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Plasma-based accelerator with magnetic compression

P. F. Schmit and N. J. Fisch
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA

(Dated: June 27, 2012)

Electron dephasing is a major gain-inhibiting effect in plasma-based accelerators. A novel method
is proposed to overcome dephasing, in which the modulation of a modest (∼ O(10 kG)), axial, uni-
form magnetic field in the acceleration channel leads to densification of the plasma through magnetic
compression, enabling direct, time-resolved control of the plasma wave properties. The methodology
is broadly applicable and can be optimized to improve the leading acceleration approaches, including
plasma beat-wave, plasma wakefield, and laser wakefield acceleration. The advantages of magnetic
compression compared to other proposed schemes to overcome dephasing are identified.

PACS numbers:

Introduction.— Charged-particle acceleration in
plasma employs short, intense laser pulses or high
energy electron bunches to excite longitudinal plasma
waves to high amplitudes at phase velocities near the
speed of light, thereby accelerating relativistic particles
to high energies over very short distances [1–6]. One
major factor limiting energy gain in plasma-based accel-
erators is phase slippage, in which a particle eventually
outruns the segment of the wave providing a positive
accelerating force (see, e.g., Ref. [3]). The maximum
achievable energy gain for a particle trapped in a
plasma wave is limited by the wave amplitude and phase
velocity, vph. Methods to improve gain require that
particles remain in phase with the forward accelerating
component of a plasma wave for an extended period
of time. The surfatron employs a static, transverse
applied magnetic field to control the axial phase of an
accelerating particle in a beat-wave accelerator [7, 8],
while a stationary, axial plasma density gradient can be
used to synchronize the advance of a wakefield and an
accelerating ultrarelativistic electron [9–13]. The use of
active media to modulate the wake phase velocity has
also been proposed [14].

In this Letter, we propose a new method to modu-
late precisely the phase velocity of an accelerating plasma
wave by imposing a time-varying, uniform axial magnetic
field throughout the plasma. Within a bounded param-
eter regime, uniform transverse magnetic compression of
the plasma column is possible on experimentally relevant
timescales. Thus, a tunable, time-varying density profile
can be realized. With magnetic compression, the plasma
wave phase velocity can be increased beyond the sublu-
minal driver group velocity, in the case of laser wakefield
(LWFA) and plasma beat-wave (PBWA) acceleration, or
the driver beam velocity, in the case of plasma wakefield
(PWFA) acceleration (up to and even beyond c). Static,
axial magnetic fields have been shown to enhance elec-
tron injection, trapping, beam stability, and energy gain
in LWFA [15, 16] and PBWA [17]; however, this is the
first time a time-varying field has been proposed as a
control mechanism for the wave dynamics.

For PBWA, only a small fractional density increase
through magnetic compression is needed to increase the
electron dephasing length to arbitrarily long distances,
without inducing transverse motion of the accelerating
electrons across the plasma wave, unlike the surfatron
method [7]. For wakefield acceleration, generating a
propagating luminal phase front in the wake via mag-
netic compression requires much smaller shifts in density
than the axial density gradient method [9–13], and no
density singularity arises in the optimized density pro-
file as the accelerating electron bunch approaches the
driver. Additionally, in PWFA, proportional densifica-
tion of the driving beam and background plasma causes
the wakefield amplitude to increase with propagation dis-
tance, rather than decrease, as occurs with the axial gra-
dient method [9]. Also, generating a time-varying, but
axially uniform, density profile in the acceleration chan-
nel using a time-varying, uniform magnetic field should
be technologically considerably easier than generating a
stationary axial density gradient, which, in equilibrium,
requires pressure balance as well.

Plasma beat-wave acceleration with compression.— In
PBWA, two co-propagating lasers combine to form a
traveling ponderomotive beat-wave. Here, the laser fre-
quencies ω1,2 = ωd ± ∆ω/2 and wavenumbers k1,2 =
k0 ± ∆k/2, with ∆ω ≈ ωp, ∆k ≈ ωp/c ≡ kp, and
ωd ≫ ωp, where ωp is the electron plasma frequency.
For simplicity, we consider the 1D limit, i.e., rd ≫ k−1

p ,
where rd is the characteristic transverse dimension of the
driver, such that the focus will be primarily on the axial
dynamics of accelerating electrons. The beat-wave res-
onantly drives a long (many k−1

p ) plasma wavetrain of
frequency ωp and wavenumber kp to high amplitude over
several plasma periods. Subsequently, the approximately
uniform wavetrain is used as an accelerating structure for
externally injected electrons. For PBWA, autoresonant
phase-locking of resonantly driven plasma waves to fre-
quency chirped laser beat-waves has been proposed as a
way to drive plasma waves to high amplitudes [18, 19],
but the dephasing problem is not addressed. Here, we
propose a method to modulate both ωp and vph.
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Consider homogeneous, uniformly magnetized plasma,
i.e., B = B(t)ẑ, where B(t) changes with time. For ex-
ample, this could be realized within a plasma column
confined inside a solenoid carrying a time-varying cur-
rent. Magnetization implies that the plasma density, n,
varies with |B|. For slow variation of plasma parame-
ters, a plasma wave with wavevector k ‖ B obeys the
eikonal equation [20]: ω2 = ω2

p + 3k2v2
T‖, where vT‖ is

the electron thermal velocity parallel to the magnetic
field. In the case of an ultrarelativistic plasma wave, i.e.,
vph = ω/k ≃ c, the cold plasma eikonal equation suffices,
ω = ωp. Since ω2

p ∝ n ∝ B, we have ωp = ωp(t), while k
remains constant (neglecting nonlinear effects [3]), since
the compression is perpendicular to the wavevector. In
the neighborhood of ω/k = c, changes in n result in large
changes in ω/k, so that minimal compression is needed
to retain proper phasing of relativistic particles.

The axial dynamics of a relativistic electron interact-
ing with a sinusoidal potential exhibiting a dynamically
changing vph(t) are captured by the equations [21]:

dγ

dt
=

(

1 −
1

γ2

)1/2 (

eE0

mec

)

cos ξ, (1)

dξ

dt
= ck

(

1 −
1

γ2

)1/2

− Ψ̇, (2)

where ξ = kx − Ψ(t), γmec
2 is the electron energy in

the laboratory frame, e is the elementary charge, and
Ψ(t) =

∫ t

0
ω(k; t′) dt′. Because minimal compression is

anticipated to correct the wave phase velocity, the electric
field amplitude E0 ≈ const.

The compression profile required to overcome phase
slippage in PBWA can be calculated from Eqs. (1) and
(2). Suppose Ψ(t) is configured such that a stable fixed
point arises in the phase space associated with the rest
frame of the accelerating plasma wave. Then, combin-
ing Eqs. (1) and (2) by eliminating the square root gives
γ̇ = Φ0(ξ̇ + Ψ̇) cos ξ, with Φ0 ≡ eE0/kmec

2. If ξ = ξ0,
corresponding to the fixed point, there exists an energy-
like integral of motion: d/dt(γ − Φ0Ψcos ξ0) = 0. Equa-
tion (2) yields the necessary plasma compression profile.
Noting that Ψ̇ = ωp(t), and that the distance traversed
by a phase-locked particle D(t) = (Ψ − Ψ0)/k, the re-
quired normalized density profile, ñ = ω2

p/ω2
p0, is:

ñ[D(t)] =
γ2
0

[

(γ0 + Φ0kD cos ξ0)
2
− 1

]

(γ2
0 − 1) (γ0 + Φ0kD cos ξ0)

2
, (3)

where γ0 = γph,0 ≡ (1 − v2
ph,0/c2)−1/2 implies exact

initial wave-particle resonance. This expression for ñ
is monotonic in D, asymptotically approaching ñmax =
γ2
0/(γ2

0 − 1) as D → ∞ (and, hence, γ → ∞). For in-
stance, to accelerate a 2 MeV electron bunch (γ0 ≈ 4)
to arbitrarily high energies requires a peak density shift
ñmax ≈ 1.07, demonstrating that only small changes in

density are needed to accelerate relativistic electrons to
arbitrarily high energies while maintaining the proper
wave-particle phase relationship. Physically, the quan-
tity ñmax represents the total change in density required
for vph → c. To express Eq. (3) as an explicit function

of time, one integrates D(t) =
∫ t

0
v dt′ for a relativistic

particle at fixed phase in the accelerating potential:

D(t) =
1

α





√

(

αct +
√

γ2
0 − 1

)2

+ 1 − γ0



 , (4)

with α = eE0 cos ξ0/mec
2. The fixed point assumes zero

transverse momentum, which equates to a compression
profile optimized to trap relativistic particles with a nar-
row transverse energy spread.

Peak acceleration occurs when ξ0 = 0, for which an
electron starting at ξ = 0 obeys γ − Φ0Ψ = const. In
fact, for a wave of specified E0 and k, this is the maximum

achievable acceleration, in which the electron experiences
the peak accelerating field as the wave and electron ac-
celerate together. More generally, choosing ξ0 : (0, π/2)
in Eq. (3) leads to compression profiles enabling electron
trapping over a broader range of initial electron energies,
at the cost of slower acceleration. This is because the
fixed point in the wave rest frame, ξ0, lies ahead of the
peak accelerating field, at ξ = 0, allowing some particles
that slip behind ξ0 to catch up to ξ0 once again.

Wakefield acceleration with compression.— Mitigating
phase slippage through magnetic compression in (linear)
wakefield acceleration, including LWFA and PWFA, is a
somewhat different process. Here, a time-varying density
profile during wake excitation results in an axial gradient
in the plasma wake parameters, which was not the case
with PBWA. Electron dephasing is often the dominant
effect limiting energy gain in wakefield acceleration when
the driver amplitude is no more than weakly relativistic,
i.e., eA/mec

2 < 1 for LWFA, where A is the peak vector
potential of the laser driver [13], or nb/n < 1 for PWFA,
where nb is the peak driver beam density [3].

In wakefield acceleration, a subluminal wakefield is
excited by an ultrarelativistic driver, i.e., γd = (1 −
β2

d)−1/2 ≫ 1, with βd = vd/c, and vd is the driver
pulse velocity. For PWFA, the longitudinal velocity of
the electron beam driver, vb, is unaffected by the per-
pendicular magnetic compression. Because only modest
density changes will be needed, the laser pulse group ve-
locity, vgr, is mostly unaffected as well, since a change
in plasma frequency, ∆ωp, leads to a change in wave
phase velocity ∆vph/vph ∼ ∆ωp/ωp, which is large com-
pared to the change in laser group velocity, ∆vgr/vgr ∼
(ωp/ωd)

2∆ωp/ωp, where ωd is the characteristic laser fre-
quency, and ωp/ωd ≪ 1 in underdense plasma. Thus,
both PWFA and LWFA can be treated similarly, where
the characteristic driver velocity vd = const.

We follow the technique of Ref. [9] to derive the re-
quired density profile (in the 1D limit) to maintain a
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luminal phase front in the wakefield initially a distance
wλp0 behind the lead pulse, with the plasma wavelength
λp = 2πvd/ωp, and w an arbitrary constant. This lumi-
nal front will remain in phase with an accelerating ultra-
relativistic bunch of electrons also traveling at velocity
v ≃ c. First, we review the calculation of the optimal
stationary, but inhomogeneous, axial density profile re-
quired to perform the same task. The rate of advance
of the wake is given by ∆zw/∆t = vd − w∆λp/∆t =
vd − wvd(∂λp/∂n)(dn/dz). An ultrarelativistic particle
advances at ∆z/∆t ≃ c. Setting the two rates of advance
equal gives the equation for the optimized density profile:

dωp

dz
=

ω2
p(z)

2πwvd

(

β−1
d − 1

)

, (5)

where (1/n)dn/dz = (2/ωp)dωp/dz was used. We define
the overtaking time, T ≡ ct0/(c−vd), and the overtaking
length, L ≡ cT , where t0 = 2πw/ωp0 is the particle in-
jection time. An ultrarelativistic electron overtakes the
slower lead pulse after time T over a total path length
L. In dimensionless variables z̃ ≡ z/L and ω̃p ≡ ωp/ωp0,
Eq. (5) can be expressed as

dω̃p

dz̃
= β−2

d ω̃2
p, (6)

which has the solution ω̃p = (1 − β−2
d z̃)−1. This is the

well-known optimized axial density profile to sustain the
luminous phase front [9], and, since β−2

d > 1, one ob-
serves that the density always becomes singular just prior
to the electrons overtaking the driver (at z̃ = 1).

For a uniform plasma densifying with time through
magnetic compression, ∆zw/∆t = vph − w∆λp/∆t. At
each point, the wakefield wavevector initially satisfies
k[zd(t)] = ωp(t)/vd [3], where zd(t) = vdt is the ax-
ial position of the driver amplitude maximum at time
t. The position of the accelerating, ultrarelativistic elec-
tron is given by z ≃ c(t − t0). When an electron moves
through a point z within the wake at time t, k(z) has
been set by the driver at a previous time, t′ = (t−t0)/βd,
whereas ωp has increased through densification since t′.
Accordingly, vph(t) = vd ωp(t)/ωp(t

′). Also, ∆λp/∆t →
(∂λp/∂n)(dn/dt). Setting equal the rates of advance of
the wake and the accelerating electron gives

dωp

dt
=

ω2
p(t)

2πw

[

β−1
d −

ωp(t)

ωp[(t − t0)/βd]

]

, (7)

in which the required rate of change of ωp depends on ωp

at a previous time. In dimensionless variables t̃ ≡ t/T
and ω̃p, Eq. (7) can be expressed as

dω̃p

dt̃
=

ω̃2
p

χ

[

β−1
d −

ω̃p(t̃)

ω̃p[(t̃ − χ)(1 + χβ−1
d )]

]

, (8)

where χ ≡ 1 − βd ≪ 1. Since χ ≪ 1, Eq. (8) can be
approximated by expanding the past-time form of ω̃p
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FIG. 1: (color online) Optimized density profiles for: (a) the
axial density gradient method (dashed line), with Q = z/L
signifying an axially inhomogeneous density profile; and (b)
the perpendicular magnetic compression method (solid line),
with Q = t/T signifying a time-varying, but axially uniform,
density profile. Note that L = cT .

about χ = 0: ω̃p[(t̃ − χ)(1 + χβ−1
d )] ≈ ω̃p(t̃) − χ(1 −

t̃β−1
d )(dω̃p/dt̃). Plugging this into Eq. (8), expanding

the denominator, and rearranging yields

dω̃p

dt̃
≈

β−2
d ω̃2

p

1 + ω̃p(1 − t̃β−1
d )

. (9)

For an ultrarelativistic driver, βd → 1, and Eq. (9) turns
out to be negligibly dependent on the driver velocity.

Comparing Eqs. (6) and (9) reveals that increasing the
density in time through magnetic compression, rather
than in space through the axial gradient, limits the in-
crease of the plasma density required to maintain a lumi-
nal propagating wake front. Figure 1 shows the universal
(1D) solutions for ω̃2

p = ñ corresponding to both meth-
ods, given by Eqs. (6) and (9), in the limit βd → 1. It is
clear that perpendicular magnetic compression requires
substantially less densification than a stationary, axial
density gradient across a wide range of driver energies
and plasma densities. Moreover, the density profile for
optimized magnetic compression does not exhibit a singu-
larity as the accelerating electron approaches the driver
pulse, but remains finite instead, unlike the optimized
stationary density gradient profile.

In the special case of PWFA, where a relativistic
electron beam with characteristic density nb drives the
plasma wakefield, magnetic compression does not suf-
fer the loss of wakefield amplitude with propagation dis-
tance that the stationary density gradient method ex-
hibits [9]. From Eq. (16) of Ref. [9], the peak electric
field E ∝ (nb/n)n1/2. So, while E ∝ n−1/2, at fixed nb,
for a wakefield excited in a stationary axial density gra-
dient, magnetic compression causes the background and
beam to densify together, i.e., nb/n = const, meaning
E ∝ n1/2 as the density increases in this case.

Discussion.— In order that variations in B(t) translate
to proportional changes in the plasma density, we require
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that both plasma species be magnetized, i.e., ωcj/2πνj &

1 for species j : {e, i}, where ωcj = qjB/mjc is the cy-
clotron frequency, and νj is the collision frequency, as-
suming electrons and ions are initially in thermal equi-
librium and isotropic. The minimum B required is that
which marginally magnetizes the ions, or ωci/2πνi ≈ 1.
For instance, assuming hydrogen plasma, the initial pa-
rameters B = 5×104 G, n = 1016 cm−3, and T = 20 eV,
where T = Te = Ti is the plasma temperature, lead to
ωci/2πνi ≈ 1, and ωce/2πνe ≈ 30. As B(t) evolves, the
induced azimuthal electric field, Eφ(r) = −rḂ/2c, causes
a radial drift of both electrons and ions such that the
density n ∝ B. Since this drift is a gyro-averaged phe-
nomenon, averaging over the continuum of particle gy-
rophases will lead to uniform densification of the plasma,
even on time scales short compared to 1/ωci.

For the choice of parameters leading to plasma magne-
tization, there still can remain a separation of timescales
between that of electron space charge oscillations, ωp,
and that of magnetic gyration, ωce. The parallel elec-
trostatic plasma response is unaffected by the magnetic
field, whereas the perpendicular electrostatic response
is characterized by the upper hybrid frequency, ωuh =
√

ω2
p + ω2

ce ≈ ωp(1.0 + 0.5ω2
ce/ω2

p). The example pa-

rameters in the previous paragraph give ωuh ≈ ωp to
within about 1%. Thus, one finds that for the short-
pulse (∼ 1 ω−1

p duration) wave excitation characteristic
of PWFA and LWFA, and even for the somewhat longer
(several ω−1

p duration) wave excitation in PBWA, the
mechanisms for plasma wave excitation are virtually un-
affected by the magnetic field on such short timescales,
as Ref. [16] confirmed in simulations under similar con-
ditions. For the ordering ωd ≫ ωp ≫ ωce, where ωd is
the characteristic frequency of any laser driver(s), the ef-
fective ponderomotive force of the laser in underdense
plasma is also unaffected by the magnetic field [22].
Thus, for a variety of different plasma wave excitation
schemes, the (static) magnetic fields needed for marginal
plasma magnetization are not expected to change sig-
nificantly the dynamics of plasma wave formation. On
the other hand, a time-varying magnetic field can change
the plasma wave structure slowly over time through the
associated change in density.

With magnetic compression, there is some perpen-
dicular heating through the adiabatic invariance of the
magnetic moment, µj = mjv

2
⊥j/2B, on subcollisional

timescales. The fastest-growing anisotropy-driven elec-
tromagnetic modes, excited by the electron whistler in-
stability when T⊥ > T‖, exhibit growth rates Γ scal-
ing like Γ ∝ ωci [23]. For the parameter space consid-
ered here, one typically has νe ≫ ωci, and thus, elec-
tron temperatures are expected to isotropize well before
such instabilities can develop. For the initial parameters
B = 5×104 G, n = 1016 cm−3, and T = 20 eV, one finds
2πνe/ωci ≈ 64.

The primary advantage of magnetic compression is
that the optimized solution to the dephasing problem
is reduced to the task of shaping variations in the mag-
netic coil current profile. First, controlling a coil current
is much easier technologically than controlling a density
profile. Second, shot-to-shot tailoring can be done by re-
programming the current source, requiring no mechanical
modification of the system. In contrast, Ref. [13] notes
that optimal stationary density profiles may be very diffi-
cult to realize experimentally, while shot-to-shot adjust-
ments to the density profile may require significant physi-
cal manipulation of the gas injection components. Third,
the compression itself increases the wave amplitude [20].

In summary, a new method is proposed to mitigate
phase slippage in a wide variety of plasma acceleration
concepts, in which the modulation of an axial, homoge-
neous magnetic field in the accelerating channel leads to
densification of the plasma through magnetic compres-
sion, enabling direct, time-resolved control of the wave
properties. The magnetic field impacts plasma wave for-
mation negligibly on short (O(ω−1

p )) timescales, but does
modify the wave dynamics over longer periods of time.
In PBWA, only a small amount of compression is needed
to increase the dephasing length to arbitrarily long dis-
tances. For wakefield accelerators, an optimized com-
pression profile to generate a luminous propagating wake
front is derived. Compared to the stationary axial den-
sity gradient technique to overcome dephasing in wake-
field accelerators, magnetic compression requires a much
lower net density variation, and no density singularity
arises as the accelerating beam approaches the lead driver
pulse. In PWFA, there is the added advantage that the
wakefield amplitude increases with propagation distance.
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Contract No. DE-AC02-09CH11466, and by the NNSA
SSAA Program through DOE Research Grant No. DE-
FG52-08NA28553.

[1] T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267
(1979).

[2] M. Everett, A. Lal, D. Gordon, C. E. Clayton,
K. A. Marsh, and C. Joshi, Nature 368, 527 (1994).

[3] E. Esarey, P. Sprangle, J. Krall, and A. Ting, IEEE
Trans. Plasma Sci. 24, 252 (1996).

[4] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev.
Mod. Phys. 81, 1229 (2009).

[5] R. Bingham, J. T. Mendonça, and P. K. Shukla, Plasma
Phys. Control. Fusion 46, R1 (2004).

[6] T. Katsouleas, C. Joshi, J. M. Dawson, F. F. Chen,
C. Clayton, W. B. Mori, C. Darrow, D. Umstadter, AIP
Conf. Proc. 130, 63 (1985).

[7] T. Katsouleas and J. M. Dawson, Phys. Rev. Lett. 51,
392 (1983).

[8] J. Vieira, S. F. Martins, V. B. Pathak, R. A. Fonseca,
W. B. Mori, and L. O. Silva, Phys. Rev. Lett. 106,
225001 (2011).



5

[9] T. Katsouleas, Phys. Rev. A 33, 2056 (1986).
[10] P. Sprangle, B. Hafizi, J. R. Peñano, R. F. Hubbard,
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