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Recently, variational symplectic algorithms have been developed for the long-time simula-

tion of charged particles in magnetic fields1–3. As a direct consequence of their derivation

from a discrete variational principle, these algorithms have very good long-time energy

conservation, as well as exactly preserving discrete momenta. We present stability results

for these algorithms, focusing on understanding how explicit variational integrators can

be designed for this type of system. It is found that for explicit algorithms an instability

arises because the discrete symplectic structure does not become the continuous structure

in the t → 0 limit. We examine how a generalized gauge transformation can be used to

put the Lagrangian in the "antisymmetric discretization gauge," in which the discrete sym-

plectic structure has the correct form, thus eliminating the numerical instability. Finally,

it is noted that the variational guiding center algorithms are not electromagnetically gauge

invariant. By designing a model discrete Lagrangian, we show that the algorithms are ap-

proximately gauge invariant as long as A and φ are relatively smooth. A gauge invariant

discrete Lagrangian is very important in a variational particle-in-cell algorithm where it

ensures current continuity and preservation of Gauss’s law4.

PACS numbers: 52.20.Dq, 52.65.Cc, 52.30.Gz
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In many applications involving magnetized plasmas, it is necessary to numerically integrate

particle dynamics over long time scales. A crucial tool in this is the guiding center description5,

which averages over fast gryomotion, allowing a dramatic decrease in necessary computational

resources through the use of much longer time steps6–8. Traditional integration routines (for in-

stance Runga-Kutta) for the guiding center equations, while much more efficient than integration

of the full Lorentz force equations, can perform badly over very long simulation times. To mit-

igate these problems and improve confidence in simulation results, variational integrators for the

guiding center equations have recently been presented in Refs. 1–3. Based on a discretization of

the variational principle rather than the equations of motion9, these algorithms exactly conserve a

symplectic structure10–13. As a consequence of this9,10,14,15, they exhibit very good long time con-

servation properties, and numerical solutions stay close to exact dynamics, even at large time-step.

In addition, a discrete Noether’s theorem implies that exact numerical conservation laws arise from

symmetries of the system, for instance momentum conservation due to translational invariance.

The basic idea behind variational integrators is simple: rather than deriving continuous equa-

tions of motion from a continuous Lagrangian then discretizing these, the Lagrangian itself is

discretized and an integrator is derived from this discrete variational principle14. In this process,

there is of course some freedom in the chosen discretization of the Lagrangian. For example,

x (t) could be discretized as xk, or as 1
2 (xk + xk+1). Here we investigate a different freedom that

has previously not been studied (to our knowledge), the freedom to gauge transform the contin-

uous Lagrangian. It is well known that a generalized gauge transformation, L → L + d
dt S , does

not change the continuous Euler-Lagrange equations of motion. Nevertheless, the discrete Euler-

Lagrange equations derived from a discretization of L are in general not the same as those from a

discretization of L + d
dt S . In this article, we investigate the effects of these gauge transformations

on the properties of the variational symplectic guiding center algorithms. In particular, we find

that the choice of gauge can profoundly alter the algorithms’ stability properties. These results

are intended to be a guide for future users of the guiding center algorithms, as well as variational

integrators for systems with Lagrangians of a similar form, for instance the magnetic field line

Lagrangian16 or point vortices17.

The lowest order non-canonical Lagrangian for the guiding center system, given by Grebogi

and Littlejohn5,18, is

L = [A (x) + Ub (x)] · ẋ + µΘ̇ −
[
φ (x) + Γ (x,U)

]
. (1)
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Here x is the guiding center position, U = γu is the relativistic momentum parallel to the magnetic

field (with γ the relativistic mass factor), µ is the conserved magnetic moment, Θ is the gyrophase,

b (x) is the magnetic field unit vector, A (x) is the magnetic vector potential, φ (x) is the electric

potential and Γ (x,U) =
√

1 + U2 + 2µB (x). Note A is normalized by c/e, Γ by 1/mc2 and φ by

1/e. In the non-relativistic limit, U becomes u (parallel velocity) and Γ becomes 1 + u2/2 +µB (x).

Since only the time derivative of the gyrophase (Θ) appears in Eq. (1), the equation of motion for

µ is simply µ (t) = µ (0) and we ignore this term in the Lagrangian for the remainer of the article.

Continuous particle guiding center equations of motion are derived from Eq. (1) in the usual way,

with the Euler-Lagrange equations.

The variational symplectic guiding center algorithms in Refs. 1–3 are derived from discretiza-

tions of Eq. (1). We give a brief overview of this process for clarity. For the algorithm of Refs. 1

and 2 the (non-relativistic) discrete Lagrangian is chosen to be,

Ld (k, k + 1) =
1
2

[
A† (xk) + A† (xk+1)

]
·

(xk+1 − xk)
h

−

[ukuk+1

2
+ µB (xk) + φ (xk)

]
, (2)

where A† (x) ≡ A (x) + u b (x). Eq. (2) is a direct approximation of 1
h

´ tk+1

tk
dt L

(
x, ẋ,U, U̇

)
.

Requiring stationarity of the discrete action Ad =
∑

k hLd under arbitrary variations (δxk, δuk)

(0 < k < N), leads to the discrete update equations for the system,

1
2h

A†i, j (xk)
(
xi

k+1 − xi
k−1

)
−

1
2h

[
A†j (xk+1) − A†j (xk−1)

]
= µB, j (xk) + φ, j (xk) ( j = 1, 2, 3) , (3)

1
2h

bi (xk)
(
xi

k+1 − xi
k−1

)
=

1
2

(uk+1 + uk−1) . (4)

These equations are solved implicitly to integrate particle motion through phase space. For the

purposes of this article, the discretization of Eq. (2), A† (x)→ 1
2

[
A† (xk) + A† (xk+1)

]
is equivalent

to A† (x) → A†
(

1
2 (xk + xk+1)

)
(used in Ref. 3) since our analysis is carried out on the linearized

system.

This paper presents results on the stability of the variational symplectic guiding center algo-

rithms. We carry out analysis to determine whether an explicit variational integrator can be de-

signed. It is found that in general, explicit integrators are numerically unstable at all time steps.
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This instability is shown to be a direct result of the relationship between the conserved symplec-

tic structure of the continuous Euler-Lagrange equations and that of the discrete integrator. The

reduction of the symplectic 2-form basis from dxνk ∧ dxµk+1 to dxν ∧ dxµ in the limit of zero time-

step can lead to differences between the discrete and continuous structures, causing an instability.

This knowledge leads to a way to eliminate the instability in some cases, by using a generalized

gauge transformation of the Lagrangian to the "antisymmetric discretization gauge". This ensures

the discrete symplectic structure becomes the continuous structure as t → 0. The idea that gauge

transformations can profoundly alter stability properties of variational algorithms leads to an im-

portant realization that merits further investigation. Due to the discretization schemes adopted, the

variational symplectic guiding center integrators reported in Refs. 1–3 are not electromagnetically

gauge invariant, even though the continuous Lagrangian is gauge invariant. This implies that inte-

grated particle dynamics depend on the details of A and φ, not just B = ∇× A and E = −∂t A−∇φ.

We examine the importance of this by first designing a gauge invariant variational integrator and

comparing this to the algorithms in Refs. 1–3. This method illustrates that as long as A and φ

are relatively smooth (in comparison to a particle step), the algorithm is approximately electro-

magnetically gauge invariant and integrated particle dynamics should be accurate. These ideas are

important for the design of variational particle-in-cell schemes, since a gauge invariant discrete

Lagrangian ensures current continuity and exact preservation of Gauss’s law4.

In Section I we outline the symplectic properties of the guiding center variational integrators

and examine linear stability. These ideas are used to design the antisymmetric discretization gauge,

in which explicit integrators are stable. Electromagnetic gauge transformations are examined in

Section II. We show that smooth A and φ ensure approximate gauge invariance and accurate inte-

gration of particle trajectories. Illustrative numerical examples are given in both sections.

I. DISCRETIZATION GAUGE AND LINEAR STABILITY

In this section it is most instructive to consider a generic non-canonical Lagrangian of the form,

L (q, q̇) = 〈γ (q) , q̇〉 − H (q) . (5)

Here γ (q) is a 1-form and H (q) is a function, both on the phase space Q. The guiding center

Lagrangian, Eq. (1), is of this form, with q = (x, U), γ = [Ai (x) + Ubi (x)] dx j, j = (1, 2, 3) and
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H = φ+Γ. Properties of variational integrators for Lagrangians of this form have also been studied

in the context of vortex dynamics in Ref. 17.

A. Symplectic structure

To better understand the characteristics of the variational guiding center algorithm, we first

discus some curious attributes of the Lagrangian Eq. (5). The usual conserved symplectic structure

on T Q in Lagrangian mechanics is given in co-ordinates by14

ΩL =
∂2L
∂q̇i∂q j dqi ∧ dq j +

∂2L
∂q̇i∂q̇ j dqi ∧ dq̇ j. (6)

This is degenerate if the matrix ∂2L/∂q̇i∂q̇ j is singular, which is the case for Lagrangians of the

form of Eq. (5). In this case it makes little sense to talk of the Euler-Lagrange flow being symplec-

tic on T Q, since by definition a symplectic structure is non-degenerate. However, for the particular

form of Lagrangian in Eq. (5) there is a conserved structure on Q, which will turn out to be very

important for the stability of the discretization. The existence of this is shown by considering

the action integral S =
´ t

0 L
[
q (t′) , q̇ (t′)

]
dt′. For q (t) that satisfies the Euler-Lagrange equations,

taking the exterior derivative leads to17

dS =
∂L
∂q̇i dqi

∣∣∣∣∣t
0

= γidqi
∣∣∣t
0

= F∗t γ − γ, (7)

where F∗t is the flow map. Using d2 = 0 gives

F∗t dγ = dγ (8)

showing that −dγ is a symplectic structure (on Q rather than T Q) conserved by the flow of the

Euler-Lagrange equations. Note that for this type of degenerate Lagrange, the Euler-Lagrange

equations are first order in time.

We now consider discretizations of Eq. (5), in which case we have discrete equations of motion

on Q × Q. For concreteness, all discretizations used in this section simply replace q (t) with

qα = (1 − α) qk + αqk+1, (9)
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with 0 ≤ α ≤ 1, and q̇ (t) with (qk+1 − qk) /h to create a discrete Lagrangian (h denotes the

timestep). This is identical to the variational guiding center algorithm in Ref. 3 and very sim-

ilar to that in Refs. 1 and 2, and results hold for both these cases since our analysis is linear.

For discrete Lagrangian Ld (qk, qk+1), the discrete Euler-Lagrange equations, derived by requiring

stationarity of the action under arbitrary variations, δqk, are given by

∂

∂qk

[
Ld (qk−1, qk) + Ld (qk, qk+1)

]
= 0. (10)

The discrete symplectic structure,

ΩLd =
∂2Ld

∂qi
k∂q j

k+1

dqi
k ∧ dq j

k+1, (11)

is preserved by the flow of the discrete Euler-Lagrange map, that is, the discrete update equations

for the integrator. Degeneracy of the continuous Lagrangian on T Q, that is, degeneracy of ΩL

[Eq. (6)], does not imply ΩLd is degenerate on Q × Q. In all cases we study in this article ΩLd is

non-degenerate. The stability results we present are related to how ΩLd becomes the symplectic

form on Q (ie. −dγ) in the h→ 0 limit.

B. Linear stability

The variational guiding center algorithms in Refs. 1–3 both use a discretization of γ that is

symmetric in qk and qk+1 (this corresponds to α = 1/2 in Eq. (9)). As a consequence of this, the

update equations are implicit in qk+1 and the question naturally arises as to whether an explicit

variational integrator can be designed. We examine this by studying the stability of the discretiza-

tion of Eq. (5) as the parameter α [Eq. (9)] is varied. An algorithm is explicit for α = 0. The

standard technique for numerical stability analysis of nonlinear integrators is to calculate stability

boundaries with ẋ = λix for the algorithm in question, where λi are the eigenvalues of the Jacobian

matrix at some point. This technique does not carry over easily to variational integrators, since the

algorithm is defined by the discrete Lagrangian, so cannot be easily applied to ẋ = λix. Instead,

we consider a general linearization of the discrete equations of motion, which can be represented
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by the equations of motion arising from a discrete Lagrangian of the form,

Ld,lin =
1
h

(
xµk+1 − xµk

)
Gµν xνα − xµαBµν xνα − BL,µxµα, (12)

where the summation convention is used and greek indices run 1 → 4 (include U). The constant

matrices Gµν, B and BL could be calculated explicitly for specific forms of A (x) and φ (x) (at

some point) if desired. Here we consider them to be general, with the last row of Gνµ equal

to zero (since this is the form of the guiding center Lagrangian). Note that B and BL contain

quadratic approximations to both φ (x) and Γ (x,U), but these turn out to be unimportant. The

general equations of motion arising from such a Lagrangian are in the form of a linearization of

Eq. (1) about any point; thus, we consider stability of the algorithm obtained from Eq. (12) to be

a necessary condition for stability of the variational guiding center integrator. With the discrete

Euler-Lagrange equations Eq. (10), we can derive the equations of motion for the linearized system

in the form

xνk+1 = Pνµ (α) xµk + Qνµ (α) xµk−1,

where P and Q are constant matrices with dependence on α, Gµν, Bµν and BL,µ. Stability properties

follow from the eigenvalues of this equation, given by

det
[
λ2

i I − λiP − Q
]

= 0. (13)

Calculating these eigenvalues in the limit h → 0 for arbitrary Gµν (Bµν and BL,µ do not contribute

in this limit), leads to λi = 1, a series of λi that depend on Gµν, and

λi =
1 − α
α

,
α

1 − α
. (14)

These final two eigenvalues indicate that the algorithm will be unstable unless Re (α) = 1/2, demon-

strating an explicit scheme (α = 0) is unstable at all timesteps. To understand the reason for this

behaviour and design explicit integrators under certain conditions, we consider gauge transforma-

tions and the symplectic form.
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C. The discretization gauge

The h→ 0 limit of ΩLd [Eq. (11)] for the general discrete Lagrangian [Eq. (5)] is17,

ΩLd (xk, xk+1) ≈
(
∂γµ

∂xν
− α

(
∂γν
∂xµ

+
∂γµ

∂xν

))∣∣∣∣∣∣
xα

dxνk ∧ dxµk+1. (15)

At exactly h = 0, xk, xk+1 and xα all become x and the 2-form basis is reduced to dxν ∧ dxµ.

Comparing this to the continuous symplectic form on Q,

dγ =
1
2

(
∂γµ

∂xν
−
∂γν
∂xµ

)
dxν ∧ dxµ, (16)

we see that the two expressions co-incide at h = 0 only if ∂γµ/∂xν is antisymmetric, or if α = 1/2.

Thus, the numerical instability away from α = 1/2 can be thought of as a direct consequence of

ΩLd not transforming into the continuous preserved symplectic form, dγ, in the h→ 0 limit.

This realization also gives a method to design integrators that work away from α = 1/2, since

if ∂γµ/∂xν is antisymmetric we would expect the algorithm to be stable for all α (at h → 0). Note

that ∂γµ/∂xν will not be antisymmetric for the variational guiding center algorithms; however, we

can use the fact that the continuous Euler-Lagrange equations are unchanged by the addition of

a total time derivative to the Lagrangian, a generalized gauge transformation. For some arbitrary

function S , this is equivalent to γµ → γ′µ = γµ + S ,µ, H → H′ = H − ∂tS in Eq. (5). An integrator

derived from this transformed Lagrangian should simulate the same continuous dynamics, though

the discrete update equations are different. We can require ∂γ′µ/∂xν be antisymmetric, which leads

to the partial differential equation,

S , µν = −
1
2

(
γµ,ν + γν,µ

)
, (17)

that can easily be solved for the linearized Lagrangian, Eq. (12). Numerical tests show the algo-

rithm to be stable for all α when this antisymmetric discretization gauge (∂γµ/∂xν antisymmetric)

is used. Note that Eq. (17) does not always have a solution: equality of mixed third derivatives of

S leads to the condition

γµ,νλ − γν,µλ = 0, (18)

which is trivially satisfied for the linear case, but in general not true globally for the guiding cen-
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ter Lagrangian, Eq. (1). Thus, while the Lagrangian can locally be put into the antisymmetric

discretization gauge by linearizing about some point, the global gauge may not exist for arbitrary

γ. Note that if Eq. (18) is not satisfied, a global gauge could still exist in a different co-ordinate

system. A trivial example of this would be if canonical co-ordinates existed for the guiding center

Lagrangian of the field in question19, in which case γ j = P j, γ j+3 = 0, j = (1, 2, 3) and Eq. (18) is

satisfied. Canonical co-ordinates do not always exist, and it is not yet clear if there is a co-ordinate

change that would allow a global antisymmetric discretization gauge for a general magnetic field.

This interesting theoretical question will be investigated further in the future. For practical pur-

poses, it is always possible to pick an antisymmetric discretization gauge in the neighborhood of

some point.

D. Numerical example

We now give a brief numerical example to illustrate the effect of a transformation into a local

antisymmetric discretization gauge. We use the non-relativistic guiding center algorithm, with

magnetic field

B (x) =
[
1 +

(
x2 + y2

)
/20

]
ẑ, (19)

in which particles execute closed circular orbits, x2 + y2 = const. This field can be represented by

A† (x) ≡ A (x) + ub (x) =
(
− 1

60y3, x + 1
60 x3, u, 0

)
, including the u component (since this is needed

when we change gauges). There is no global antisymmetric discretization gauge for this field, as

Eq. (18) cannot by globally satisfied. However, since particles orbit around (x, y) = (0, 0), we can

choose the local gauge associated with linearization of the equations of motion around this point.

This corresponds to S = −1
2 xy − 1

2zu, giving A† (x) in the new gauge as,

A′† (x) =

(
−

1
60

y3 −
y
2
,

1
60

x3 +
x
2
,

u
2
, −

z
2

)
. (20)

We expect the discretized Lagrangian in this gauge to produce a stable algorithm, at α , 1/2, as

long as the particle remains near to (x, y) = (0, 0).

This is illustrated in Figure 1, where equations of motion are integrated purely explicitly (α = 0)

for differing initial conditions. The nonlinear motion close to (0, 0) is stable, while with initial con-

ditions further from (0, 0) the integrator blows up. We emphasize that the algorithm is stable for

any initial condition at α = 1/2, the purpose of this example is to show the gauge change can be
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FIG. 1. Particle trajectories integrated explicitly (α = 0) for the field B (x) =
[
1 +

(
x2 + y2

)
/20

]
ẑ put into

the linear antisymmetric discretization gauge of the point (0, 0). A trajectory that remains close to (0, 0) is
numerically stable (a), while further away (b), it is unstable because the local antisymmetric discretization
gauge at (0, 0) is not a good approximation to the required gauge at the particle position.

used locally to give a stable explicit integrator. Of course, more complicated particle trajectories

would preclude the use of such a linearization technique: particles would quickly move into re-

gions where a different discretization gauge was necessary. Future investigations could include the

possibility of somehow stitching together local gauges to give a globally stable, nonlinear, explicit

algorithm.

II. ELECTROMAGNETIC GAUGE

In any physical system related to electromagnetism, dynamics must be invariant under an elec-

tromagnetic gauge transformation, A (x, t) → A (x, t) + ∇λ (x, t), φ (x, t) → φ (x, t) − ∂tλ (x, t).

For the case of the single particle guiding center Lagrangian, Eq. (1), such a transformation is of

course a special case of the gauge transformations considered in the previous section. Evidently

continuous particle dynamics are invariant under a change of electromagnetic gauge; however,
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we have just seen that stability properties of the variationally discretized system can be strongly

altered by gauge changes. Unlike traditional algorithms, in which the equations of motion (and

thus B (x) and E (x)) are discretized, the variational symplectic guiding center integrators are not

electromagnetically gauge invariant. This can be illustrated explicitly (for the algorithm of Refs. 1

and 2) by making the transformation A†i → A†i + λ, i, φ→ φ− ∂tλ in Eq. (3). This leads to the extra

term,
1

2h

[
λ, i j

(
xi

k+1 − xi
k−1

)
−

(
λ, j (xk+1) − λ, j (xk−1)

)]
+ ∂tλ, j (xk) , (21)

which is non-zero (but does of course vanish in the continuous limit). It is important to explore

this further to understand limitations and how best to choose a gauge to obtain a reasonable ap-

proximation of particle motion.

We are motivated to restore gauge invariance to the discrete Lagrangian, to compare to the

integrators from Refs. 1–3 and see when they should give a valid description of the motion. This

can be achieved by replacing evaluations of A and φ at a single spacetime point (for instance

(xk + xk+1) /2) with time integrals over a particle trajectory. For example, a discretized version of

Eq. (1) that is gauge invariant is

Ld =

[ˆ tk+1

tk

dt
h

A [x (t)] + Uk+1/2b
(
xk+1/2

)]
. (xk+1 − xk) /h

−

[ˆ tk+1

tk

dt
h
φ [x (t)] + Γ

(
xk+1/2,Uk+1/2

)]
. (22)

Here, xk+1/2 indicates (xk + xk+1) /2 and the path in the time integral, x (t), is simply a straight

line between xk and xk+1, that is, x (t) = xk + (xk+1 − xk) (t − tk) /h. To prove gauge invariance of

discrete equations of motion, we need to show that the discrete action, Sd =
∑

k Ld, is unchanged

(except at the endpoints) by an electromagnetic gauge transformation. For Eq. (22), first note that

(xk+1 − xk) /h is v (t). The gauge transformation thus amounts to the addition of

ˆ tk+1

tk

dt
h

v.∇λ (x (t) , t) +

ˆ tk+1

tk

dt
h
∂λ (x (t) , t)

∂t
(23)

to Eq. (22). The first term is ˆ tk+1

tk

dt
h

[
dλ
dt
−
∂λ

∂t

]
, (24)

the second part of which cancels the second term of Eq. (23). Carrying out the integral, we are left
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with

λ (xk+1, tk+1) − λ (xk, tk) , (25)

which contributes λ (xN , tN) − λ (x0, t0) to Sd. Since this is only a boundary contribution, the

discrete equations of motion are unchanged and thus electromagnetically gauge invariant. Note

that in a numerical implementation of the algorithm obtained from Eq. (22), the time integrals

would need to be evaluated numerically. This calculation could be exact for piecewise polynomial

A and φ (using Gaussian quadrature), as would be the case if they were defined discretely on some

grid. Such discrete fields are used in many applications and an electromagnetically gauge invariant

algorithm as introduced here could easily be implemented. As a side note, this is particularly

important for use in a variational particle-in-cell scheme, where a particle pusher is coupled to an

electromagnetic field solver in a single discrete variational principle. Ensuring electromagnetic

gauge invariance of the discrete Lagrangian guarantees the scheme satisfies the current continuity

equation, ∂tρ + ∇ · J = 0, which implies Gauss’s law remains satisfied at all times4.

A. Numerical example

The variational guiding center integrators we study use the discretizations A (x)→ 1
2 [A (xk) + A (xk+1)]

(Refs. 1 and 2) or A (x) → A
(
xk+1/2

)
(Ref. 3). We would expect the lack of gauge invariance to

be relatively unimportant if these terms (and similar terms for φ) were good approximations to´ tk+1

tk
dt
h A [x (t)], which is essentially an average of A over the particle trajectory. Thus, to minimise

the consequences of the lack of electromagnetic gauge invariance on numerical results, we should

choose a gauge such that the resulting A and φ are as smooth as possible. We note that this idea

gives an answer to the question of how to implement the variational guiding center algorithms for

a given magnetic field, perhaps defined on a grid. To ensure a stable algorithm, one should choose

an A (x) that is as smooth as possible under the constraint ∇ × A = B.

We test out this idea numerically in Figure 2. This shows integrated guiding center particle tra-

jectories for same magnetic field as the previous example, B (x) =
[
1 +

(
x2 + y2

)
/20

]
ẑ. As before

A =
(
− 1

60y3, x + 1
60 x3, 0

)
is used in Figure 2(a), while in Figure 2(b) we gauge transform this A

with λ = cos (10 x y). For the parameters of Figure 2(b), there will be a relatively large change

in A (x) over a timestep, meaning A
(
xk+1/2

)
will not necessarily be an accurate approximation to´ tk+1

tk
dt
h A [x (t)]. This manifests itself in a highly unstable particle trajectory and kinetic energy

[Figure 2(c)]. This property of the variational guiding center algorithms should not be problematic
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FIG. 2. Numerically integrated particle trajectories in the field B (x) =
[
1 +

(
x2 + y2

)
/20

]
ẑ: a) Using

A =
(
− 1

60 y3, x + 1
60 x3, 0

)
, b) using A =

(
− 1

60 y3, x + 1
60 x3, 0

)
+ ∇ cos (10 xy). The kinetic energy, Ek (t) is

plotted in c), with the trajectory of a) in red, and that of b) in black. h is chosen so that the particle rotates
by approximately 1/10 radians per timestep and the trajectory is integrated for 1000 timesteps.

in practice so long as a relatively smooth gauge is chosen and the timestep is small enough. Nu-

merical investigations have revealed that, without unnecessarily uneven A (x) and φ (x), timestep

restictions are less severe than for conventional algorithms, for instance, fourth order Runga-Kutta.
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III. CONCLUSIONS AND FUTURE WORK

We have studied linear stability properties of the variational symplectic guiding center algo-

rithms in Refs. 1–3 and how these relate to gauge transformations of the governing Lagrangian.

It was found that an oddity in the relationship between the discrete and continuous symplectic

forms explains why explicit variational guiding center integrators are have been observed to be

numerically unstable. This can be mitigated by the use of an antisymmetric discretization gauge,

in which even an explicit integrator is stable; however, this gauge does not always exist globally

for realistic fields in general co-ordinates. Finally, we examined the consequences of the lack of

electromagnetic gauge invariance in the variational symplectic guiding center algorithm. As long

as A (x) is relatively smooth, the algorithm is approximately gauge invariant and should accurately

reproduce particle dynamics.

There are still numerous properties and instabilities of the variational guiding center algorithm

that require future work. One such instability, referred to in Ref. 3, affects the integrated parallel

velocity, u, for fully 3-dimensional fields. The velocity is seen to oscillate between even and

odd time-steps, with the amplitude growing in time. This instability is nonlinear, a complication

for a systematic analysis, but can be mitigated by formulating the algorithm in terms of uk+1/2 ≡

(uk + uk+1) /2 rather than uk. Another area of ongoing research is in variational integrators for

fields defined discretely on a grid, as would be required, for example, if the magnetic field is

output from another code. Preliminary results show certain numerical instabilities associated with

the piecewise nature of A. The results presented above on electromagnetic gauge transformations

may be important in this, and investigations into gauge invariant integrators are ongoing.
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