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Abstract 

Thermal energy confinement times in NSTX dimensionless parameter scans increase 

with decreasing collisionality.  While ion thermal transport is neoclassical, the source of 

anomalous electron thermal transport in these discharges remains unclear, leading to 

considerable uncertainty when extrapolating to future ST devices at much lower collisionality.  

Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality 

discharges.  First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show 

they can yield experimental levels of transport.  Magnetic flutter is responsible for almost all the 

transport (~98%), perturbed field line trajectories are globally stochastic, and a test particle 

stochastic transport model agrees to within 25% of the simulated transport.  Most significantly, 

microtearing transport is predicted to increase with electron collisionality, consistent with the 

observed NSTX confinement scaling.  While this suggests microtearing modes may be the 

source of electron thermal transport, the predictions are also very sensitive to electron 

temperature gradient, indicating the scaling of the instability threshold is important.  In addition, 

microtearing turbulence is susceptible to suppression via sheared E×B flows as experimental 

values of E×B shear (comparable to the linear growth rates) dramatically reduce the transport 

below experimental values.  Refinements in numerical resolution and physics model assumptions 

are expected to minimize the apparent discrepancy.  In cases where the predicted transport is 

strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the 

magnetic perturbations associated with the unique structure of microtearing turbulence. 

 



I. Introduction 

Microtearing instabilities have been predicted to be unstable in spherical tokamaks (STs) 

[1-11], conventional aspect ratio tokamaks [12,13], and reverse field pinches [14].  The stability 

characteristics and predicted level of transport are therefore of broad interest to the magnetic 

fusion community.  By microtearing we refer to resonant electromagnetic modes with tearing 

parity (flux-surface averaged 〈A||〉 is finite) on a rational flux surface, q=m/n, (where q is the 

safety factor) at high toroidal (n) and poloidal (m) mode number that are stable to conventional 

resistive tearing instability [15,16].  Because of the strong stabilizing influence of field line 

bending (represented by a large negative tearing parameter that asymptotes to Δ′=-2m/r at high m 

[17]), some other mechanism must be responsible for instability, such as the time-dependent 

thermal force [18-28] or trapped-passing particle interaction [29-31].  Either mechanism requires 

finite electron collisionality (νe) as well as sufficient electron temperature gradient (∇Te) and 

electron beta (βe) for instability to ensue. 

Significant microtearing induced transport is expected to occur if many small scale 

islands grow sufficiently wide to overlap and destroy flux surfaces such that electrons diffuse in 

a region of stochastic field lines.  In the cylindrical limit, a single resonant mode can reconnect 

[17] and cause a magnetic island of width ns/rRB/B4w 0island ⋅δ=  to form, where B0 is the 

equilibrium field strength, R (r) is the major (minor) radius and s=r/q⋅q′ is the magnetic shear.  If 

the single-mode island width becomes larger than the separation between rational surfaces, 

Δrrat=1/nq′=1/kθs (kθ=nq/r), stochasticity is expected to develop [32] which can cause rapid 

transport of electrons following the perturbed fieldline trajectories [33].  If many toroidal modes 

are present (separated by Δn) the minimum distance between adjacent resonant surfaces is 

δrrat≈Δn/n2q′.  Therefore the island overlap criterion for stochasticity onset (wisland>δrrat) is more 

easily satisfied, especially for higher n. 
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Evaluating this condition and estimating transport requires the amplitude of the saturated 

δB/B perturbations.  The quasi-linear approximation δB/B≈ρe/LTe (derived from nonlinear theory 

for a shear-free slab [20], with similar forms found in sheared slab theories [24,28]) was used 

along with collisional and collisionless test-particle stochastic transport models [33] to model 

single NSTX [34,35] and RFX [14] discharges with some quantitative agreement.  However, the 

stochastic χe models do not follow the predicted scaling of the linear instability.  Overall it is 
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unknown how the transport will scale from first principles turbulence simulations, which 

motivates the work in this paper. 

Of particular interest to spherical tokamaks is the scaling with collisionality.  Dedicated 

dimensionless scaling studies in both NSTX [36-38] and MAST [39,40] find that the normalized 

energy confinement time exhibits a strong inverse scaling with collisionality, (ΩτE) ~ν*e
-(0.8-0.95).  

This scaling predicts improved confinement at smaller values of ν* envisioned for next 

generation STs [41,42].  It is important to clarify the cause of this scaling and whether it will 

hold at lower ν* [43].  In many of these discharges the microtearing mode has been predicted to 

be unstable, and over a particular range of collisionality (roughly characterized by νe/ω<1, or 

weakly-collisional), the linear growth rates decrease with decreasing νe, qualitatively consistent 

with the observed confinement scaling.  This dependence is opposite to that expected for 

traditional electrostatic ion temperature gradient and trapped electron modes (ITG/TEM), where 

increasing νe has a stabilizing influence by detrapping the trapped electrons which otherwise tend 

to enhance growth rates.  Because of this unique dependence on νe, it is thought the microtearing 

mode may be an important transport component in at least some ST discharges. 

First attempts at non-linear microtearing gyrokinetic simulations [44] using the GS2 code 

[45,46] based on MAST parameters found the simulations ultimately lead to numerical 

instability with much of the energy accumulating (non-physically) in the smallest radial scales 

(highest kx modes).  A thorough discussion of the issues encountered, including resolution issues 

and numerical constraints is provided in Ref. [44].  A single gyro-fluid microtearing simulation 

has also previously been reported [47], but with little discussion of the resulting turbulence 

characteristics and transport dependencies. 

More recently, the first successful non-linear gyrokinetic simulations have been reported 

for parameters based on NSTX experimental data [48] and for higher aspect ratio parameters 

based on ASDEX-UG [49].  The NSTX simulations are performed for a plasma in which the ion 

thermal transport is well described by neoclassical theory and other instabilities such as ETG 

appear to be stable so microtearing turbulence is expected to play a significant role in energy 

confinement.  In this paper we describe additional nonlinear simulations that vary electron beta, 

collisionality, and E×B shear around the nominal experimental values to determine the scaling of 

the nonlinear transport.  Most notably, the simulations predict a near linear scaling of electron 



thermal transport with νe, roughly consistent with the global confinement scaling.  We also 

present additional details of the unique microtearing turbulence characteristics predicted in 

NSTX which are used to motivate possible experimental measurements. 

The remainder of this paper is organized as follows.  Section II provides details of the 

experimental NSTX discharge, linear stability analysis, and model assumptions.  Section III 

presents the baseline non-linear simulations, discussing resolution requirements, spectral 

characteristics, and stochasticity.  Section IV then shows how the simulated microtearing 

transport scales with collisionality, temperature gradient, beta, and E×B shear.  To address the 

possibility of measuring microtearing turbulence, in Sec. V we investigate the real space 

structure of the density and magnetic field perturbations.  We conclude with a summary in Sec. 

VI. 

 

II. Experimental parameters and linear analysis 

The Eulerian gyrokinetic code GYRO [50-53] is used for both linear and non-linear 

simulations which are based on a high collisionality NSTX discharge that is part of energy 

confinement scaling studies [36,37] (BT=0.35 T, Ip=0.7 MA, R/a=0.82/0.62 m, PNBI=4 MW, line-

averaged density en =5.4×1019 m-3, peak temperatures Te(0)≈Ti(0)=0.85 keV, volume-averaged 

toroidal beta βtor=19%).  Many of the properties of the linear microtearing mode and scaling for 

this case are described in [11].  Table I lists the local experimental parameters used in the 

simulations for the single location r/a=0.6 investigated in this paper.  The local electron beta is 

defined as βe=8πneTe/BT
2 using the vacuum value BT=0.35T, while βe,unit is defined replacing BT 

with the quantity Bunit=BT⋅ρ/r⋅dρ/dr [r is a near mid-plane minor radius [52], ρ=(Ψt/πΒΤ)1/2
, Ψt is 

the toroidal flux] as used in normalizations throughout GYRO.  The collision frequency 

coefficient νei=4πnee4logΛ/(2Te)3/2me
1/2.   Parameters related to the flow are the Mach number 

Ma=vTor/cs=Rω0/cs, the E×B shearing rate γE=-r/q⋅∂ω0/∂r, and the rotation shearing rate 

γP=R⋅∂ω0/∂r=(qR/r)⋅γE, where ω0=-dΦ0/dψ is the toroidal rotation frequency, Φ0 is the 

equilibrium electric field potential and ψ is the poloidal flux (assuming no other contribution to 

Er from diamagnetic or poloidal flows, which is appropriate for the core of most NSTX NBI 

plasmas).  Other normalizing quantities are the minor radius, a=0.62 m, sound speed 
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cs=(Te/md)1/2, and deuterium ion gyroradius ρs,D=(md⋅Te)1/2/Bunit evaluated at the local electron 

temperature (Te=0.45 keV). 

 
r/a q s Te/Ti a/LTe a/LTi a/Lne a/Lnd βe 

(%) 
βe,unit 
(%) 

νei 
(cs/a) 

Zeff γE 
(cs/a) 

γP 
(cs/a) 

Ma 

0.6 1.69 1.74 1.05 2.72 2.36 -0.83 0.35 8.84 2.45 1.45 2.92 0.17 0.74 0.22 
Table I.  Parameters for NSTX discharge 120968, t=0.560 s at r/a=0.6. 
 

The simulations below include most physical effects expected to be important in the NBI 

heated NSTX discharges, including kinetic electrons and deuterium ions at full mass ratio 

(mi/me=3600), shear magnetic perturbations (δB=∇×δA||), and electron pitch angle scattering.  

Geometric quantities are derived from experimentally constrained numerical equilibrium 

reconstruction.  Although expected to be important, toroidal flow and flow shear are not included 

unless otherwise noted. 

To minimize computational expense for first nonlinear simulations, compressional 

magnetic perturbations (δB||) are ignored since they do not affect the microtearing mode [5,11].  

In addition, only one kinetic ion species (deuterium) is kept.  As shown in linear analysis [11], 

finite impurity content (Zeff=2.9 from carbon profile measurements) can provide a destabilizing 

influence to the microtearing mode through both the electron-ion collisionality dependence as 

well as through shielding the electrostatic potential response via the nearly adiabatic ion response 

(δni/ni≈-Zeff,poisson⋅δϕ/Ti).  Numerically there is no additional expense by including the effect of 

Zeff>1 in the pitch-angle scattering collision operator which has an energy-dependent coefficient 

proportional to νei⋅[Zeff+H(v)]/v3, where H(v)=exp(-v2)/π1/2v+(1-1/2v2)erf(v) and v=ve/vth,e.  As 

shown in Fig. 1, neglecting a dynamic impurity species (D only, so that Zeff,poisson=1) leads to a 

maximum growth rate that is ~15% smaller than the calculation with two ion species (D+C, 

Zeff,poisson=2.9), and the width of the unstable spectra is smaller.  In both cases Zeff=2.9 is used in 

the collision operator. 
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Fig. 1. (color online)  Linear growth rate spectra at r/a=0.6 using deuterium and carbon and 
deuterium only.  Also shown is the linear growth rate of the n=30 (kθρs=0.63) mode using the 
exact same grid parameters as the non-linear simulations below (Lx=80ρs, nx=400, Δx=0.2ρs). 

 

The linear microtearing instability depends explicitly on the presence of resonant parallel 

current layers (δj||) centered on the rational surfaces.  As an example, Fig. 2a shows the radial 

variation of the real component of the parallel current for the most unstable mode (kθρs=0.63, 

n=30), taken at a snapshot in time at the outboard midplane (θ=0).  The current channel is 

centered on the q=51/30=1.7 rational surface with a width Δj≈0.3 ρs (≈1.4 mm) or ~1/3 of the 

rational surface separation Δrrat=0.9 ρs.  As a result of the narrow current channel, fine radial 

resolution (Δx≈0.03 ρs) is required to obtain quantitative convergence in the linear growth rate. 

It is computationally prohibitive (and typically unnecessary) to use such high resolution 

in a non-linear turbulence simulation.  However, the radial resolution must at minimum be able 

to distinguish the separation in rational surfaces of the most unstable modes in the simulation 

domain (or possibly even the largest value of kθ) if the microtearing physics is to be properly 

represented.  Considering the finite difference scheme used in GYRO [51], a minimum 

resolution criterion would be four grid points per rational surface, or 

 

Δx ≤ min(Δrrat)/4 = 1/(4kθ,maxs)  (1) 

 

In the present case (n=30) this is satisfied for Δx≈0.2 ρs. 

To verify the microtearing mode is in fact represented with such resolution, an additional 

linear simulation is performed using the same numerical domain as the nonlinear simulations 
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below (Δx=0.2 ρs, Lx=80 ρs, nx=400) instead of the standard flux-tube domain (Δx=0.03 ρs, 

Lx=Δrrat=0.9 ρs, nx=32).  Fig. 2b shows there is still a distinct current layer associated with each 

rational surface, although the fine scale features of δj||(r) are no longer represented.  (Note the 

abscissa in Fig. 2b is scaled to show only three rational surfaces, although there are 88 total in 

the simulation domain for the n=30 mode.)  The consequence of the sub-optimal resolution in 

this case is a linear growth rate that is ~12% smaller (shown by the blue square in Fig. 1) than 

the quantitatively converged high resolution case.  Nevertheless the structure and scaling of the 

microtearing mode is similar to the flux-tube case.  As the grid spacing is increased to Δx=0.4 or 

0.8 ρs (nx=200,100) individual rational surfaces are no longer distinguishable and the resulting 

instability takes on a completely different (non-physical) appearance with a growth rate that 

eventually increases dramatically (γ=0.20, 0.40 cs/a). 
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Fig. 2. (color online) Radial variation of parallel current perturbations from linear simulations 
at θ=0 for two different perpendicular resolutions: (a) Δx=0.03 ρs (Lx=0.9 ρs, nx=32) (typical 
flux-tube domain), (b) Δx=0.2 ρs (Lx=80 ρs, nx=400) (similar domain as non-linear simulations).  
(c) The q profile used in each simulation.  Dashed lines are located at each rational surface 
associated with the n=30 (kθρs=0.63) mode. 
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If Eq. 1 must always be satisfied it severely restricts the parameter range that practically 

can be simulated as larger magnetic shear further out in radius will require yet smaller Δx.  At 

present it is unclear if this will always be the case or if additional effects will take over non-

linearly. 

 

III. Non-linear simulations 

Numerical grids 

Nonlinear simulations use the same parameters discussed above and outlined in Table I.  

The simulations are run in the local limit (i.e. no equilibrium profile variations) with a domain 

width chosen to be Lx=80 ρs.  Fixed boundary conditions are enforced for all simulations to most 

naturally include equilibrium flow shear when desired.  Damped buffer regions of width Δb=8 ρs 

and damping rate νb=1 cs/a are used at both radial boundaries to prevent profile relaxation [53] 

and the time- and flux-surface-averaged gradient contribution from the n=0 zonal moments is 

less than 1% of the equilibrium values. 

Two binormal grids were used to test for convergence, Ly=60 ρs & 100 ρs, corresponding 

to a separation in toroidal mode numbers of Δn=5 and 3.  Using 8 and 16 spectral modes the 

maximum toroidal mode numbers correspond to n=35 and 45, respectively.  The radial resolution 

requirement discussed previously was satisfied by using 400 and 540 radial grid points, giving 

Δx=0.2 ρs and 0.15 ρs.  Velocity space and parallel orbit grids were the same as determined from 

extensive linear convergence studies (8 energies, 12 pitch angles and 14 parallel orbit mesh 

points, ×2 signs of parallel velocity).  Time steps between 0.001-0.002 a/cs were used to satisfy 

integration stability requirements. Table II summarizes the relevant parameters.  The simulations 

required multiple 12-24 hr restarts using 768-1536 cores on either the NERSC Franklin Cray 

XT4 or the ORNL Jaguar Cray XT5 to achieve statistical stationarity, expending ~100,000 

(~250,000) cpu-hrs for the R1 (R2) grid. 

 

Case Lx×Ly (ρs) nx×ny Δx (ρs) Δt (a/cs) nE×nλ×nτ (×sv||) cpu-hrs 
R1 80×60 400×8 0.2 0.002 8×12×14 (×2) ~100,000 
R2 80×100 540×16 0.15 0.001-0.0015 8×12×14 (×2) ~250,000 

Table II. Numerical grid parameters for the non-linear simulations. 
 



Time series 

Time traces of the resulting electron thermal diffusivity are shown in Fig. 3 for the two 

grid resolutions up to 600 & 900 a/cs.  Each simulation has run for ~0.5M time steps with no sign 

of spurious growing modes at high-k⊥.  The time-averaged transport in each case is χe=1.2 ρs
2cs/a 

and 1.5 ρs
2cs/a, corresponding to 6 and 7.25 m2/s.  These values fall within the range of the local 

experimental values 5-8 m2/s determined using TRANSP [54], illustrating microtearing 

turbulence can indeed drive relevant levels of electron thermal transport in NSTX plasmas. 

 A unique feature of these simulations is that nearly all of the electron thermal transport 

(~98%) comes from the magnetic flutter contribution (~v||,e⋅δBr/B) in contrast to ITG/TEM 

turbulence, ETG turbulence, or even simulations that approach the ideal or kinetic ballooning 

mode limit (χe,em/χe,tot~50%) [55-58].  In addition there is negligible particle, ion thermal or 

momentum transport, consistent with strong magnetic flutter contribution and the fact that ions 

are much heavier than electrons (v||,i<<v||,e). 
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Fig. 3. (color online) Time series of electron thermal diffusivity for two different grids. 
 

Spectral properties 

An important verification that these simulations are in fact sufficiently resolved radially 

is shown by the strongly decaying kx tails of the power spectra for δn, δA||, and δj||, (integrated 

over kθ and time) shown in Fig. 4(a,c,e) for θ=0 (black & red solid lines for R1 & R2). (The 

potential spectra are not shown as they are identical to density, consistent with the nearly exact 

adiabatic ion response, ( T/en/n )δϕ−=δ [11].)  In contrast, the density and parallel current 
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spectra from an insufficiently resolved simulation (blue dashed line) shows a pile-up at the 

highest kx modes for both the density and parallel current.  This pile-up also occurs at the 

highest-ky modes for all quantities as seen in Fig. 4(b,d,f).  To illustrate the resolution criteria 

discussed above (kx,max>2kx,rat) the vertical lines in Fig. 4e show the values of kx,rat=2π/Δrmin that 

correspond to the separation in rational surfaces of the highest toroidal mode number in the 

simulation. 
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Fig. 4. (color online) Time-averaged integrated power spectra versus (left) kx and (right) ky for 
(a,b) δn, (c,d) δA||, and (e,f) parallel current, δj||.  The three lines represent different resolution 
parameters.  The vertical lines in (e) illustrate the location of the minimum rational surface 
separation for each numerical grid (nmax=35 and 45). 

 

The δn(kx) and δA||(kx) spectra agree very well in the region of spectral decay for the 

properly resolved simulations.  As resolution is refined, the δj||(kx) peak is shifted out and 

becomes broader, consistent with a narrowing of current layers discussed above in the linear 

analysis.  Above this peak the spectral decay is extremely sharp. 

While the ky spectral range is limited, spectral decay is apparent for both δn and δA||.  In 

the highest resolution case there is a distinct peak in δA|| at kθρs≈0.2 suggesting qualitatively the 

simulations are not missing larger scale phenomenon that could be important.  The discrete peaks 

in the density kx spectra (kxρs≈1-4, Fig. 4a) correspond to the rational surface separation 

(kx=2π/Δrrat=2π⋅skθ) of the finite kθ modes where the δA|| spectra peaks (Fig. 4d). 

The nonlinear frequency spectra of both δn and δA|| (not shown) are centered around the 

linear dispersion relation which closely follows the electron diamagnetic drift frequency, 

ω~ω*e=kθρs⋅(a/Lne+a/LTe)⋅(cs/a).  The average spectral width, characterized by the rms value of 

ω, is Δω≈0.6 cs/a indicating a decorrelation time τd≈Δω-1=1.7 a/cs or 7μs. 

The transport due to the electromagnetic perturbations at each kθ mode is calculated by 

Qe(kθ)= 〈∫dv3δf⋅1/2mv2v|| b×∇A||/B⋅∇r〉, which is roughly proportional to ~kθ|δA|||2sin(αA-f), 

where  αA-f represents a general cross phase between the magnetic perturbations and perturbed 

distribution function.  Consistent with the low-kθ peak in |δA|||2 (Fig. 4d) the transport spectra 

(Fig. 5) show clearly defined peaks at kθρs≈0.2-0.25 for both grid resolutions giving confidence 

the simulations are capturing the most important dynamics.  In fact, as Δx is fixed in the 

nonlinear simulations, the ratio Δx/Δrrat is reduced at lower kθ as the spacing between rational 

surfaces increases so that lower kθ modes are better resolved compared to the modes near kθ,max 

(Fig. 2).  Since the transport peaks around these modes (kθρs~0.2), the present Δx resolution may 

be sufficient. 

Comparing Figs. 4d & 5 with Fig. 1 we see the non-linear kθ spectral peak is downshifted 

significantly from the maximum linear growth rate, as predicted to occur in analytic non-linear 

theory [20,24,28].  From the non-linear electromagnetic term, the nonlinear growth/damping rate 



for a mode k is proportional to ∑
′ θθ

θθ
′ ′+

′−
δ⋅−γ

k

2
kNL,k kk

kk
Bk~  (e.g., [20]), where a net positive 

value of γk,NL implies mode k is absorbing energy (i.e. being driven non-linearly).  In the limit of 

kθ′>kθ, γk,NL~+|k⋅δBk′|2 (or γk,NL~-|k⋅δBk′|2 for kθ′<kθ) which indicates a preference for energy to 

transfer from fast growing short wavelength modes (high kθ′) to long wavelength modes (low kθ) 

where damping must occur to achieve a statistical steady state.  While the spectrum of modes 

shown in Fig. 1 are all unstable, and would therefore provide no damping at low kθ, there are 

likely to be many damped eigenmodes at each kθ which could balance the non-linear energy 

transfer, as has recently been shown for predominantly electrostatic turbulence [59,60].  Of 

course, the damping could also occur over the entire kθ spectrum of damped modes.  A similar 

comprehensive analysis similar to [59,60] would be required to better understand the saturation 

mechanism of the microtearing turbulence. 
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Fig. 5. (color online) Fractional transport spectra for two resolutions, normalized by wavelength 
spacing (Δkθ). 
 

This effect appears to be amplified in the higher resolution case where the ~25% increase 

in transport occurs around the peak at kθρs~0.2, with a small reduction at higher kθ.  In either 

case the spectrum tail decays very slowly and it’s possible the simulations are missing some non-

negligible fraction of transport.  Additionally, because of the non-linear coupling it is likely 

important to obtain the appropriate strength of the high-kθ growth rates which will be increased 
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slightly with refined Δx (Fig. 1).  Ultimately, more expensive runs are required to test for 

quantitative convergence at higher resolution. 

 

Stochasticity 

Transport from microtearing modes is expected to be large when small scale islands grow 

sufficiently large to overlap, leading to stochasticity and the destruction of magnetic surfaces.  

We find this picture holds for the microtearing simulations, as illustrated in Fig. 6.  Poincare 

surface-of-section plots are constructed by integrating each of 100 perturbed field line 

trajectories a total of 3000 poloidal transits using the simulated magnetic perturbations at every 

time (i.e. assuming δB is fixed) [61,62].  In the late-linear phase (t=25 a/cs) only the highest kθ 

modes are large enough to satisfy the overlap criteria (wisland>δrrat).  As a result the magnetic 

surfaces are only slightly perturbed from the equilibrium, which would look like straight vertical 

lines in flux coordinates as plotted. 
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Fig. 6. (color online) (a) Minimum separation in rational surfaces (δrrat) and estimate of island 
widths (wisland) using δB/B at three times in the simulation. (b-d) Poincare surface-of-section 
plots at the same three times using 100 field line trajectories each integrated 3000 poloidal 
transits. 
 

Early in the non-linear phase (t=50 a/cs) half of the modes satisfy overlap and the 

surfaces are now almost completely destroyed, illustrated by broad stochastic regions with small 

islands of stability remaining around the lowest order rational surfaces.  Well into the saturated 

phase (t=500 a/cs) the field lines are globally stochastic.  At this instant in time all but the lowest 

finite-kθ mode satisfy island overlap. 

A magnetic diffusivity is calculated directly from an ensemble average of the N=100 

field lines, ri(l), integrated along their trajectories l [61,62] 
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giving a time-averaged value Dm~6×10-7 m in the saturated phase.  Using the rms value for 

δB/B0=1.5×10-3 and the relation Dm=|δB/B|2Lc [33], the field line correlation length Lc~0.25 m is 

much shorter than the electron mean free path (λmfp~12.5 m).  The corresponding collisionless 

(Lc<λmfp) test-particle stochastic transport model [33] χe,RR=DmvTe≈1.0 ρs
2cs/a is within ~25% of 

the simulation (where we have neglected order unity coefficients), consistent with the transport 

being dominated by electrons diffusing in a stochastic magnetic field. 

 Previous modeling of an NSTX discharge unstable to microtearing modes [34,35] used 

the collisional Rechester-Rosenbluth stochastic transport model.  In the absence of non-linear 

simulations, the quasi-linear estimate for the saturated amplitude, δB/B≈ρe/LTe, [20] predicted 

χe,RR~50-100% smaller than experimental values.  In the non-linear simulation above 

δB/B~0.15% is about two times larger than ρe/LTe=0.065%, so that using a larger saturated δB/B 

as found here would provide an overestimate, bracketing the experimental values, reinforcing the 

conclusions in [34,35].  However, the scaling of either collisional or collisionless Rechester-

Rosenbluth estimates with this quasi-linear saturation rule is incapable of reproducing the 

predictions from nonlinear simulations, as discussed next. 
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IV. Transport parametric dependencies 

To make a comparison with experimental transport and confinement observations, the 

smaller computational domain (R1, Table II) was used to run numerous nonlinear simulations 

varying electron collision frequency (νei), temperature gradient (a/LTe), beta (βe), and E×B 

shearing rate (γE).  Except for the γE scan, all simulations did not include E×B shear (γE=0). 

 

Electron collisionality 

Fig. 7 shows the predicted transport χe (normalized to the gyroBohm value) as electron 

collision frequency is varied from 0.05-2× the experimental value (using Zeff=2.9).  Over more 

than an order of magnitude (note the log-log axes) the predicted transport scales almost linearly 

with collision frequency, χe/(ρs
2cs/a)~(νei⋅a/cs)1.1~ν*e

1.1.  This trend is qualitatively consistent 

with, although stronger than, the scaling of the linear growth rates which vary by only a factor of 

~3-4 over the same range in collisionality [11]. 

Assuming a direct relation between local transport and global confinement, τE~a2/χe, Fig. 

7 implies a confinement time that, for fixed ρ* and β, should scale similar to those deduced from 

dedicated dimensionless scaling experiments in both NSTX [36-38] and MAST [39,40], (ΩiτE) 

~ν*e
-(0.8-0.95).  Assuming this overly simplistic relation between local transport at one radius and 

global confinement obviously ignores many potentially important effects such as the variation in 

profiles and possible scaling of pedestal height with collisionality.  Nevertheless, the magnitude 

and scaling of the predicted transport with collision frequency provides some evidence that the 

microtearing mode may in fact be an important component in describing transport and 

confinement scaling in these NBI heated NSTX and MAST discharges. 
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Fig. 7. (color online) Normalized electron thermal diffusivity vs. normalized electron collision 
frequency (log-log scale).  The shaded region shows the experimental values with uncertainties. 
 

Electron temperature gradient 

As found in multiple linear studies in both slab and toroidal geometry, the microtearing 

mode exhibits a threshold in electron temperature gradient.  Non-linear simulations above the 

linear threshold show the predicted transport is very “stiff”, with χe varying +/-100% for +/-20% 

change in a/LTe (Fig. 8).  Such stiffness implies that profiles should adjust to be near marginal 

stability.  It could therefore be just as important to characterize the scaling of the threshold with 

collisionality, complicating the simple ν* scaling interpretation discussed above.  Additionally, 

there appears to be an effective non-linear threshold (a/LTe,NL≈2.1) that is ~40% larger than the 

linear threshold (a/LTe,NL≈1.5), reminiscent of the so-called “Dimits shift” in ITG turbulence 

[61].  Such a strong upshift has been observed before in finite-β (βe≤1%) simulations of ITG 

turbulence [55,56], although the reason for this remains unclear. 
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Fig. 8. (color online) Electron thermal diffusivity vs. electron temperature gradient.  The shaded 
region shows the experimental values with uncertainties. 
 

Electron beta 

Fig. 9 shows that the non-linear transport is significant when electron beta is above the 

linear threshold, which for this case occurs at βe≈3.0% [11].  Similar to the a/LTe scan in Fig. 8, 

there appears to be an upshift in the nonlinear βe threshold (between 4.5-7%).  Above this 

threshold the transport roughly doubles over the range βe≈7-13% (0.8-1.5×βe,exp).  While this is 

qualitatively consistent with NSTX and MAST experimental results [36,40], the degradation is 

much stronger than the experimentally determined scaling exponent, (BTτE) ~βe
-0.1. 

17 

 

0 5 10 15
0

0.5

1

1.5

2

exp.

β
e
 (%)

χ
e (

ρ
s2 c s/a

)

linear
threshold

γ
E
=0

 



Fig. 9. (color online) Electron thermal diffusivity vs. electron beta.  The shaded region shows the 
experimental values with uncertainties. 
 

In all the above scans the transport predictions qualitatively follow the linear stability 

analysis [11].  As mentioned in the introduction, the test-particle stochastic transport models, 

coupled with the quasi-linear saturation estimate δB/B≈ρe/LTe, are unable to reproduce this 

behavior.  To illustrate this, we write the Rechester-Rosenbluth [33] electron thermal diffusivity 

(χe
RR≈DmvTe=|δB/B|2LcvTe) normalized by the gyroBohm diffusivity (ρs

2cs/a) for both 

collisionless (Lc=qR for λMFP>qR) and collisional (Lc=λMFP for λMFP<qR) cases as: 
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where μ=(mi/me)1/2, ε=a/R, ν*e= νei⋅qR/ε3/2vTe, and min[1,1/ε3/2ν*e] represents the two limits.  

From this expression we see the model does predict a nonlinear dependence of transport with 

a/LTe.  However it does not know about the threshold behavior in a/LTe and βe, the scaling with 

βe, and if anything predicts a ν* scaling opposite to that found from the non-linear simulations.  

Therefore the non-linear simulations are critical for predicting trends in microtearing transport. 

 

ExB shear 

 The above simulations were run with E×B shear set to zero (γE=0).  However, as shown 

in Table I the local E×B shearing rate (γE=0.17 cs/a) is comparable to the maximum linear growth 

rate (γlin,max=0.15 cs/a for the non-linear simulation resolution, Fig. 1).  It has been found in 

nonlinear simulations that such large E×B shear (γE/γlin,max~1) can suppress ITG/TEM [64], and 

even ETG [65,66] turbulence, and we find the same to hold true for these NSTX microtearing 

simulations.  Fig. 10 shows that as γE is increased from zero to the local experimental value the 

predicted transport is reduced dramatically, which is no longer consistent with the local 

experimental χe.  Given the sensitivity of predicted transport with temperature gradient, an 

additional set of simulations was run with a/LTe increased 20%.  The transport with experimental 

γE is increased but remains ~3× smaller than the experimental value.  
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Fig. 10. (color online) Electron thermal diffusivity vs. E×B shearing rate (γE, in units cs/a).  The 
shaded region shows the experimental values with uncertainties. 
 

We note that the non-linear microtearing simulations for conventional aspect ratio [49] 

are not suppressed by such strong values of E×B shear.  The reason for this difference is under 

investigation, although the microtearing modes in Ref. [49] are unstable at much lower 

wavenumbers with a peak in transport around kθρs≈0.06-0.1 compared to kθρs≈0.2-0.25 for the 

NSTX case. 

Because of the expense of these nonlinear simulations it is an unfortunate reality that 

extensive quantitative convergence has yet to be demonstrated for the range of parameters 

studied.  Considering the consequences of radial resolution on the linear growth rates (Fig. 1) 

and the slowly decaying tail in the transport spectra (Fig. 5), it is likely that the predicted 

transport at experimental γE will increase for both smaller Δx and larger kθ,max.  Including an 

impurity (carbon) ion consistent with experiment is also expected to increase the transport 

following the trend in the linear growth rates (Fig. 1). 
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As noted above, these simulations were run in the local limit which is valid only for 

asymptotically small ρ*=ρs/a→0.  At r/a=0.6 in this NSTX discharge ρ*≈1/130 so that the 

simulated domain width (Lx=80 ρs) spans ~60% of the minor radius.  However, in the local 

approximation simulations only use geometry and plasma parameters from the r/a=0.6 surface.  

Linear analysis [11] shows that further out (r/a=0.7-0.8) the microtearing mode can be more 



unstable and eventually a kinetic ballooning mode becomes unstable at r/a≈0.8.  It is therefore 

possible that non-local effects could be important in determining the total transport.  Such 

simulations will be yet more challenging if the microtearing resolution criteria Δx≤1/(4kθ,maxs) 

must be satisfied at increasing magnetic shear towards the outer radii. 

 

V. Real space structure and measurement opportunities 

Although the strong experimental E×B shear reduces the predicted transport, we assume 

for now that the case which matches experimental transport (γE=0) represents an upper limit to 

the level of turbulence to be expected. 

To help illuminate possible diagnostic measurements of interest we plot the density and 

radial magnetic field perturbations in laboratory coordinates (R,Z) at a toroidal cut in Fig. 11.  In 

general the nonlinear δn and δBr features are qualitatively similar to the structure of the linear 

microtearing instability.  The density perturbations are elongated poloidally but narrow radially 

and the strength of the δn fluctuations is roughly uniform (statistically) around the poloidal 

circumference.  In contrast to this, the magnetic perturbations (δBr) are spatially broad on the 

outboard side and become finer scale on the inboard side.  The δBr fluctuations are also much 

stronger on the outboard side with instantaneous values (~25-30 Gauss) approaching 1% of the 

local equilibrium field (~3.5kG). 
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Fig. 11. (color online) Snapshot of (a) normalized electron density perturbations, and (b) δBr (in 
Gauss) in a (R,Z) toroidal plane. 
 

The recently implemented beam emission spectroscopy (BES) diagnostics [67] is 

sensitive to density fluctuations at the poloidal wavelengths relevant to microtearing turbulence 

(kθρs<1).  However, typical BES fiber optic views are 2-3 cm wide and it is unknown how 

sensitive it will be to the narrow density perturbations.  For example, the characteristic width of 

δn in Fig. 11 is coupled in large part to Δrrat associated with the peak magnetic fluctuations at 

n~10, or Δrrat~2.8ρs~1.3 cm.  The well established high-k scattering diagnostic [68] configured 

for kr>kθ might be also suitable for detecting density perturbations associated with microtearing 

modes (Fig. 2a,b).  Future work will focus on correlating BES and high-k measurements with 

simulations using appropriate synthetic diagnostics in discharges expected to be unstable to the 

microtearing instability. 

As microtearing turbulence is fundamentally magnetic in nature, there is great interest in 

directly measuring local magnetic perturbations.  This has been attempted before in other 

tokamaks using cross polarization scattering (CPS) [69,70].  However the particular 

configuration implemented was sensitive mostly to magnetic perturbations with kθρs≈0 and 

krρs>>0, which is not in alignment with the strongest microtearing perturbations shown in Fig. 

11 where kθρs≈0.2 and krρs≈0 (Fig. 2c,d). 

 Recently, a radial retro-reflecting polarimetry diagnostic has been proposed [71,72].  

While this measurement is line-integrated, it may be sensitive to microtearing turbulence because 

of the strong, ballooning, broad δBr perturbations local to the outboard side.  To test this, the 

simulated density and magnetic perturbations were used to calculate the expected polarimeter 

mixer phase for the f=288 GHz system, directed across the magnetic axis.  The simulations 

include both Faraday rotation and Cotton-Mouton effects along a 1D chord and therefore do not 

capture finite beam width effects. 

Fig. 12 shows the predicted time response when using only the equilibrium field and 

density, along with two cases adding only the simulated density perturbations and both density 

and magnetic perturbations.  The phase response owing to the radially narrow density 

perturbations is negligibly small compared to the contribution from the magnetic perturbations, 

which is as large as 1.5° peak-to-peak, or ~0.3° rms.  This level is above the measured noise 



floor of the diagnostic [72] suggesting it may in fact be sensitive to magnetic fluctuations from 

microtearing turbulence.  It should be cautioned that this initial calculation does not account for 

other perturbations that are likely to be present in the plasma (MHD phenomena, neoclassical 

tearing modes, etc…) that could complicate interpretation from the actual measurement. 
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Fig. 12. (color online)  Theoretically predicted line-integrated polarimeter mixer phase using 
only the equilibrium field and density (thick black solid), equilibrium plus δn(R,Z,t) (red dashed), 
and equilibrium plus δn(R,Z,t) and δBr(R,Z,t) (thin blue solid). 
 

VI. Summary 

 Gyrokinetic simulations in a high-collisionality NSTX discharge find that microtearing 

modes are linearly unstable over a broad region of the plasma (r/a=0.5-0.8).  First local non-

linear simulations have been performed for one flux surface (r/a=0.6), which predict electron 

thermal transport is dominated by magnetic flutter and can be comparable to experimental 

values.  The transport is shown to be consistent with electrons diffusing in a globally stochastic 

region, as found from integrating field line trajectories using the simulated magnetic 

perturbations.  However, the test particle stochastic transport models do not reproduce the 

scaling predicted from non-linear simulations. 
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Most notably, in the absence of E×B shear the transport is predicted to decrease with 

decreasing collisionality, χe/(ρs
2cs/a)~(νei⋅a/cs)1.1~ν*e

1.1, consistent both with linear growth rates 

and with the observed scaling of normalized energy confinement times from dedicated 

dimensionless scaling experiments, (BTτE) ~ν*e
-(0.8-0.95).  However, the predicted transport is also 

very stiff with electron temperature gradient (and electron beta, to a less extent) suggesting it 

may be just as important to characterize the scaling of the microtearing threshold gradient.  

When including the experimental level of E×B shear, which is close to the maximum linear 

growth rate, the predicted transport is very small, no longer consistent with experimental 

transport analysis.  A 20% increase in electron temperature gradient recovers a significant 

amount of transport but it remains ~3× smaller than experimental values. 

While considerable care has been taken to ensure that the non-linear simulations are 

sufficiently resolved to at least qualitatively represent the physical nature of microtearing 

turbulence, a number of caveats remain that could alter the quantitative results.  Limited 

convergence studies have been performed, although comprehensive quantitative convergence has 

yet to be demonstrated.  These first nonlinear simulations also did not include an impurity carbon 

species that is measured experimentally.  Linear analysis shows that growth rates increase when 

including a carbon species which would likely increase the predicted transport.  Additionally, 

these simulations were run in the local limit but non-local effects (due to profile variations at 

large ρ*) could influence the predicted results.  Future non-linear simulations will continue to 

explore the influence of all these effects. 

 Finally, the characteristics of microtearing turbulence are seen to be quite distinct from 

other traditional core turbulence mechanisms.  While the instability exists generally at poloidal 

scales of the ion gyroradius (kθρs<1), density perturbation (δn/n~2% rms) are very narrow (<1 

ρs) in the radial direction.  In contrast, shear magnetic perturbations (δB/B~0.15% rms) balloon 

to the outboard side where they are very broad.  Using the predicted large local amplitude 

(approaching δB/B~1% peak-to-peak on the outboard side) calculations indicate a planned 

polarimetry diagnostic may very well be sensitive to the magnetic perturbations from 

microtearing turbulence. 
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