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The paraxial WKB (pWKB) approximation, also called beam tracing method, has

been employed in order to study the propagation of lower hybrid (LH) waves in a

tokamak plasma. Analogous to the well-know ray tracing method, this approach

reduces Maxwell’s equations to a set of ordinary differential equations, while, in

addition, retains the effects of the finite beam cross-section, and, thus, the effects of

diffraction.

A new code, LHBEAM (Lower Hybrid BEAM tracing), is presented, which solves

the pWKB equations in tokamak geometry for arbitrary launching conditions and

for analytic and experimental plasma equilibria. In addition, LHBEAM includes linear

electron Landau damping for the evaluation of the absorbed power density and the

reconstruction of the wave electric field in both the physical and Fourier space. Il-

lustrative LHBEAM calculations are presented along with a comparison with the ray

tracing code GENRAY and the full wave solver TORIC-LH.

a)This article is dedicated to the memory of Grigory Pereverzev.
b)nbertell@pppl.gov
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I. INTRODUCTION AND BACKGROUND

Lower hybrid current drive (LHCD) is an efficient tool for non-inductively driving current

off-axis in tokamak plasmas. Hence, it may play an important role for the current profile

control in the advanced tokamak scenario1. Some unresolved issues in the study of the

LH wave propagation still exist, such as the spectral gap problem2, i.e., the fact that the

parallel (to the magnetic field) refractive index spectrum generated at the plasma edge does

not appear to be wide enough to allow the waves to interact with a large number of electrons,

and the most recent one related to the “density limit” in the efficiency of LHCD3,4.

The most common approach employed to analyze radio-frequency wave propagation,

and specifically LH wave propagation, is the ray tracing (RT) method based on the WKB

approximation, also known as the geometrical optics method5–9. For the specific case of

high frequency wave beams in stationary media, this approach is based on the fact that the

typical inhomogeneity scale of the plasma L is much larger than the radiation wavelength λ.

This is referred to as the short-wavelength limit and can be expressed by the introduction

of a large dimensionless parameter

κ ≡ ωL

c
= k0L≫ 1, (1)

(where c is the speed of light, ω = 2πf , with f the wave frequency, and k0 ≡ ω/c is

the wave vector in free space). In the geometrical optics approach, the relevant solution

of Maxwell’s equations is approximated by the corresponding asymptotic solution in the

limit κ → +∞, which is constructed by tracing a bundle of propagation paths (rays), each

one being independent of the others and carrying a specific phase, refractive index vector,

amplitude and polarization. Geometrical optics provides a very powerful tool for solving

Maxwell’s equations in the short-wavelength limit, since it provides a simple picture (in

terms of rays) of the wave propagation and a direct application to practical problems. In

fact, the integration of the set of ordinary differential equations for the ray bundle is, from

a computational point of view, straightforward and cheap. Although geometrical optics is

widely employed in literature, it is important to remark that condition (1) gives a necessary

but not a sufficient condition for its validity9,10. There are situations in which the applica-

bility of geometrical optics is violated, even if the short-wavelength condition (1) is fulfilled:

this is typically the case for LH waves, which are considered in this work. The necessary and

sufficient conditions for the applicability of geometrical optics have been analyzed in detail
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by Kravtsov and Orlov9: the validity of the geometrical optics approximation is essentially

related to diffraction effects. Roughly speaking, a sufficient condition (Fresnel condition) for

the applicability of the geometrical optics for a focused/collimated beam is9

W 2

ℓ
≥ λ (2)

whereW is the width of the beam cross-section, and ℓ is the length of the propagation path.

In other words, condition (2) states that if W ≥
√
λℓ, diffraction does not play a significant

role; on the other hand, if W ≤
√
λℓ, diffraction must be taken into account.

Condition (2) shows that a new scale length comes explicitly into play, namely, the beam

width W . In practice, the length of the propagation path is assumed to be ℓ = O(L), hence,

diffraction effects are significant for

W

L
= O

(
1√
κ

)
. (3)

This last ordering is the basis of the paraxial WKB (pWKB) approximation, also called beam

tracing method, which is addressed in this work. In particular, this approach allows one to

derive a set of ordinary differential equations as in geometrical optics, taking into account

diffraction effects11–13 (see Section II). Techniques other than the pWKB approximation,

such as the parabolic wave equation14–18 and the quasi-optics approximation19–23, which

address asymptotic solutions of Maxwell’s equations in the same regime (3), have also been

considered in literature. With respect to the pWKB approximation, those other methods

rely either on a set of partial differential equations (PDE)14–18 or on constrained ordinary

differential equations (ODE)19–23, the solution of which is, in general, computationally more

demanding. As mentioned above, the propagation of LH wave beams is one case in which

the sufficient condition (2), for the application of geometrical optics, can be violated24,25. In

other words, diffraction effects are expected to play a significant role in the propagation of

LH waves as shown in the work of Pereverzev26.

Moreover, LH wave beams in the multi-pass regime27 undergo a series of reflections from

cut-offs and caustics singularities that are difficult to describe within the framework of high

frequency asymptotics, even for beam tracing and other advanced methods. These kind of

limitations motivated the development of direct numerical solutions of Maxwell’s equations,

which have recently been made available by full wave solvers such as the TORIC-LH28 and

the LHEAF29 codes. As the name suggests, full wave codes are capable of following the beam,
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in principle, without limitations. Asymptotic methods and full wave solvers are complemen-

tary tools: on one hand, asymptotic methods lead to extremely fast and lightweight codes

with a clear interpretation of results; on the other hand, full wave solvers, despite being

computationally demanding, account for all the details in the propagation, and can guide

the further development of asymptotic methods.

The aim of this paper is to show the application of the pWKB approximation to LH wave

propagation by using a new code, called LHBEAM, which has all numerical advantages of the

most common ray tracing method and, at the same time, takes into account diffraction phe-

nomena. Preliminary results have been shown in Refs. 30, 31. In addition to the LH beam

propagation, the evaluation of the absorbed power density through linear electron Landau

damping and the reconstruction of the electric field are included in LHBEAM and they are

discussed here for the first time. This paper is structured as follows: the pWKB approxima-

tion is reviewed in Section II. In Section III, a description of the LHBEAM code is presented.

Numerical results are shown in Section IV. Some examples of LH beam propagation and

power density profiles obtained by LHBEAM with different central electron temperature are

shown together with a comparison with the ray tracing code GENRAY32 and the full wave

solver TORIC-LH for both a circular cross-section equilibrium and an Alcator C-Mod like

equilibrium.

II. PARAXIAL WKB METHOD

In this section, the pWKB equations for an electromagnetic wave beam, with a Gaussian

profile, propagating in stationary and spatially non-dispersive media are reviewed and a few

comments are given on their physical meaning. The formal derivation of these equations is

based on the works of Pereverzev11,12 and Poli et al.13.

The pWKB method accounts for the detailed form of the wave field by retaining the

diffractive pattern of the beam cross-section, which is characterized by the intermediate

scalelength W (see equation (3)). Specifically, the ordering in half-integer powers of 1/κ

implied by equation (3) is employed to perform an expansion (paraxial expansion) around

the beam axis (also called reference ray). In physical terms, the wave field is supposed to

be localized around the reference ray, i.e., the wave field is exponentially small as κ→ +∞,

away from it. It is therefore enough to compute all physical quantities in a neighborhood of
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size W = O (1/
√
κ) of the reference ray.

The pWKB method provides a solution of Maxwell’s electromagnetic wave equation

∇×∇× E− k20ε · E = 0, (4)

(where ε is the cold plasma dielectric tensor) in the form

E(r) = A(r)e(r)eik0s̄(r) = A(r)e(r)eik0[s(r)+iϕ(r)], (5)

where A(r) and e(r) are the wave amplitude and the polarization unit vector, respectively,

while, the function s̄(r) = s(r) + iϕ(r) is the complex eikonal.

According to the discussion above, the functions A(r), e(r), s(r) and ϕ(r) are given

by their Taylor expansion around the reference ray up to the appropriate order, namely

(summation over repeated indices is adopted)

A(r) = A0(τ), e(r) = e0(τ), (6)

s(r) = s0(τ) +Ni(τ)[x
i − xi(τ)]

+
1

2
sij(τ)[x

i − xi(τ)][xj − xj(τ)], (7)

ϕ(r) =
1

2
ϕij(τ)[x

i − xi(τ)][xj − xj(τ)], (8)

where r = (xi), while xi(τ) and Ni(τ) are the coordinates and the components of the

refractive index N = ck/ω along the reference ray, respectively. Here, τ = τ(r) is the value

of the parameter along the reference ray, for which the vector (xi − xi(τ)) belongs to the

prescribed beam cross-section passing through (xi(τ)). Typically, for electromagnetic waves,

this corresponds to the value of τ , for which (xi − xi(τ)) is orthogonal to the reference ray.

For LH waves, however, the beam tends to line up with the equilibrium magnetic field,

hence, it is convenient to make use of poloidal sections of the tokamak to define beam

cross-sections, i.e., τ(r) is chosen so that (xi−xi(τ)) belongs to the poloidal section passing

through (xi(τ)). Let us recall that different choices of the beam cross-sections yield the same

solution within an O (1/
√
κ) error, which is the order of the error of the pWKB asymptotic

solution (5). It is worth noting that, in the expansion of ϕ(r), the first two terms are equal

to zero because, ϕ(r), evaluated on the reference ray, is zero by construction and, being, in

addition, positive-definite, we also have ∇ϕ = 0 (for all details the reader is referred to Refs.

11-13). Then, xi(τ) and Ni(τ) satisfy the set of Hamiltonian differential equations of ray
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tracing,
dxi

dτ
=
∂H

∂Ni

,
dNi

dτ
= −∂H

∂xi
, (9)

where H is the (real) determinant of the dispersion tensor Λ = (NN − N2I) + εh with

N(≡ ck/ω) the refractive index, I the identity tensor and εh the Hermitian part of the

plasma dielectric tensor. Correspondingly, s0(τ) =
∫ τ

N · dr(τ ′). The remaining functions

sij and ϕij obey the equations

dsij
dτ

=− ∂2H

∂xi∂xj
− ∂2H

∂xj∂Nk

sik −
∂2H

∂xi∂Nk

sjk

− ∂2H

∂Nk∂Nl

siksjl +
∂2H

∂Nk∂Nl

ϕikϕjl, (10)

dϕij
dτ

=−
(

∂2H

∂xi∂Nk

+
∂2H

∂Nk∂Nl

sil

)
ϕjk

−
(

∂2H

∂xj∂Nk

+
∂2H

∂Nk∂Nl

sjl

)
ϕik. (11)

The solution of these equations is subject to both the dispersion equation H = 0 on the

reference ray, and the constraints

∂H

∂xi
+ sij

∂H

∂Nj

= 0, (12)

ϕij
∂H

∂Nj

= 0, (13)

the derivatives of H being also evaluated on the reference ray. Hence, the number of inde-

pendent equations, for sij and ϕij, is reduced to six. In particular, equations (12) and (13)

can be employed either to reduce the number of equations or as a check of the numerical

accuracy. Diffraction effects are found as a result of the coupling between equation (10) for

sij and (11) for ϕij.

In order to understand the physical meaning of sij and ϕij, we consider a simple case in

which the beam propagates in free space along the x-direction and both sij, ϕij are diagonal.

Then, equations (12) and (13) give the constraints sxx = 0 and ϕxx = 0, respectively. In

this particular situation we can set τ(r) = x, and the wave electric field, given by equation

(5), becomes (dropping the amplitude and the polarization)

E ∝ exp

{
ik0

[
s0(x) +

1

2

(
syy(x)y

2 + szz(x)z
2
)]

− k0
2

[
ϕyy(x)y

2 + ϕzzz
2
]}

, (14)
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where s0(x) =
∫ x

Nx(x
′)dx′ describes the phase evolution on the reference ray (i.e., along

the propagation direction) and has the same physical meaning as in geometrical optics. The

next step is to introduce the radii of curvature of the phase front Rα and the beam widths

Wα, in such a way that the quadratic terms, present in equation (14), can be written in a

form which clarifies their physical interpretation

sαα(x) ≡
1

Rα(x)
, (no sum over α), (15)

and

ϕαα(x) ≡
2/k0
W 2
α(x)

, (no sum over α), (16)

for α = y or α = z. Therefore, the symmetric matrix sij is connected with the curvature of

the wave front, whereas ϕij describes the beam profile. In addition, from equation (14), one

can note that the contour levels of the amplitude profile in the y-z plane are determined by

a quadratic form whose axes are aligned with the y and z axes of the laboratory system.

Such a quadratic form ϕyyy
2 + ϕzzz

2 is positive definite and its contour levels are ellipses

(they can become circles when two beam widths are the same along the two directions). The

ellipse having semi-axes equal toWα will be called attenuation ellipse. An analogous analysis

can be carried out for phase fronts that, in particular, are characterized by the quadratic

form syyy
2 + szzz

2 (not necessarily positive definite). When ϕyz ̸= 0 (syz ̸= 0), one has the

rotation of the principal widths (the principal radii of curvature) with respect to the fixed

reference frame. For instance, in the case of inhomogeneous media, during the propagation

of the wave beam, the evolution of the attenuation ellipse can be quite complicated. In fact

the attenuation ellipse can rotate and change its eccentricity. In Section IVA, a 3D plot of

a LH beam is shown in which the evolution of this attenuation ellipse can be clearly seen.

Analogous to geometrical optics, the amplitude of the wave field is determined by the

wave energy transport equation33,

∇ · (vgU) = −2γU, (17)

which, in the framework of the pWKB method, is evaluated on the reference ray. Here,

vg
(
∝ V ≡ ∂H

∂N

)
is the group velocity, U ∝ |A|2 is the wave energy density, and γ =

|∂H/∂ω|−1 e∗ · εa · e is the absorption coefficient (εa is the anti-Hermitian part of the dielec-

tric tensor). In addition, the polarization vector e is obtained, as in geometrical optics, by

the equation Λ · e = 0 also evaluated on the reference ray. It is important to stress that,
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although the wave energy transport equation (17) is formally the same as the corresponding

geometrical optics equation, the group velocity is different. More specifically, the effects of

diffraction enter equation (17) through the term

∇ ·V =
∂

∂xi
∂H

∂Ni

+
∂2s

∂xi∂xj
∂2H

∂Ni∂Nj

, (18)

in which the dependence on the matrix ∂2s/∂xi∂xj = sij is evident, and this quantity is

coupled to the beam widths as discussed above. For the specific case of an isotropic medium,

the analysis of such a contribution has been carried out in Ref. 34.

The pWKB equations (9)-(11) constitute a system of ordinary differential equations11,12,35,

for which an initial value problem is posed. In particular, the relevant quantities for the

initial conditions are the launching position, the components of the refractive index (con-

sistently with the dispersion relation) on the beam axis, the quadratic forms sij and ϕij

(consistently with the constraints) related to the phase front and the principal widths of

the attenuation ellipse, respectively. Further comments about this will be given in Section

IVA.

III. CODE DESCRIPTION

LHBEAM, Fortan 90 code for LH waves, is derived from the TORBEAM code, which is the

first implementation of the pWKB equations for Gaussian wave beams with frequencies in

the electron-cyclotron frequency range in fusion plasmas35. The aim of LHBEAM is to solve

numerically the 20 ordinary differential equations of the pWKB approximation, in particular,

the equations for the reference ray (cf. equations (9)), the equations for the components of

the symmetric matrices sij, ϕij (cf. equations (10), (11)) and the equations for the wave

amplitude and the power (cf. equation (17)), in the lower hybrid range of frequency. The

dispersion equation H = 0, which in the pWKB approximation holds on the reference ray

only, and the six constraints (cf. equations (12),(13)) are used to prescribe consistent initial

conditions for the beam parameters and, during the run, as a check of accuracy. With

reference to equations (9)-(13), in the LHBEAM code the dispersion function H can be chosen

to be either the full electromagnetic dispersion function

HELM = S N4
⊥ −

[(
S −N2

∥
)
(P + S)−D2

]
N2

⊥

+ P
[(
S −N2

∥
)2 −D2

]
, (19)
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or the electrostatic dispersion function

HELS = SN2
⊥ + PN2

∥ , (20)

where N⊥ (N∥) is the perpendicular (parallel) component of the refractive index with respect

to magnetic field. Here, the plasma dielectric tensor is computed in the cold plasma limit,

and in the range of LH frequency, for which, ω2
ci ≪ ω2 ≪ ω2

ce. In particular, the elements of

the cold dielectric tensor are36

S = 1 +
ω2
pe

ω2
ce

−
ω2
pi

ω2
, D =

ω2
pe

ωωce
, P = 1−

ω2
pe

ω2
−
ω2
pi

ω2
, (21)

where

ω2
pe(r) ≡

4πne(r)e
2

me

, ωce(r) ≡
eB(r)

mec
, (22)

and

ω2
pi(r) ≡

∑
i=species

4πni(r)Zie
2

mi

≈ 4πne(r)Zeffe
2

mmain

, (23)

are the square of the electron plasma frequency, the electron cyclotron frequency and the

square of the ion plasma frequency, respectively (ne (ni) is the electron (ion) density, e the

absolute value of the electron charge, andme (mi) the electron (ion) mass, B the confinement

magnetic field, Zeff the effective charge of the plasma, and mmain the mass of the main ion

species). In the case of full electromagnetic dispersion function, equation (19) is just the

determinant of the dispersion tensor, i.e., no mode selection is operated at this level. With

this choice, the derivatives of H can be calculated in a simpler way. The slow wave mode

(corresponding to the LH waves) is selected by imposing appropriate initial conditions.

Regarding the evaluation of the power absorption of LH waves, in LHBEAM a Maxwellian

plasma is considered. Therefore the main contribution of the imaginary part of the dispersion

relation corresponds to linear electron Landau damping. More specifically, the absorbed

power is calculated according to the equation

dP

dτ
= −2αELD

∣∣∣∣∂H∂N
∣∣∣∣P, d

dτ
≡ ∂H

∂N
· ∂
∂r
, (24)

which follows from equation (17) by integrating in flux tube of the group velocity. Here,
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αELD corresponds to the linear electron Landau damping given by37–39

αELD =
γ

|vg|
= 2

√
π
(ωpe

ω

)2 ω

c

c3

N3
∥ v

3
th

×
[
(S −N2

∥ )(S −N2)−D2
]

×
∣∣∣∣∂H∂N

∣∣∣∣−1

exp

[
− c2

v2thN
2
∥

]
. (25)

In equation (25), vth ≡
√
2Te/me is the electron thermal velocity.

The plasma equilibrium can be prescribed either analytically or from experimental data.

In the former case, an analytical representation of the poloidal and toroidal components of

the magnetic field is implemented taking into account the Shafranov shift and the elongation

of the plasma (see Ref. 35). The radial profile of the density and the temperature are given

in the following form

f(r) = (f0 − fedg)
[
1−

(r
a

)e1]e2
+ fedg (26)

where f(r) stands for both the density (n(r)) and the temperature (T (r)) and the subscripts

“0” and “edg” refer the values at the plasma core (r = 0) and plasma edge (r = a),

respectively. In equation (26), a is the minor radius of the plasma torus and f0, fedg, e1 and

e2 are given as input parameters for both density and temperature. In the experimental case,

the magnetic configuration is provided numerically by assigning the (Cartesian) components

of the static magnetic field B and a flux coordinate ψ on a grid in the poloidal plane (x, z).

Density and temperature are also prescribed numerically. They are given as functions of ψ.

IV. RESULTS AND BENCHMARK

In this section, results for the beam trajectory, the evolution of the refractive index

throughout the propagation and the power deposition profile obtained from LHBEAM are

compared with the ray tracing code GENRAY32 and the full wave solver TORIC-LH28.

A. Numerical results

The tokamak plasma equilibrium adopted in this subsection has a circular cross-section

with a major radius R0 = 64 cm and a minor radius a = 16.5 cm. The magnetic field

is B(R0) = 8 T and the plasma current is Ip = 400 kA. The magnetic equilibrium is
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provided by a data file generated by the ACCOME code40. Temperature and density profiles

are parabolic following equation (26), with the central and the edge electron density given by

ne,0 = 5×1019 m−3 and ne,edg = 1×1019 m−3. Three different values for the central electron

temperature, Te,0 = 3, 5, 10 keV are considered, with the same edge electron temperature,

Te,edg = 0.5 keV, for all three cases. Plasma parameters mentioned here are based on the

Alcator C experiment41,42. Regarding the initial conditions of the LH wave beam, a precise

matching of the pWKB solution (5) to the electric field generated at the antenna mouth

is beyond the scope of this work. Initial conditions are given in the natural form for the

system of first-order ordinary differential equations (9)-(11) and (24). One prescribes the

initial position (xi0) = (80.2, 0, 0) in cm, already in the propagation region inside the plasma

(LH waves are evanescent at the antenna mouth), together with the parallel refractive index

N∥,0 = 2.5 (on the beam axis), which, assuming that the poloidal component of N is zero

(on beam axis), and using the dispersion relation at the initial point, is enough to determine

the other components of N in the laboratory frame. The quadratic forms sij and ϕij in

the initial point are chosen so that the initial phase front is flat, cf. equation (15), and the

attenuation ellipse is vertical with half-height W1 = 2.7 cm, in order to match to a single

waveguide height, and width W2 = 0.4 cm (here, W1 and W2 refer to the principal widths of

the attenuation ellipse (cf. equation (16))). The input power is assumed to be 1 MW and

the full electromagnetic dispersion function (cf. equation (19)) is adopted. The frequency

of LH beam is 4.6 GHz.

Figure 1 shows a 3D propagation of the LH wave beam for Te,0 = 5 keV launched in

the equatorial plane. In Figure 1, the evolution of the attenuation ellipse mentioned in

Section II is plotted (blue lines) showing its rotation during the LH beam propagation. The

beam axis trajectory is also plotted (in red). A zoom-in of Figure 1(a) from another point

of view is shown in Figure 1(b). Here, in addition to the evolution of the attenuation ellipse,

the direction of the wave vector is also shown along the beam axis, represented by the

(green) arrows pointing to the high field side, together with the direction of the magnetic

field, represented by the (black) arrows pointing basically in the opposite directions to

the trajectory of the beam. This figure emphasizes clearly one of the main feature of LH

waves: they tend to propagate parallel to the magnetic field (although, in this specific

case, in the opposite direction), while the wave vector tends to be perpendicular to the

static magnetic field. Though it is not immediately evident from figure 1(b) that the LH
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FIG. 1. (a) 3D evolution of the LH wave beam for Te,0 = 5 keV and N∥,0 = 2.5. Attenuation

ellipses (mentioned in Section II) are plotted (in blue), together with the beam axis (in red). (b)

A zoom-in of figure (a) from another point of view. The large (green) arrows represent the wave

vector direction along the LH propagation pointing to the high field side, while the small (black)

arrows represent the direction of the magnetic field opposite to the direction of the LH wave beam.

wave is a backward wave, the projection of the wave vector onto the beam axis, which

corresponds to the direction of the group velocity, is indeed negative, although small. In

order to illustrate the effects of the diffraction on the LH wave beam propagation, Figure 2

shows a comparison between the poloidal projection of the wave beam propagation obtained

from LHBEAM, represented by the shaded area (which corresponds to the projections of the

attenuation ellipses on the poloidal plane), with the poloidal projection of a bundle of rays

generated by the ray tracing code GENRAY, represented by the dashed lines. As in Figure

1, the solid (red) line refers to the beam axis. The difference between the two approaches

is evident: in particular, the spatial wave beam broadening originated by diffraction effects

is very significant and completely missing in the ray tracing description. This situation

appears to be typical: the size of the bundle of geometrical optics rays underestimates the

beam width (see also Refs. 26, 30). It is worth recalling that LHBEAM solves the pWKB

equations for a cold plasma (here, also GENRAY makes use of a cold plasma model), therefore

the wave beam trajectory and rays are independent of the temperature. Any changes in the

temperature affect only the location of the absorbed power deposition along the wave beam.

Figure 2 shows the positions along the wave beam at which the power is fully absorbed for
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FIG. 2. Comparison between pWKB and ray tracing methods for the LH wave propagation in

the poloidal cross-section. The colored area represents the projections of the attenuation ellipses

on the poloidal section obtained from LHBEAM and the solid (red) curve is the beam axis, whereas

the dashed (black) curves represent 10 rays generated by GENRAY. The solid (blue) diamond and

the solid (magenta) circle indicate the position along the wave beam in which the power is fully

absorbed, respectively, for Te = 5 keV and 10 keV.

Te,0 = 5 keV (shown with a solid (blue) diamond) and 10 keV (shown with a solid (red)

circle). For the lower temperature of 3 keV the beam is not fully absorbed in the first pass.

Another feature of LHBEAM is the possibility of a simple reconstruction of the wave electric

field, following equation (5). In the pWKB method, the solution for the wave field is directly

obtained in the physical space, as opposed to Fourier space, which is exploited by spectral

full wave solvers. In order to represent the wave electric field in the same way as a spectral

full wave solver, like TORIC-LH, which typically considers only a single wave toroidal mode

number nφ, we have performed a Fourier transform in the toroidal angle φ of the electric field

(which in the pWKB framework takes into account also the toroidal width of the antenna

in a natural way). The result is the wave electric field E(R, z, nφ), spectrally resolved in

the toroidal mode number nφ, and expressed as a function of (R, z) in the poloidal plane.

A numerical result of this procedure is shown in Figure 3, for the magnitude of the parallel
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FIG. 3. Magnitude of the parallel component of the complex electric field normalized to its value

at the launching point of the reference ray for three different cases: Te,0 = 3 keV (figure (a)), 5 keV

(figure (b)), 10 keV (figure (c)), for the fixed toroidal mode number nφ = −191, which corresponds

to the dominant component of the spectrum, showing in figure (d).

(with respect to the magnetic field) component of the complex electric field (normalized to

the value of the total electric field amplitude at the launching point of the reference ray) for

Te,0 = 3 keV (figure 3(a)), Te,0 = 5 keV (figure 3(b)) and Te,0 = 10 keV (figure 3(c)), all for

the value of nφ = −191, which corresponds to the toroidal mode that carries the maximum

energy. This is shown in figure 3(d), where the electric field energy
∫
|E(R, z, nφ)|2RdRdz

carried by each nφ mode is plotted (normalized to its maximum). The dominant component
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of the nφ-spectrum, namely, nφ = −191, is found to be slightly different in comparison with

the input parameter nφ = −196 for the corresponding run of TORIC-LH. This is due to (i)

small differences in the initial conditions in LHBEAM as compared to the boundary conditions

in TORIC-LH; (ii) the numerical tolerances of the discrete Fourier transform of the wave field

(which has been computed with 1024 uniformly distributed sample points in φ). Comparing

Figure 2 with Figure 3, one can see that the parallel component of the electric field follows

very well the beam trajectory and that its maximum lies on the beam axis and decreases

away from it. This feature could be useful for the interpretation of results generally obtained

from full wave solvers where it is much more complicated to distinguish the evolution of the

parallel electric field along the beam trajectory. In addition, the positions along the wave

beam at which the power is fully absorbed (shown in Figure 2 by the solid (blue) diamond

and the solid (magenta) circle for Te = 5 keV and 10 keV, respectively) are in good agreement

with the contour levels of the parallel electric field shown in Figure 3. One can also note

that the magnitude of the parallel electric field close to the launching point has a similar

behavior for all three cases considered. In fact, the 3 keV case seems to be an extension of

the 5 keV and 10 keV cases.

It is important to mention that the current version of LHBEAM does not deal with caustic

singularities and reflection at the plasma edge since that would have required a specific

treatment within the framework of the pWKB technique. Further comments about this will

be given in the following subsection and in the last section.

B. Benchmark with GENRAY and TORIC-LH

In order to validate the pWKB code for LH waves, LHBEAM is compared to results from

other independent codes. A careful comparison of different codes is no easy task, in partic-

ular, when each code is based on a different physical model and different kind of approxi-

mations. Here, a code validation is presented regarding the trajectory of the propagation

and the evolution of the parallel and perpendicular components of the refractive index with

the ray tracing code GENRAY32 and absorbed power with both GENRAY and the full wave

solver TORIC-LH28. As mentioned in the previous section, the beam axis obeys the ray

tracing equations (cf. equations (9)). Therefore, we can compare directly the trajectory of

the beam axis calculated by LHBEAM with the trajectory of a single ray calculated by the ray

15
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FIG. 4. Poloidal (a) and toroidal (b) projection of the trajectory of the LH beam axis calculated

by LHBEAM (full red curve) and the trajectory of a single ray calculated by GENRAY32 (dashed

blue curve). Circular cross-section equilibrium, parabolic plasma profiles and the initial value of

N∥ = 2.5 and electron temperature Te = 3 keV are assumed.
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FIG. 5. Parallel (a) and perpendicular (b) component of the refractive index as a function of R,

corresponding to the case of Figure 4, calculated by LHBEAM (full red curve) and GENRAY32 (dashed

blue curve).

tracing code GENRAY together with the evolution of the refractive index along the beam axis.

(A preliminary code validation has been done in a previous work31 by using an analytical

equilibrium with the ray tracing code C3PO43,44.) Here, we present two cases, one using the
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FIG. 6. Poloidal projection of the trajectory of the LH beam axis calculated by LHBEAM (full red

curve) and the trajectory of a single ray calculated by GENRAY32 (dashed blue curve). Alcator

C-Mod like equilibrium and the initial value of N∥ = 5 are assumed.

circular cross-section equilibrium discussed in the previous subsection and one based on an

Alcator C-Mod like equilibrium. Figure 4 shows the poloidal (Figure 4(a)) and toroidal (Fig-

ure 4(b)) projections of the beam axis obtained by LHBEAM, solid (red) curve, together with

the trajectory of a single ray calculated by GENRAY, dashed (blue) curve, assuming N∥,0 = 2.5

and parabolic plasma profiles with Te,0 = 3 keV. Excellent agreement between the beam axis

and the ray path is found between these two independent codes, in fact, differences between

the two curves are hardly noticeable. The same agreement is also seen in Figure 5, where

the parallel (Figure 5(a)) and perpendicular (Figure 5(b)) components (with respect to the

magnetic field) of the refractive index as a function of the major radius, R, are plotted,

respectively. For the Alcator C-Mod like equilibrium, the same good agreement appears in

Figures 6 and 7, where again the beam axis trajectory and the evolution of the refractive

index (parallel and perpendicular components) are plotted. Therefore, we can conclude that

LHBEAM and GENRAY are in remarkable agreement with regard to the trajectory and the evo-

lution of the refractive index during the beam propagation, despite the use of two different

interpolation methods for the experimental equilibrium data. Finally, in order to further

increase our confidence in the LHBEAM calculations, an additional comparison regarding the

power density profile is shown in Figure 8. Figure 8 shows the power density as a function of
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FIG. 7. Parallel (a) and perpendicular (b) component of the refractive index as a function of R,

corresponding to the case of Figure 6, calculated by LHBEAM (full red curve) and GENRAY32 (dashed

blue curve).

the square root of the normalized poloidal flux, ρψ obtained from LHBEAM, GENRAY, and the

full wave code TORIC-LH. Three cases are shown for different central electron temperature,

namely, Te,0 = 3 keV (red curves), Te,0 = 5 keV (green curves) and Te,0 = 10 keV (black

curves) by using circular cross-section equilibrium and parabolic profiles described above.

Solid, dashed and dashed-dotted lines correspond to LHBEAM, TORIC-LH and GENRAY results,

respectively. From Figure 8, the three considered codes appear to be in good agreement

for Te,0 = 5, 10 keV. Some differences are noted for the Te,0 = 3 keV case, for which the

single-pass absorption is weaker. Since reflections at the plasma edge are not yet included

in LHBEAM, Te = 3 keV corresponds to a limit case for LHBEAM. Nevertheless, the agreement

between the pWKB approximation and the full wave approach is quite good. The slight

differences between LHBEAM and TORIC-LH are possibly due to the missing small amount of

absorbed power after the reflection of the LH wave beam at the plasma edge that is not

included in the LHBEAM power deposition profile. The differences with GENRAY can be ex-

plained by missing full wave effects in the ray tracing model, such as diffraction. This is

clearly shown in Figure 2(a) where the pWKB technique shows a significant spatial broad-

ening with respect to the ray tracing method (see also Refs. 26, 30). However, for the strong

absorption regime, the location of the peak of the power density and its profiles are in very

good agreement among codes, particularly, for Te,0 = 5 keV and 10 keV. Indeed, such a good
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power is 1 MW. Note that LHBEAM takes into account the full toroidal spectrum.

agreement deserve to be further commented on as the ray tracing, beam tracing and full

wave correspond to a rather different description of the wave field. One should first recall

that full wave effects (diffraction, in particular) can change the wave energy density distri-

bution in both the physical and Fourier spaces. Ray tracing calculations are not sensitive

at all to those effects, which, on the other hand, are captured by a full wave solver. The

agreement between GENRAY and TORIC-LH seems to imply that such effects do not play a

significant role in the strong absorption scenarios (Te,0 = 5, 10 keV), at least, for the cases

considered here. However, they are important in the weak absorption case (Te,0 = 3 keV).

The pWKB implementation of LHBEAM stands in between: wave effects are fully accounted

for in the description of the propagation, but they are only partially accounted for in the

description of power deposition. As mentioned in Section II, the wave energy transport

equation has been evaluated on the reference ray, and that is rigorously justified only for a

spatially non-dispersive medium11,12. The electron Landau damping is spatially dispersive,

cf. equation (25), and the effects of the finite width of the N∥-spectrum should be prop-

erly dealt with. The current version of LHBEAM does not yet include a proper description

of caustic structures and reflections of the beam at the plasma edge. In the limit case of 3

keV, the differences with respect to GENRAY profiles can be explained as the effect of both
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the diffractive broadening of the beam cross-section (cf. Figure 2(a)) and the missing power

after the reflection of the beam. One can also conclude that the effects of the finite width

of the N∥-spectrum are crucial for the correct description of the LH power deposition in the

weak absorption regime.

V. SUMMARY AND DISCUSSION

In this paper, the pWKB method is applied to the LH wave propagation. A description

of LHBEAM, a pWKB code for Gaussian beams of LH waves, has been provided, and the

possibility of the 3D reconstruction of the LH wave field has been demonstrated. Unlike the

electric field obtained from a full wave solver, which typically makes use of a single toroidal

mode number, the electric field based on the pWKB approximation takes into account, in

a natural way, the whole nφ-spectrum. In other words, the finite size of the antenna, not

only in the poloidal but also in the toroidal direction are included in the beam description.

The dominant nφ mode can easily be singled out by a discrete Fourier transform, leading

to results close to full wave calculations, cf. Figure 3. Comparison of the propagation

of the LH wave beam described by LHBEAM and the bundle of rays obtained from GENRAY

demonstrated that the spatial wave beam broadening caused by diffraction effects, which is

completely missing in the ray tracing description, is captured by pWKB method, and can

be very significant.

A detailed validation of LHBEAM has been also presented. A comparison of the trajectory

of the beam axis and the evolution of the refractive index with ray paths from GENRAY, has

been analyzed for both a circular equilibrium with parabolic plasma profiles and an Alcator

C-Mod like equilibrium and plasma profiles. Excellent agreement in both cases is found. In

addition, a comparison of the power deposition profile from LHBEAM with results from GENRAY

and the full wave solver TORIC-LH has been studied. Good agreement has been found in

strong absorption regimes (also called the single-pass absorption regime). However, in the

weak absorption limit, some differences are found, in part because LHBEAM does not include

the cut-offs and reflections. A specific analysis and treatment in the pWKB framework is

required to include these effects. For the very strong absorption cases (Te,0 = 5, 10 keV

analyzed in the previous section), the results obtained from pWKB approximation, ray

tracing and full wave approach are very similar, suggesting that, at least in the considered
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cases, diffraction effects are not so significant for the calculations of the absorbed power.

In a weaker absorption regime (Te,0 = 3 keV), the pWKB seems to be more accurate than

the ray tracing method, despite the lack of reflection treatment in the current version of

LHBEAM. This is, in fact, a promising result. Still it remains to investigate the effect of

spectral broadening in the absorbed power due to diffraction effects in the weak absorption

regime together with a specific treatment of the caustics and cut-offs, which are expected

to be important for an accurate modeling of the multi-pass regime. These topics will be

addressed in a future work.

In summary, the agreement between LHBEAM and TORIC-LH presented in this work , in the

moderate and strong absorption regimes, suggests that the pWKB technique can capture

part of the physics described by full wave solvers and, therefore, help to extract physical

insight from them. As discussed above, work is underway to extend the pWKB method to

the weak damping regime. It is important, in fact, to mention that the application of the

pWKB technique requires much less computation time and resources with respect to the full

wave approach. This would provide an accurate reduced model that executes much faster

than the full wave LH propagation and absorption calculations.
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