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Abstract

The Magnetic Reconnection Experiment (MRX)[1] has been utilized to assess the effectiveness of
minimum variance analysis on the magnetic field (MVAB) and boundary-crossing time analysis (BCTA).
The neutral sheet is swept, or jogged, in a controlled manner with respect to the stationary probes
by pulsed internal coil currents. Magnetic field data from measurement points resembling data from
multi-spacecraft flying though a reconnecting current sheet is used to check both techniques to deduce
a proper normal vector. We examine discharges with the two-dimensional (2-D) X-line structure as well
as cases in which a flux rope forms within the layer. All discharges are in a two-fluid regime in which
electrons are magnetized but not ions. Boundary-crossing time analysis with four sample measurement
points forming a tetrahedron generates a reasonable unit normal vector and relative velocity along the
normal vector for all of the tested cases. On the other hand, MVAB sometimes fails to predict a proper
normal direction. This is because the X-line magnetic geometry is fundamentally 2-D or 3-D. However,
the direction along the reconnecting field determined by MVAB does not deviate much from the real
magnetic geometry documented by 2-D magnetic probe arrays and one additional probe at a different
toroidal location. Based on these observations, we suggest a procedure for determining a local coordinate
system for data from the Magnetospheric Multi-Scale (MMS) mission when spacecraft passes through a
reconnecting current sheet. The distance between measurement points on the order of the ion skin depth
(¢/wp:) is pertinent to determination of the magnetic geometry.

1 Introduction

For many decades, satellite measurements have been employed to understand the complex nature of the
magnetic fields surrounding the Earth. During the past dozen years in particular, the role of magnetic
reconnection has been explored in detail through the combined effort of numerical simulations, dedicated
laboratory plasma experiments, and direct observations from spacecraft [2]. Now it is recognized that two-
fluid effects [3, 4], resulting from the different behavior of ions and electrons in the reconnection layer, play
a key role in collisionless reconnection.

The Magnetospheric Multi-Scale (MMS) mission, which will be launched in 2014, is the first space mis-
sion able to explore down to spatial scales of the order of the electron inertial length (¢/wpe), a measurement
regime which is critical to a complete understanding of collisionless reconnection. During the mission, four
spacecraft will be placed in a tetrahedron configuration at various distances as they pass through the Earth’s
magnetopause and magnetotail to make detailed measurements of reconnection. The Magnetic Reconnection
Experiment (MRX) research program is primarily dedicated to the development of a fundamental under-
standing of magnetic reconnection layer physics through a dedicated laboratory experiment. Presently, we
are undertaking a mini-campaign in MRX designed to provide feedback to the MMS mission, which may ul-
timately impact spacecraft separations, orbits, data collection strategies, and instrument capabilities before
and after the MMS launch.

In particular, one of the biggest challenges associated with measurements of reconnection using spacecraft
is the ability to identify the magnetic field geometry. Because the number of spacecraft is limited, the spatial



profile of the plasma has to be inferred from the time series of physical quantities, such as the magnetic field
and electric field, typically using at most four locations. Several analysis methods have been developed to gain
traction on this problem. Classical minimum variance analysis on magnetic field data (known as MVAB) [5]
has been employed for many spacecraft data analyses [e.g. Dieroset et al., 2001] [6]. Alternatively, maximum
variance analysis of electric field data (MVAE) [7, 8], or the Faraday residue method [9, 10] can be employed
if electric field measurements are also available. These variance analysis methods (MVAB, MVAE, and the
Faraday residue method) can be used to identify a vector normal to the reconnection current layer using
data from a single spacecraft. When four spacecraft encounter any kind of planar boundary, for example a
1-D shock front and a current sheet, a more accurate fi and V,, can be estimated via boundary-crossing time
analysis [11].

For a study of reconnection, however, more information on the magnetic geometry is needed: knowing
the direction normal to the current sheet is not enough. Key physical parameters such as the reconnection
rate cannot be estimated without differentiating two tangential directions: the out-of-plane direction and
the direction of the reconnecting electric field. When MVAB or MVAE successfully separates all three
principal axes, they naturally form a coordinate system, so that the full local magnetic geometry can be
inferred. However, when the variance along two principal axes are similar, they may not reconstruct the
magnetic geometry properly. Mozer and Retino [2007] combine MVAB and MVAE to find the rotation
matrix transforming the GSE coordinate system into the magnetopause frame for study of 120 magnetopause
crossings by noticing that MVAB best finds the direction of the reconnecting magnetic field component which
is the maximum varying component, while MVAE best locates the maximum varying normal electric field
component [12].

In this report, we present a detailed and elaborate laboratory test of two of the methods mentioned
above, minimum variance analysis of the magnetic field (MVAB) and boundary-crossing time analysis, in a
collisionless reconnection layer. Since MRX routinely makes global measurements of the magnetic field, the
true geometry of the layer is known and the methods can be quantitatively checked. The main objective of
this paper is to identify whether a proper magnetic geometry can be reproduced by MVAB and boundary-
crossing time analysis by utilizing data from the Magnetic Reconnection Experiment (MRX). We do not
perform MVAE or the Faraday residual analysis because we do not currently have sufficient electric field
measurement capabilities.

In the present experimental campaign on MRX, the current sheet is swept over the stationary probes via
internal pulsed coils. This situation is very similar to the space measurements in which the current sheet
moves with respect to spacecraft. This plasma “jogging” experiment is carefully designed and performed
so that we can test these methods in the plasma in which we monitor evolution of the entire profile of the
magnetic field.

2 Experimental Apparatus

In MRX plasmas, the MHD criteria (S > 1, p; < L, where S is the Lundquist number; p; is the ion
gyroradius; L is the system scale length) are satisfied in the bulk of the plasma [1]. Figure 1 shows a cross
section of the MRX vacuum vessel for this experimental campaign in the R — Z plane. The two gray circles
indicate flux cores, each of which contains two independent sets of coils: a poloidal field (PF) coil and a
toroidal field (TF) coil [13]. The PF coil generates the X-line geometry at the middle of the MRX device
and drives magnetic reconnection, while the TF coil creates the plasma inductively around the flux cores.
As the toroidal (out-of-plane) current of PF coils ramps down, the magnetic flux is pulled towards the flux
cores and a current sheet elongated along the Z direction (indicated in orange in figure 1) is formed. In
this phase, the initial out-of-plane magnetic field during the plasma formation becomes negligible compared
to the reconnecting magnetic field, so that anti-parallel reconnection is achieved. The whole process of the
plasma formation and magnetic reconnection are monitored by 2-D magnetic probe arrays located every 3 cm
from Z = —9 cm to 9 cm and electrostatic probes such as Langmuir probes and Mach probes. The maximum
radial resolution of the magnetic arrays is 0.6 cm and the radial coverage is 16 cm. Data is acquired every
0.4 ps.
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Figure 1: Cross section of the MRX vacuum chamber. The gray circles indicate flux cores in which there are
two sets of coils: poloidal field (PF) coils and toroildal field (TF) coils. PF coils produce the X-line geometry
and drive reconnection. The red circles show the position of the shaping field (SF) coils which are used to
accelerate the motion of the current sheet radially inward.
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Figure 2: Current sheet motion as a function of the firing voltage for the SF coils. Shortly after the SF coils
are activated, the current sheet starts to move in. The jogging speed of the current sheet is proportional to
the firing voltage. Two black dashed lines indicate the quasi-steady period of the MRX plasma.
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Figure 3: Radial profiles of By every 1.2 us during the quasi-steady period of a single discharge, measured
by the magnetic probe array at Z = 0. Asterisks stand for measured data and the solid lines come from
fitting the data to a Harris function, ~ tanh((R — Ro)/d). The current sheet moves in with a relatively
well-maintained structure at about 5.8 km/s.

In this experimental campaign, there is another set of coils (red circles in figure 1) called the shaping
field (SF) coils by which the radially inward motion of the MRX current sheet is accelerated, or jogged. The
advantage of this laboratory experiment is that a simulated “satellite” data set can be obtained when the
current sheet region is swept past a stationary probe with a predetermined velocity and angle. The jogging
speed of the current sheet can be controlled by firing the SF coils with various voltages. Figure 2 shows time
profiles of the current sheet location with various SF firing voltages. The SF coils are activated just before
the quasi-steady period of the MRX plasma. Shortly after they are fired, the current sheet moves in radially.
The location is tracked by fitting radial Bz profiles into a Harris-sheet type function [14], ~ tanh((R— Ry)/9)
[?]. The moving-in speed increases almost linearly with the firing voltage. Figure 3 illustrates radial profiles
of Bz during the quasi-steady period of a single discharge. Asterisks stand for measured data and solid
lines are from a Harris function fit. The current sheet moves in while maintaining its structure well. In this
discharge, the current sheet moves about 3.5 cm over 6 us, yielding a speed of 5.8 km/s, which is about one
order of magnitude lower than the Alfvén velocity based on upstream plasma parameters (n, = 2 —5 x 10*3
em ™3 and |B| = 200 — 250 Gauss). Every discharge presented in this paper has a similar radial speed (5 — 6
km/s).

3 Minimum Variance Analysis on Magnetic Field

The following coordinate system which is similar to the GSE system for subsolar reconnection is used
throughout this paper: z is normal to the current sheet, y is along the out-of-plane direction, and z is in the
direction of the reconnecting magnetic field, following Mozer and Retind [2007] [12]. The corresponding local
Cartesian coordinates for reconnection during the quasi-steady period in MRX are R, Y, and Z respectively

.

The theory behind MVAB can be found in the literature [5, 15]. The fundamental assumption is that



the boundary is one-dimensional: physical quantities vary only along the direction normal to the layer. For
the magnetic field, this assumption means

V-B=—2 =0, (1)
and 9B
o = —(VxE), =0. (2)

In other words, the magnetic field component normal to the boundary does not vary while spacecraft passes
by it. In reality, however, due to 2-D or 3-D structures and temporal variations, the normal component
undergoes finite changes. The basic idea of MVAB is that the direction along which the magnetic field
component varies least would be a good indicator of the normal vector fi: for a given set of M magnetic field
measurements spanning the boundary layer crossing time, we need to find fi that minimizes the variance

, 1 M o )
U:M;‘(B ~(B)) @

where B(™) is the m-th measured magnetic field record of the data and the average (B) is just

2

; (3)

1 M
(B)= > B, (4)

m=1

Such a unit vector fi can be found by computing eigenvectors of the symmetric matrix M defined by
M = (BuBy) = (Bu)(By), ()

where B,, and B, are components of the measured magnetic field based on a Cartesian coordinate system.
For MRX data, they are Bgr, By, and Bz. Since the magnetic variance matrix M is symmetric, three
eigenvalues A1, Mg, and A3 in the order of increasing magnitude are real and corresponding normalized
eigenvectors uj, us, and ug are orthogonal. Mathematically, each eigenvalue equals the variance along the
corresponding eigenvector. Thus, if a spacecraft encounters the current sheet and passes though it, the
normalized eigenvector u; that has the minimum variance is a natural choice for the unit normal vector 1,
or X. Because magnetic field component along the direction of the reconnecting magnetic field B, varies
most across the layer, us and ugz are parallel to y and z respectively.

The size of the data segment, M, is chosen by checking that the results of MVAB are stationary. If the
basic assumption of MVAB is satisfied, i.e. if the boundary is 1-D, MVAB is independent of the number
of data points. This stationary property of MVAB is not guaranteed in real data. If M is too small or
too large, results from MVAB can be different from those with intermediate data segments [15]. Thus, the
stationarity of MVAB must be checked to make sure the nested data segment is within the intermediate, or
“plateau” region. The smallest data set for MVAB has three points - the center point which is closest to the
boundary and one from each side. The next smallest data segment is constructed by adding one data point
to each side. As M increases, the average magnetic field along the normal vector from MVAB < B > n
remains nearly unchanged, indicating a plateau region as shown in figure 6-(a). The number of data points
M is chosen such that the data segment is in the plateau region.

To summarize the procedure of determining local coordinates by MVAB, a proper span of magnetic field
data centered at the middle of the current sheet must be chosen. Then, the magnetic variance matrix M is
constructed with the data, and eigenvalues and eigenvectors of M are computed. The normalized eigenvector
corresponding to the smallest eigenvalue determines the normal direction X, i.e., X = £u;. The other two
eigenvectors uy and us define § and Z. Proper signs should be chosen to make sure Z = X x . Then, the
transformation of values in the original cartesian coordinates (R,Y, Z) into those in (z,y, 2) is given by

T X R
y | =1 ¥ Y |. (6)
z Z 7



4 MVAB for MRX Jogging Experiment

Data from the MRX jogging experiment provides a good opportunity to test MVAB since the full 2-D (or
3-D) magnetic field geometry is measured. Whether MVAB generates a proper normal vector can be easily
checked by comparing the local magnetic geometry predicted by MVAB with the measured global geometry.

Figure 4 shows the time evolution of 2-D profiles of the current density Jy with contours of the poloidal
magnetic flux ¥ = fOR 27 R'Bz(Z, R',t)dR’ and the out-of-plane magnetic field By measured by the 2-D
magnetic probe arrays during the quasi-steady period of a typical MRX jog discharge. The right column
shows the quadrupolar By structure moving in radially with temporal changes mainly due to the TF coil
current ringing [16]. The radial motion of the current sheet is shown in the left column. The current sheet
structure is well-maintained and moves in with the quadrupolar By. The layer clearly has 2-D structures:
Jy varies along Z and the Bz = 0 boundary indicated by red dashed lines is slightly kinked in the R — Z
plane, especially at ¢ = 340 ps. However, the direction normal to the current sheet is generally along eg,
the unit vector for R, as the curvature of the Bz = 0 boundary remains small. The angle between the local
vector normal to the boundary and ep is less than 5 degrees. Furthermore, toroidal asymmetry monitored
by an additional magnetic probe at Y = —9 cm is fairly negligible for this plasma. Therefore, the rotation
matrix that transforms from (R,Y, Z) into (x,y, z) coordinates for this discharge should have diagonal terms
close to unity and off-diagonal terms close to zero. In other words, X ~ er, ¥y ~ ey, and Z ~ ey.

As shown in figure 5, data from four different measurement points (Z =0, 3, 6, 9 cm; R =36.7, Y =0
for all) of the same discharge is used to test MVAB. At Z = 0, in the right vicinity of the X point, only
the reconnecting magnetic field By varies significantly as shown in figure 5-(c). In this case, variance of Br
is comparable to that of By and the normal vector generated by MVAB becomes a mixture of ez and ey .
The rotation matrix predicted by MVAB for this example is

1 0.3576 0.9314  0.0682 R
Y1 = | —0.9338 0.3560 0.0349 Y |, (7)
21 0.0082 —0.0762 0.9971 Z

where the subscript 1 is added to avoid confusion and to emphasize these are just a ‘suggested’ coordinate
system by MVAB at the given location. The normal vector is 0.3576er + 0.9314ey + 0.0682ey, which is
even closer to ey than to the reference normal er. Even though three eigenvalues of M are well-separated
as shown in figure 5-(c¢’), the normal vector does not reflect the real magnetic geometry. The smallest and
intermediate eigenvalues are often degenerate (A\; ~ A2) at Z = 0 in other discharges. However, MVAB
predicts the direction of the reconnecting field well (z1 ~ eyz).

At Z = 3 cm, the quadrupolar out-of-plane field starts to play a role. While B remains small, By
changes moderately as shown in figure 5-(d). As a result, the three eigenvalues are well-separated and
the unit vectors suggested by MVAB reflect the magnetic geometry. The coordinate system determined
by MVAB is usually best at Z = +3 ecm for MRX jogging experiment data. The transformation matrix
predicted by MVAB at this location is

o 0.9976  0.0630  0.0297 R
y2 | = —0.0687 09601 0.2712 Yy |. (8)
2 —0.0115 —0.2726 0.9621 Z

The normal vector from MVAB is very close to the reference normal. It is worth noting that Zs has
been degraded as it picks up a sizeable ey component, which means the Hall field is considered as a part
of the reconnecting field by MVAB. The predicted out-of-plane direction yo also has a considerable ez
component. Thus, as shown in figure 5-(d’), the quadrupolar component of B,s is weakened after the
coordinate transformation. This tendency is enhanced further downstream, so that the transformed out-of-
plane magnetic field component B, is significantly contaminated by the other two components as shown in
figure 5-(¢’) and (f') and frequently loses its bipolar shape. This could be one of the reasons why a clear
quadrupolar structure has been rarely identified in space [12].
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Figure 4: Data from 2-D magnetic probe arrays during the quasi-steady period of the MRX jog experiment
discharge 114338 is shown. Colors in left panels demonstrate the profile of the current density Jy, while
the black lines mean contours of the poloidal flux W. The red dashed lines indicate the location of By = 0
boundary which agrees well with the current sheet location from the Harris fitting. Contour plots of the right
panels show the time evolution of the out-of-plane magnetic field By every 2 us. Because of the time-varying
TF current, the overall shape of the quadrupole structure undergoes temporal changes. The current sheet
moves in radially together with the quadrupolar By structure with a speed of ~ 6 km/s.
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Figure 5: (a) 2-D profile of Jy with contours of ¥ of the discharge 114338 at the time the current sheet
is close to the sample measurement points. (b) That of Bp. Color scales are the same as in figure 4.
The arrows indicate the data range used for MVAB. (c)(d)(e)(f) Magnetic field data at (R, Z) = (36.7,0),
(36.7,3), (36.7,6), and (36.7,9) (Y = 0 for all) respectively around the time the current sheet passes. Data
between dashed black lines is used for MVAB. (¢/)(d’)(e')(f") Profiles in (z,y, z) coordinates suggested by
MVAB. Three eigenvalues (A) of the matrix M are shown inside of each panel. The out-of-plane magnetic
field (By) loses the bipolar shape after the coordinate transform by MVAB.



At Z = 6 cm, the variation in Bg becomes non-negligible because of the 2-D structure of the reconnection
geometry. For most of cases, this leads a degenerate condition with A\; ~ A2, making X3 and §3 meaningless.
The suggested transformation for this example is

3 0.7990 —0.5677 —0.1984 R
ys | = 05927 06876  0.4195 vy |. (9)
23 —0.1017 —0.4528  0.8858 Z

Z3 is further deviated from ez and both X3 and §3 do not reflect the real magnetic geometry. Similar trends
continue at Z = 9 cm where MVAB generates the following coordinate transformation:

T4 0.8542 —0.5036 —0.1291 R
Ya | = 0.4888  0.6935  0.5293 Y |. (10)
Z4 —0.1770 —0.5152  0.8386 Z

In this example, the suggested normal vector is again closer to —ey than to eg, which does not agree with
the real magnetic geometry.

To confirm that the above disagreement of the normal vectors from MVAB with the measured magnetic
geometry is not due to measurement noise, we perform error estimates following Khrabrov and Sonnerup
[1998] [17] where errors associated with random noise in minimum/maximum variance analysis are analyti-
cally derived. In the reference, the angular uncertainty is given by

A i A — A . .
|A¢ij| = |A¢ji|: \/(Mil)( (/\—:_J/\j)gl)» i J, (11)

where |A¢;;| is the angular uncertainty of eigenvector u; in the direction of u;. The combined statistical
error estimate for (B),, = (B) - u; is [15]

At
M—-1

|AB) - uy| = + (A¢12(B) - u2)? + (Ad13(B) - u3)?, (12)
where the first term inside of the square root comes from the uncertainty in the average magnetic field
associated with the variance A;.

Figure 6 shows the results of the error estimates with M = 3 to 41 for the same data used for MVAB
in figure 5. Error bars in this figure are computed by the above equations. The estimated statistical errors
in (B) are generally small as shown in figure 6-(a), which is expected since the signal-to-noise ratio of MRX
magnetic data is small. Figure 6-(b) and (c) show the angle between the normal vector from MVAB, uy,
and the reference normal vector, eg, in the R-Y plane (¢ry), and in the R-Z plane (¢prz) as a function of
the nest size, M. When the normal vector from MVAB agrees with the measured global magnetic geometry,
both ¢ry and ¢rz are close to zero. Except at Z = 3 cm, ¢ry and ¢ry are not close to zero and statistical
errors do not account for the difference. Therefore, the disagreement of the results from MVAB with the
global magnetic geometry does not come from random noise.

MVAB is also tested in a discharge with a time-varying reconnection geometry. As shown in figure 7-(a),
a clear O-point is developed and ejected downstream. This O-point is associated with very high local current
density and is believed to have a 3-D structure [18], so we describe this feature as a “flux rope” to emphasize
its 3-D nature even though it is not accompanied with a sizeable guide field. MVAB is conducted for data
from the measurement point at (R, Z) = (37.6, —6) (indicated by green diamond marks in figure 7-(a)) as
the flux rope passes by. Due to the O-point structure, there is a bump in B around 334 ps as shown in
figure 7-(b). Bp is supposed to have the minimum variance without the O-point. The transformation matrix
produced by MVAB for this case is

5 0.4401  0.8906 —0.1150 R
ys | = [ —0.8824 0.4052 —0.2389 Yy |. (13)
25 —0.1662 0.2066 0.9642 z
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Figure 7: (a) Left panels: 2-D profiles of Jy (color) with contours of ¥ of a discharge containing a flux rope.
A clear O-point related to the high local current density is formed and ejected downstream. Right panels:
2-D profiles of By . Initially, the left side of the quadrupolar structure is destroyed due to the development
of the O-point structure (‘flux rope’). As the flux rope is ejected downstream, the quadruopolar structure
is recovered. The green diamond marks indicate the location of the sample measurement point for data
shown in the panel (b). (b) Magnetic field data at a sample measurement point at (R, Z) = (37.6,—6). The
bump in the normal component Bp is caused by passing of the flux rope. (¢) The same data after being
transformed into the (z,y,z) coordinate system suggested by MVAB. Three eigenvalues are shown above
the panel. Even though three eigenvalues are well-separated for this case, the (z,y,z) coordinate system
constructed by MVAB is far from the real magnetic geometry.
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Location u; (R,Y,Z) u; (R,Y,Z) Eigenvalues
r; (0.8871,0.4612,0.0182) | (-0.0288,0.0159,0.9995) | 3,19,2.07 x 10*
ro (0.9983,-0.0452,-0.0374) | (0.0501,0.3226,0.9452) 1,47,1.37 x 10*
T3 (0.9964,-0.0741,-0.0401) | (0.0149,-0.3134,0.9495) | 0.2, 23, 1.80 x 10
ry (0.1002,-0.9942,-0.0388) | (-0.0056,0.0395,0.9992) | 0.2,3,1.35 x 10*

Table 1: MVAB results for data from the same sample measurement points used for BCTA in figure 8. u;
is the suggested normal vector and ug is the suggested direction of the reconnecting field.

Again, MVAB fails to predict a proper unit vector normal to the current sheet although three eigenvalues
are well-separated as shown in figure 7-(c). However, it still produces a reasonable tangential vector as Zs
remains close to ez.

These examples show that MVAB generally does not produce a proper normal vector even if the current
sheet structure does not undergo significant time variations. However, MVAB is much better for determining
the direction of the reconnecting magnetic field, the maximum-varying component, wich agrees with Mozer
and Retind [2007]. MVAB’s prediction for Z is better for measurement points close to the X-point since
variations of the other two components are smaller there.

5 Boundary-Crossing Time Analysis (BCTA)

If a 1-D boundary is crossed by multiple spacecraft, the following constraints [19] for the boundary normal
direction i and the relative velocity between the layer and the spacecraft V,.; can be found by assuming
Ve is a constant during the crossing:

(Vrel . fl)tag = I‘QB . fl, (14)

where r,g is the separation vector between any pair of spacecraft and t,g is the difference in time each
spacecraft crosses the same boundary. For IV spacecraft, one can find IV — 1 independent equations from the
above constraint, so that the normal vector and relative velocity along the normal direction V,, = V,.;-fi can
be determined if there are four spacecraft and they are not in the same plane. This crossing time analysis
has been applied to Cluster spacecraft data to identify a multiple X-line geometry [20, 21].

This technique is applied to MRX jogging experiments to see whether it predicts a proper i and V,,.
Data from the same discharge shown in figures 4, 5, and 6 is used. We choose three test measurement points
((R,Z) = (38.5,-3), (38.5,3), and (33.7,0); Y = 0 for all) that form a nearly equilateral triangle in the
main measurement plane with leg length ~ 6 cm. One more measurement point is provided by an additional
probe at (R,Y,Z) = (36.5,—9,0). These measurement points form a tetrahedron with the fourth point at
Y = —9 cm approximately 10 cm from the others. The upstream density measured by a Langmuir probe
for this discharge is about 4 x 10'® ecm™3, which leads to an ion skin depth of §; = ¢/wy; ~ 5.1 cm for
this deuterium plasma. Thus, the separation between measurement points is comparable to ¢;. Figure 8-(c)
shows Bz at each measurement point. The time when the Bz = 0 boundary passes each measurement point
is chosen to compute t,g since Bz = 0 is a good indicator of the current sheet location. The normal vector
from eq.(14) is i = 0.9985er — 0.0426ey — 0.0341ey for this example, which is very close to the reference
normal er. The calculated V,, is —5.62 km/s. To see if this value is reasonable or not, the radial position
of the Bz = 0 boundary measured by the magnetic probe array at Z = 0 is plotted in figure 8-(d). The
average radial velocity of the boundary while it passes all four measurement points is —5.56 km/s, which is
in excellent agreement with the BCTA value.

To compare the results from BCTA with those from MVAB, we perform MVAB for data from the same
measurement points. Table 1 summarizes MVAB results which have similar trends described in the previous
section. First, the normal suggested vector u; is close to the reference normal ep at Z = 3 (ry and r3) but
it becomes a mixture of ey and eg at Z = 0 (r; and ry). Second, MVAB determines the direction of the
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Figure 8: (a) Profile of Jy with contours of ¥ of the discharge 114338 when the Bz = 0 boundary is close
to r1. (b) That of Br. Four measurement points (r1, ra, r3, and ry) used for the boundary-crossing time
analysis are shown in both panels. Those measurement points form a tetrahedron since ry, which is indicated
by the red diamond mark, is actually 9 cm below of the main measurement plane. Color scales are the same
as in figure 4. (c) Bz profiles at 4 sample measurement points for By = 0 boundary-crossing time analysis.
The location of the measurement points in (R,Y,Z) coordinates is ry = (36.5,—9,0), ro = (38.5,0, —3),
r3 = (38.5,0,3), and ry = (33.7,0,0) respectively. (d) Radial location of the Bz = 0 boundary measured by
the magnetic probe array at Z = 0. The average radial velocity while the boundary passes through all four

measurement points is —5.56 km/s.
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reconnecting field component very well at Z = 0 but ug is degraded at Z = +3 as the Hall field is confused
with the reconnecting field.

BCTA also predicts reasonable normal vectors for discharges that undergo significant temporal changes
caused by 3-D structures. Figure 9-(a) shows the time evolution of Jy with contours of ¥ and By. At
t = 330 ws, the position of the main X-point is around Z = 0 based on the quadrupole By structure. An
O-point is formed around Z = —3 cm, generating another X-point probably around Z = —11 cm outside
of the measurement window. It could be a secondary island in the 2-D picture [22], but here it is also a
“flux rope” since there is a piece of evidence that proves it has 3-D structure. As shown in figure 9-(b),
the Bz = 0 boundary passes r; = (36.5,—9,0) much earlier than r5 = (36.4,0,0), indicating considerable
toroidal asymmetry. This flux rope dynamically evolves changing the magnetic geometry significantly. As
it moves toward the +Z direction, the original X-point is pushed toward the same direction and the center
of the quadruoplar By structure is shifted to around Z = —9 cm, close to the second X-point, which
means the most active X-point is now at Z = —9 cm. The same BCTA is done for this discharge to find
i = 0.9811er — 0.1892ey + 0.0392ez and V,, = —5.70 km/s. # has a sizeable ey component due to the
toroidal asymmetry probably caused by kink-type instability along the out-of-plane current direction. The
average radial velocity of the By = 0 boundary from figure 9-(c) is —5.81 km/s. This velocity gives us —5.69
km/s of V;, which agrees well with the above value from BCTA.

6 Summary and Discussion

We have tested two major techniques for determination of the boundary normal direction in space with
the use of data from the MRX jog experiment. Minimum variance analysis on the magnetic field when the
measurement points passes through the current sheet generally does not predict a proper unit normal vector
n, but it does duduce the direction of the reconnecting magnetic field well. The suggested Z is best in the
vicinity of the X-point since the effect from the Hall field is smallest there. On the other hand, the normal
vector suggested by Bz = 0 boundary-crossing time analysis agrees well with the measured 3-D magnetic
geometry. The velocity of the boundary Bz = 0 along the normal vector is also in a good agreement with
the radial speed of the current sheet measured by the 2-D magnetic probe arrays.

A fundamental reason MVAB sometimes fails to determine a proper normal vector is that the X-line
magnetic geometry is at least 2-D. Let us explain this under the idealized 2-D X-line geometry shown in
figure 10. The boundary of 0B,/0x = 0 coincides with the current sheet location at x = 0 and extends
along the normal direction (X) only at z = 0. Because MVAB requires a finite number of samples of data
around the boundary, at z # 0, MVAB naturally includes data from the region where 0B, /0x = 0 is not
satisfied. Even at Z = 0, the variance of B, is not guaranteed to be minimal since 0B, /0z is also zero there.
Actually, more than 50 percent of the tested cases for MRX jog experiment data at Z = 0 are degenerate
(A1 ~ A2) since both B and By do not change much.

The results in figure 6 support this idea. As shown in figure 6-(a), at Z = 0 in the vicinity of the X point,
the length of the error bars becomes smaller with a large nest size M, which is expected by eqs. (11) and
(12). On the other hand, error bars do not to change much at Z # 0. This is because the smallest eigenvalue
A1 becomes larger as M increases, indicating the source of the variance is not from random noise but from
something systematic: the magnetic geometry is not 1-D. With a larger data sample size, more data points
lie in the region where 0B, /0x # 0, increasing the variance ;.

BCTA, on the other hand, is evaluated only during the moment that the boundary passes the measure-
ment point. Therefore, as long as the boundary is close to a plane and V,.; is approximately constant over
time, it generates a reasonable fi and V,,. As shown in figure 10, the B, = 0 boundary is a straight line (a
plane in 3-D) in spite of the 2-D X-line magnetic geometry. This is why crossing time analysis even works
for discharges with flux ropes like figure 9. As shown in figure 9-(a), red dashed lines (Bz = 0 boundaries)
remain close to a straight line especially between Z = £3 cm where crossing time analysis is employed.

For BCTA, the distance between measurement points (or spacecraft) is important. If the separation is
too small, the normal vector only reflects the local geometry which can be different from the global geometry
due to, for example, flux ropes and/or kinked current sheets. If it is too large, the basic assumption of the
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Figure 9: Bz = 0 boundary-crossing time analysis (BCTA) for the discharge 114332 which has a ‘flux
rope’ structure. (a) Left panels: 2-D profiles of Jy (color) with contours of . Red dashed lines stand
for the Bz = 0 boundary. Right panels: those of By. A clear O-point is formed and moves to the +2
direction changing magnetic geometry. The location of the measurement points are indicated by green
and red diamonds. r; and rs has the same Z location and a similar R location, but r; is located 9 cm
below of the main measurement plane. (b) By profiles at sample measurement points of r; = (36.5,—9,0),
ro = (38.5,0,-3), r3 = (38.5,0,3), ry = (33.7,0,0), and r5 = (36.4,0,0) in (R,Y,Z). Although r; and
r; have a similar radial position, the Bz = 0 surface crosses r; much earlier, which is a sign of toroidal
asymmetry of this discharge. (c¢) Radial location of the Bz = 0 boundary at Z =0 and Y = 0. The average
radial velocity of the boundary is —5.81 km/s.
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Figure 10: Idealized X-line geometry. The orange box illustrates the current sheet. The blue line is the
boundary of B, = 0 where 0B, /0x = 0 is satisfied. The 0B, /0x = 0 extends along the z direction only at
z =0 (red line). 0B, /0x = 0 is also satisfied there.

boundary being a plane may not be satisfied. Moreover, the relative speed V,..; may not be considered to be
a constant. For the MRX jog experiment, separation of (1 — 2)d; is proper because our system size is about
106; and the characteristic spatial scale of the kinked current sheet structure along toroidal direction is also
expected to be comparable to the ion skin depth.

We suggest the following procedure for the determination of the magnetic geometry when four spacecraft
passes through a current sheet layer. First, employ MVAB for all spacecraft data. Decide which spacecraft
is closest to the X-point by either looking at other data such as the ion velocity or comparing A, and As for
each spacecraft. The one that has the smallest sum of A; and Ao is mostly likely to be closest to the X-point.
uz from that spacecraft is a good indicator for Z and this is a temporary direction for the reconnecting
magnetic field, z’. Find the time evolution of B, = B -2’ for each spacecraft. Then, estimate i = X and V,
by crossing time analysis with the B,, = 0 boundary. Since fi and 2’ may not be orthogonal, decide ¥ first
from § = 2’ X X. Finally, Z is given by Z = % x §. The transformation matrix obtained by this procedure for
data from the discharge 114338 is

x 0.9985 —0.0426 —0.0341 R
y | =1 0.0420 0.9970 —0.0146 Y |, (15)
z 0.0346  0.0132 0.9973 A

which is very close to the desired identity matrix.
The authors appreciate collaborative discussion with Dr. L.-J. Chen and R. Torbert. The authors also
thank Dr. T. Tharp and H. Ji for their supports.
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