order.

In a similar way, the derivative of a Chebyshev polynomial can be written as a sum of

lower order polynomials:

d

dx
Ti(x) = 2i

i−1
∑

j=0 step 2

Tj(x) − i T0(x) i is odd

d

dx
Ti(x) = 2i

i−1
∑

j=1 step 2

Tj(x) i is even. (A2)

When an arbitrary function is as a finite sum of Chebyshev polynomials:

f(x) =
n

∑

i=0

ai Ti(x)

the integral and derivative can be obtained analytically as finite Chebyshev polynomial by

rearranging the coefficients, ai, with the proper weights from the equations A1 or A2. When

the function depends on two independent variables, f(x, y), the expansion coefficients form

a matrix:

f(x, y) =
n

∑

i=0

m
∑

j=0

aij Ti(x) Tj(y)

and integrals and derivatives can be obtained in a similar way as for the one variable case.
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[30] M. Garćıa-Muñoz, H.-U. Fahrbach, S.D. Pinches, V. Bobkov, M. Brüdgam, M. Gobbin, S. Gn-
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