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In the guiding center theory, smooth unit vectors perpendicular to the magnetic field

are required to define the gyrophase. The question of global existence of these vectors

is addressed using a general result from the theory of principal circle bundles. It is

found that there is, in certain cases, an obstruction to global existence. In these cases,

the gyrophase cannot be defined globally. The implications of this fact on the basic

structure of the guiding center theory are discussed. In particular it is demonstrated

that the guiding center asymptotic expansion of the equations of motion can still

be performed in a globally consistent manner when a single global convention for

measuring gyrophase is unavailable. The key to this demonstration is thinking of

the asymptotic expansion as leveraging the globally defined zero’th order symmetry

associated to the magnetic moment.
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I. INTRODUCTION

There is no doubt that the Hamiltonian formulation of guiding center theory is a founda-

tional aspect of modern gyrokinetic theories. Simply put, it provides a means for deforming

the single-particle phase space so as to illuminate the approximate symmetry associated to

the magnetic moment, the gyrosymmetry, while keeping the Hamiltonian structure of the

particle dynamics in focus. However, in spite of its importance and the number of years it

has been studied1–12, there are still poorly understood subtleties in the theory.

In this paper, we study the subtleties associated with the so-called “perpendicular unit

vectors” that make an appearance in virtually every version of the theory1–11,13. These

quantities, hereafter referred to as e1 and e2, are smooth unit vector fields everywhere per-

pendicular to the magnetic field and to one another, meaning they form an orthonormal

triad together with b = B/||B|| in the velocity space. From one point of view, they appear

in the formalism for the sake of identifying an angular variable θ, the gyrophase, that evolves

on a fast timescale with respect to the evolution timescale of the remaining dynamical vari-

ables, thereby putting the guiding center problem in the setting of the generalized method

of averaging described in Ref. 13. In particular, when the equations of motion for a strongly

magnetized charged particle are expressed using a cylindrical parameterization of velocity

space such that the cylindrical axis points along the magnetic field, then it can be shown

that the polar angle associated to this cylindrical coordinate system furnishes such a fast

angle. This angle is measured with respect to a pair of mutually orthogonal normalized vec-

tors e1, e2 lying in the plane perpendicular to B. Because the magnetic field varies spatially,

e1, e2 must also vary in space so as to accommodate the constraint e1 ·B = 0. Therefore these

e1, e2 furnish an example of perpendicular unit vectors (see Fig. 1). From another, more

geometric point of view, the perpendicular unit vectors usher themselves into the formalism

so as to facilitate parameterizing the zero’th-order symmetry loops, or Kruskal Rings14–16

associated with the gyrosymmetry; one of the vectors, say e1, distinguishes a point on each

Kruskal Ring which then serves as a reference or zero angle. Interestingly, nobody’s version

of the theory ever provides a general, constructive definition of these e1, e2 in terms of known

quantities. This is the first hint that there is more to these vector fields than meets the eye.

Perhaps the reason nobody provides such a definition is that, in the most general setting

where the guiding center expansion applies, e1, e2 simply cannot be defined globally, that is,
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FIG. 1. A typical arrangement of the perpendicular unit vectors e1, e2 for a uniform magnetic field

that points out of the page. The two sets of arrows represent e1 and e2. While in this case, e1 and

e2 are not required to vary in space, for a more general sort of magnetic field, they would be.

there might not even be one vector field defined over the entire configuration space that is

at once perpendicular to B and of unit length. While it is easy to see that smooth e1, e2 can

always be defined locally in some, generally tiny, open neighborhood of any point p in the

configuration space17, this in no way implies that these locally defined perpendicular unit

vectors extend to well-defined global quantities18–20. So could there be an obstruction the

global existence of smooth e1, e2 in some cases?

If we take this question seriously, a more important one arises immediately. Is the guiding

center theory still valid without global perpendicular unit vectors? As the theory is carried

out to higher order, expressions involving the perpendicular unit vectors and their derivatives

appear in the equations of motion; see Ref. 3 for instance. So it might seem plausible that

the existence of global equations of motion is tied to the global properties of e1, e2.

Here we will put both of these questions to rest. We will provide a complete mathemat-

ical description of the obstruction to global perpendicular unit vectors and show that this

obstruction does not always vanish. However, we demonstrate that the obstruction does

indeed vanish if the physical domain is an open solid torus. Then we will show that the
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guiding center theory does provide consistent global equations of motion in the absence of

global e1, e2 owing to the fact that the symmetry associated with the magnetic moment is

always globally defined. To illustrate this second point, we provide an expression for the

guiding center Poincaré-Cartan one-form in terms of globally defined physical quantities like

B; neither the perpendicular unit vectors nor the gyrophase appear in the expression.

The paper is structured as follows. In II we provide a simple example of a magnetic

field that does not admit global e1, e2. Then in III, we provide a complete mathematical

description of the obstruction to global perpendicular unit vectors in the most general case.

As an example illustrating the theory, we prove in IV that if the physical domain21, D,

particles are tracked through is an open, solid torus, then it is always possible to find global

e1, e2. This is even true when the magnetic field lines are chaotic! Then we give a non-trivial

example of a magnetic field that does not admit global e1, e2. Finally in V, we show that

the guiding center theory does provide consistent global equations of motion in the absence

of global e1, e2.

II. A MOTIVATING EXAMPLE: THE FIELD DUE TO A MAGNETIC

MONOPOLE

The field due to a magnetic monopole provides probably the simplest illustration of the

obstruction to the existence of global e1, e2. Perhaps the simplicity comes at the cost of

physical relevance, but the latter will be reclaimed later after developing some machinery.

Amusingly, the possibility that this example is physically relevant has never been ruled out.

See Ref. 22 for an interesting discussion of the current status of magnetic monopoles in

theoretical physics.

The monopole field is given by

B(x) =
1

||x||2
er(x), (1)

where er is the radial unit vector from a spherical coordinate system about the origin. It is

depicted in Fig. 2. Sufficiently far from the singularity at the origin, we could in principle

develop the guiding center approximation. So let the physical domain D where particles

would move consist of the open region exterior to some sphere of radius ro centered on the

origin. Now let’s see if there is a perpendicular unit vector defined on all of D.
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FIG. 2. The magnetic field due to a magnetic monopole. Note that ∇ ·B = 0 except at the origin,

which is depicted as a large central dot.

If there were such a vector field, e1, then it could be restricted to a sphere centered on

the origin with radius ra > ro, Sra . Because B|Sra is parallel to the vector normal to Sra ,

e1|Sra would have to be everywhere tangent to Sra . Thus,

e1|Sra : Sra → TSra ,

where TSra denotes the tangent bundle23 of Sra , would furnish an example of a smooth

non-vanishing tangent vector field on the sphere. But this situation is impossible by the

famous “hairy ball theorem”. It follows that no such e1 exists.

There are two essential features of this example. First of all, notice that D has a “hole”

due to excluding the region with r < ro. If instead D were chosen to be some solid spherical

region separated from the singularity at the origin, then it would be possible to find an e1

(we won’t prove this now). But then D would be hole free. So we see that the obstruction

to the existence of e1 is related to the topology of D. Second, consider the structure of the

“hairy ball” argument. Define the magnetic circle bundle, SD, to be the collection of circles

SDx ⊆ TxD, where for each x ∈ D, SDx consists of all those vectors emanating from x that

are perpendicular to B(x) and unit length. The argument really worked because of the way

SD is arranged. In particular, note that even if D had holes, if SD arose from a uniform
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magnetic field, then there would certainly exist globally defined perpendicular unit vectors.

So the global “twisting” of the perpendicular planes is a relevant aspect to the obstruction

to global e1, e2.

III. THE GENERAL OBSTRUCTION TO GLOBAL PERPENDICULAR

UNIT VECTORS

Now we will generalize the important aspects of the previous example to completely de-

termine the conditions for the existence of global e1, e2 in the most general setting. Namely,

we want to determine when a nowhere vanishing magnetic field defined on some three di-

mensional open set D ⊆ R3, admits a globally smoothly defined perpendicular unit vector

e1.

The appropriate way to tackle this problem is to recognize that SD is actually a prin-

cipal circle bundle and that the existence of a globally defined perpendicular unit vector

is equivalent to the existence of a global section of SD (see appendix A for the necessary

background on principal circle bundles). Because a principal circle bundle admits a global

section if and only if it is a trivial bundle, the existence problem can be solved by appealing

to the well-established topological classification of principal circle bundles24. This classifi-

cation theorem tells us that if we can find any so-called principal connection on SD (see

appendix B for the necessary background on principal connections), which is a special sort

of one-form over SD, then the curvature of this connection, a closed two-form over D in-

duced by the principal connection, will be exact if and only if SD is a trivial bundle. Thus,

given the curvature form, existence of global perpendicular unit vectors can be tested by

integrating the curvature form over a collection of cycles that generate D’s second homology

group H2(D,Z)25. If all of these integrals vanish, then the curvature form must be exact

and a global section of SD must exist.

So in order to furnish a solution to the existence problem, all that we must still do is

1) prove that SD is a principal circle bundle whose global sections, if they exist, coincide

with global perpendicular unit vectors and 2) derive an expression for the curvature form

associated to some principal connection on SD. Then existence can be determined in any

particular case after finding the “holes” in D.

First notice that SD is indeed a manifold. Actually it is a submanifold of TD = D×R3
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defined by the algebraic equations

v · v = 1 (2)

v · b(x) = 0,

where (x, v) ∈ TD. Next, consider the following circle action on SD:

Φθ(x, v) = (x, exp
(
θb̂(x)

)
v), (3)

where b̂(x) is the 3× 3 antisymmetric matrix defined by b̂(x)w = b(x)×w, and exp denotes

the matrix exponential. Hence this circle action simply rotates all of the circles that comprise

SD by θ radians. Furthermore, the action is free. Therefore (SD,Φ) forms a principal circle

bundle.

To see that the sections of this circle bundle are equivalent to the perpendicular unit

vectors, we first show that the base space of the bundle can be identified with D. Define

the map π : SD → D by

π(x, v) = x. (4)

π is a surjective submersion and π−1(x) is equal to the circle in SD over x, which is an entire

orbit of the action Φ. It follows that SD/S1 = D with π serving as the bundle projection

map. Thus a global section of SD would consist of a smooth map of the form s : D → SD

with the property π(s(x)) = x, that is, s(x) must lie in the circle over x. Because all of

the points on the circle over x are by definition perpendicular to b(x) and of unit length,

s would be a global perpendicular unit vector. Conversely, any global perpendicular unit

vector would define such an s.

Now we move on to define a principal connection on SD. Because it will be necessary to

work with the space TSD ⊆ TTD, we make the following identification:

TTD = T (D × R3) = TD × TR3 = (D × R3)× (R3 × R3).

Accordingly, a typical element of the 12 dimensional space TTD will be denoted (x, u, v, a),

where (u, a) forms the tangent vector over the point (x, v) ∈ TD. Clearly, each element of

TSD can also be written in this way (of course u and a will be constrained in this case). It

will also be helpful to define a metric on TD. Recall that such a metric on TD defines an

7



inner product on each of the tangent spaces in TTD. The useful metric in this case assigns

an inner product to each (x, v) ∈ TD given by⟨
(x, u, v, a), (x, u′, v, a′)

⟩
= u · u′ + a · a′. (5)

Note the distinction between this inner product denoted by square brackets and the usual

dot product between vectors in R3. Finally, a principal connection A : TSD → R can be

defined by

A(x, u, v, a) =

⟨
(x, u, v, a), (x, 0, v, b(x)× v)

⟩
= a · b(x)× v. (6)

The two defining properties of a principal connection (appendix B) are straightforward to

check.

Next we derive an expression for the curvature form associated to A. Because a local

section sα : Uα ⊆ D → π−1(Uα) must be of the form

sα(x) = (x, e1(x)), (7)

where e1 is a locally defined perpendicular unit vector, the gauge fields must be of the form

Aα(x,w) = s∗αA(x,w) =

(
w · ∇e1(x)

)
· b(x)× e1(x) (8)

≡ w ·R(x).

As the notation suggests, R = (∇e1) · b × e1 = (∇e1) · e2 is the well-known quantity that

appears elsewhere in the guiding center formalism. Therefore, the curvature form F = dAα

is given by the equation

∗F = N · dx, (9)

where ∗ is the hodge star and N = ∇× R. By the transformation law for curvature forms

given in appendix B, N must be a globally defined quantity even when e1, and therefore R,

is not. In fact, there is an expression giving N in terms of b3,4:

N =
1

2
b

(
Tr(∇b · ∇b)− (∇ · b)2

)
(10)

+ (∇ · b)b · ∇b− b · ∇b · ∇b.

With (10) in hand, all of the tools required to determine the existence of global perpen-

dicular unit vectors have been assembled. To reiterate, to test for existence, the curvature
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form F should be integrated over a collection of cycles that generate D’s second homology

group H2(D,Z). Intuitively, this amounts to calculating the flux of N through a collection

of closed, bounded, boundary-less surfaces that encapsulate the “holes” in D. If all of these

integrals vanish, then there will be global perpendicular unit vectors. Otherwise, owing to

the ensuing non-trivial topology of SD, global perpendicular unit cannot be defined, even

in principle. Notice that this question of the existence of perpendicular unit vectors is quite

similar to the question of the existence of a globally defined vector potential outside of a

magnetic monopole. The topological properties of principal bundles play a fundamental role

in each case.

IV. SOME EXAMPLE ASSESSMENTS OF THE EXISTENCE OF

GLOBAL PERPENDICULAR UNIT VECTORS

Now we will apply the machinery developed in the previous section to assess the existence

of global perpendicular unit vectors for a few example choices of D and B. Because of their

relevance to magnetic confinement, we will first treat the broad class of examples where D

is an open solid torus and B is only constrained to be non-vanishing on D. We will show

that, in these examples, global perpendicular unit vectors can always be found. Then we

will consider a more exotic example where B is linear and vanishes at a single point and D

is taken to be the region surrounding the field null. In this case global perpendicular unit

vectors do not exist.

When D is an open solid torus, for instance the region contained within the vacuum

vessel of a tokamak device, then its second homology group H2(D,Z) vanishes. This is

because D is homotopic to the circle, the homology groups are homotopy invariants, and

the circle has a vanishing second homology group. Putting this fact intuitively, there are

no boundary-less 2-dimensional surfaces contained in D that enclose a hole. It follows then

that every boundary-less 2-dimensional surface contained in D arises as the boundary of

some 3-dimensional region. Stoke’s theorem then implies that, because ∇ ·N = 0, the flux

of N through any such surface must vanish. Therefore we arrive at the following conclusion:

when D is an open solid torus, global perpendicular unit vectors always exist.

It is worth mentioning that this conclusion holds even when there are chaotic magnetic

field lines. To see that this is reasonable, consider a typical tokamak field that has been
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subjected to a resonant magnetic perturbation. Often, for instance in Ref. 26, these per-

turbations are not large enough to completely kill the toroidal component of the magnetic

field at any point within the last closed flux surface (assume this region is D). However, it

is will known that they may nonetheless create regions of chaotic field lines. Therefore, in

spite of the presence of chaotic field lines, the vector

E1 = eR ×B = Bϕez −Bzeϕ, (11)

where eR, eϕ are the cylindrical radial and azimuthal unit vectors, vanishes nowhere in D

and so defines a global perpendicular unit vector e1 = E1/||E1||. Similarly “X-points” and

“O-points” lead to no obstruction to a global e1, e2.

Now consider the magnetic field given by

B(x, y, z) = yex + zey + xez. (12)

Let D = R3 \ {0}. Thus we only exclude from D the one point where B vanishes. Note that

there is nothing singular about B at 0 even though b is. Also note that the current density

∇× B is uniform. It is straightforward to compute the flux of N through a sphere of any

radius centered on the origin, which turns out to be −4π. This implies immediately that

there cannot exist global perpendicular unit vectors on D.

Interestingly, a corollary to this last result is that D cannot be foliated into toroidal

magnetic flux surfaces, else a global e1 could be defined as the surface normal to the flux

surfaces. In fact this will be true any time global perpendicular unit vectors fail to exist.

However, as the first example showed, the implication does not go the other way; the lack

of flux surfaces does not necessarily imply an obstruction to the existence of global e1, e2.

V. HOW THE GUIDING CENTER THEORY WORKS WITHOUT

GLOBAL PERPENDICULAR UNIT VECTORS

When a perpendicular unit vector cannot be defined globally, the usual notion of gy-

rophase looses its global meaning as well. So what happens to the guiding center pertur-

bation expansion? Because D can always be covered by (perhaps tiny) open regions Uα in

which local e1, e2 are defined, the perturbation procedure can certainly be carried out in

each of these patches. The result of each of these local calculations would then consist of
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formal phase space coordinate changes given as formal one-to-one maps ϕα : Uα ×R3 → R6

that lead to simpler equations of motion in the new coordinates. However, these coordinate

changes will not necessarily fit together to define a global coordinate change, i.e. an invert-

ible mapping of the entire phase space into itself. Therefore, when calculating the motion

of a particle as it moves from one Uα to the next, it becomes necessary to occasionally pass

the mechanical state from one ϕα to another in order to continue using the simplified equa-

tions of motion provided by the perturbation theory. While this can be done formally by

developing expressions for ϕα ◦ϕ−1
β , practically it would involve truncating asymptotic series

each time the particle crossed from one Uα to the next. This could lead to coherently accu-

mulating error in a simulation, and, in general, would destroy the Hamiltonian properties

of the simplified equations of motion.

A far better approach is to look for a global change of coordinates to accomplish the

perturbation theory from the outset. This way the mess associated with truncating the

expansions of the ϕα ◦ ϕ−1
β could be avoided altogether. We will show that such a global

coordinate change can be found for the guiding center problem owing to the fact that the

zero’th order symmetry is globally defined. We will do this by applying a version of Lie

perturbation theory to the guiding center problem that synthesizes Littlejohn’s Poincaré-

Cartan one-form approach developed in Ref. 27 (also see Ref. 28) with the group-theoretic

structure provided by a zero’th order symmetry. Littlejohn’s formalism provides a means

for performing the perturbation expansion in each of the regions of phase space where the

perpendicular unit vectors can be defined, while the globally defined symmetry serves as the

needle that sews these local calculations into a global result.

For simplicity we will only consider the time-independent case. To begin, the guiding

center phase space is P = D ×R3 ×R. The first factor corresponds to the physical domain

particles move through, the second is the velocity space, and the third is the time axis.

Denote a typical element of this phase space by (x, v, t) and a typical element of TP =

TD× TR3 × TR by (ux, av, ζt) or (x, u, v, a, t, ζ) so that the tangent bundle projection map

τP : TP → P is given by τP (ux, av, ζt) = (x, v, t). Also endow P with the metric that

appeared in the first part of this paper:⟨
(ux, av, ζt), (u

′
x, a

′
v, ζ

′
t)

⟩
= u · u′ + a · a′ + ζ · ζ ′. (13)

Let A denote the magnetic vector potential vector field and B = ∇×A denote the magnetic
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field. Then the Poincaré-Cartan one-form, ordered in one of the standard ways2, is given by

ϑϵ(x, v, t) = A(x) · dx+ ϵv · dx− ϵ2
1

2
v · vdt (14)

= ϑ0 + ϵϑ1 + ϵ2ϑ2.

One can consider all variables dimensionless or not. In the latter case,A should be considered

to be normalized by the charge-to-mass ratio of the particle in question so that ∇×A has

the units of frequency.

This one-form defines the dynamical vector field Xϵ(x, v, t) = (x, ẋ(x, v), v, v̇(x, v), t, 1)

through the formula

Xϵydϑϵ = 0. (15)

It is straightforward to verify that this implies

ẋ(x, v) = ϵv (16)

v̇(x, v) = v ×B(x). (17)

The zero’th order system, which according to the previous expression is the limit of

infinitely slow drift both along and across the field lines, admits the following S1-action

Φ0 : S1 × P → P as a symmetry:

Φ0
θ(x, v, t) = (x, exp

(
−θb̂(x)

)
v, t) (18)

Φ0∗
θ X0 = X0

Φ0∗
θ dϑ0 = dϑ0,

where b = B/||B||. We will refer to this circle action Φ0 as the gyrosymmetry. Note the

similarity with the action on SD considered in the first part of this paper. An important

difference is the “−” in the exponential, which was chosen so that this action rotates velocity

vectors in the same sense that the magnetic field rotates charged particles. It leaves dϑ0 =

∗B · dx invariant because B is parallel to the rotation vector, and it leaves X0 invariant

because it commutes with the flow of the zero’th order system.

The action is not free, however, because those velocity vectors parallel to the magnetic

field are fixed by the group action. In order to alleviate this issue, from here on we will

suppose that P has those points removed that correspond to velocity vectors purely parallel
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to B. With this in mind, (P,Φ0) forms a principal circle bundle. The base space P/S1 can

be identified with the space M ≡ D × R × R+ × R, where R+ = (0,∞), with the bundle

projection map π : P → M given by

π(x, v, t) = (x, b(x) · v, ||(1− b(x)b(x)) · v||, t). (19)

Thus, the first factor of M is the physical domain, the second is parallel velocity, the third

perpendicular velocity, and the fourth time. Accordingly, denote a typical element of M by

(x, v∥, v⊥, t). In addition, this bundle admits the principal connection A0 : TP → R given

by

A0(x, u, v, a, t, ζ) = (20)

− a · b(x)× v

||b(x)× v||2
+

v · b(x)
||b(x)× v||

(
u · ∇b · b(x)× v

||b(x)× v||

)
.

We call this the guiding center connection. Notice that on the subset of P defined by

v · b(x) = 0, ||v|| = 1, it agrees with the connection introduced earlier on SD. As before, it

is straightforward to check that this one-form satisfies the two properties in the definition

of a principal connection.

Now, following Ref. 27, we would like to find a sequence of globally defined near-identity

coordinate changes, F 1, F 2, ... : P → P , such that, in the new coordinates, the gyrosymmetry

persists. We would also like each of these near-identity coordinate changes F n to be equal

to the flow map of some vector field ϵnGn. Thus we require that dϑ̂ = ...F 3
∗F

2
∗F

1
∗ dϑϵ satisfy

the condition Φ0∗
θ dϑ̂ = dϑ̂. This implies the following well-known sequence of conditions on

the Gn:

Φ0∗
θ

(
ϑ0 + α0

)
= ϑ0 + α0 (21)

Φ0∗
θ

(
ϑ1 − LG1ϑ0 + α1

)
= ϑ1 − LG1ϑ0 + α1

...

where the αn comprise a sequence of undetermined closed (not necessarily exact) one-forms.

While we would like the F n, and therefore the Gn, to be globally defined, when deriving

expressions for the Gn it would be advantageous to work in the local bundle charts naturally

associated to the principal circle bundle (P,Φ0). This is because the bundle charts put the

direction of symmetry along one of the coordinate axes, thereby facilitating Fourier analysis,
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as well as finding the reduced phase space23. Fortunately, if the local expressions for Gn

can be constructed subject to the conditions in appendix B, any drawback associated with

doing local calculations can be avoided because these local expressions will then transform

as they must. So let’s examine the form of these bundle charts and the local expressions for

the Gn more carefully.

First we will determine the form of a local section sα : Uα → π−1(Uα), where Uα ⊆ M . By

the definition of a local section, π(sα(x, v∥, v⊥, t)) = (x, v∥, v⊥, t). We will use this constraint

to determine the general form of sα. Set sα(x, v∥, v⊥, t) = (X(x, v∥, v⊥, t), V (x, v∥, v⊥, t), T (x, v∥, v⊥, t)).

Note that sα must be of this form. However, there are constraints on the component func-

tions X,V, T . In particular, the following must be true:

X(x, v∥, v⊥, t) = x (22)

T (x, v∥, v⊥, t) = t

V (x, v∥, v⊥, t) · b(x) = v∥

||(1− b(x)b(x)) · V (x, v∥, v⊥, t)|| = v⊥.

To unravel these constraints, decompose V (x, v∥, v⊥, t) = V∥(x, v∥, v⊥, t)b(x)+V⊥(x, v∥, v⊥, t),

where V⊥(x, v∥, v⊥, t) = (1−b(x)b(x))·V (x, v∥, v⊥, t). Then define eα = V⊥/||V⊥||. Employing

these definitions, sα must have the form

sα(x, v∥, v⊥, t) = (x, v∥b(x) + v⊥eα(x, v∥, v⊥, t), t), (23)

where eα(x, v∥, v⊥, t) must be of unit length and perpendicular to b(x). See Fig. 3. We lose

nothing29 by making the replacement eα(x, v∥, v⊥, t) → eα(x).

Given such an sα, the corresponding bundle chart ϕα : π−1(Uα) → Uα × S1 can be

deduced (appendix A). All that must be done is find the shape of gα : π−1(Uα) → S1. If

p = (x, v, t) ∈ π−1(Uα), then by the defining relation p = Φ0
gα(p)

(sα(π(p))),

gα(x, v, t) = −Arctan

(
v · {b(x)× eα(π(x, v, t))}

v · eα(π(x, v, t))

)
. (24)

This expression for gα shows that the value of gα is none other than the gyrophase measured

with respect to eα in a left-handed sense with respect to b. So it is fair to write gα = θα,

with θ denoting gyrophase, and α indicating which convention, or gyrogauge is being used.

Therefore the bundle charts, ϕα(x, v, t) = (π(x, v, t), gα(x, v, t)) = (x, v∥, v⊥, t, θα), are none
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FIG. 3. A view of the v∥ = 0 plane of a typical velocity space TxD. The Kruskal Rings appear

as concentric circles from this perspective. Each ring is uniquely determined by its parameters

x, v∥, v⊥, t corresponding to which velocity space the ring lives in, its height along the b-axis, its

radius, and its position in time, respectively. The role of eα is depicted using dots; a reference point

is assigned to the Kruskal Ring with parameters x, v∥, v⊥, t equal to v∥b(x) + v⊥eα(x, v∥, v⊥, t).

other than the commonly used cylindrical parameterizations of velocity space alluded to in

the introduction!

Now consider the local expression for a globally defined vector field G : P → TP in

one of these bundle charts. In the language used in appendix B, we are considering here

Gα(u, θ) = (wα(u, θ), θ, ξα(u, θ)). Set

wα = Gα
M = Gα

x · ∂

∂x
+Gα

v∥

∂

∂v∥
+Gα

v⊥

∂

∂v⊥
+Gα

t

∂

∂t
(25)

ξα = Gα
θ . (26)

These component functions must transform as described in appendix B. Thus, Gα
x , G

α
v∥
, Gα

v⊥
, Gα

t

and ηα = Gα
θ +Aα ◦Gα

M must be local representatives of globally defined quantities. These

conditions are actually equivalent to those found in Ref. 30 for gyrogauge invariant Lie

generators. To show this, we compute the gauge fields associated with the connection form
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given earlier explicitly,

Aα(x, v∥, v⊥, t) = − [(∇eα(x)) · b(x)× eα(x)] · dx (27)

So the one-form Aα is made up of Littlejohn’s30 R:

Aα = −R · dx, (28)

which is exactly the gauge field that appeared while working with SD. Therefore, because

Gα
θ must be the sum of the local representative of a globally defined quantity and −Aα◦Gα

M ,

Gα
θ = ηα − Aα ◦Gα

M (29)

= ηα +R ·Gα
x ,

which is precisely the condition in Ref. 30. This proves that

gyrogauge invariant local Lie generators (30)

⇔

globally consistent local Lie generators.

It follows then that the existing expressions for gyrogauge invariant Lie generators, such as

those given in Ref. 31, are sufficient to produce a globally consistent guiding center theory

when the perpendicular unit vectors cannot be globally defined.

We need to stress here that we have not arrived at a new way to perform the guiding

center perturbation analysis. The above analysis instead demonstrates how the concept

of gyrogauge invariance appears as merely a special case of a more general mathematical

theory (the theory outlined in appendix B); when looking through the lens of the theory

of principal bundles, gyrogauge invariance appears naturally as a way making sure local

expressions consistently define a global quantity. We also hope that illustrating this point

has made it clear when the use of gyrogauge invariant generators is “mandatory”. When

a perpendicular unit vector can be globally defined, gyrogauge invariant Lie generators are

not required because expressions involving the perpendicular unit vectors become globally

defined. This is true in spite of the fact that using gyrogauge invariant Lie generators in these

cases leads to dynamical equations that are easier to interpret physically. However, when

global perpendicular unit vectors fail to exist, gyrogauge invariant Lie generators provide the
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only reasonable means for ensuring that the transformed equations of motion are globally

defined.

To drive all of this home, we will conclude this section by demonstrating that expressions

for the new Poincaré-Cartan one-form obtained using gyrogauge invariant generators can be

expressed in terms of physical quantities alone. The gyrogauge invariant expression in Ref.

30 for the local representative of the Poincaré-Cartan one-form is

ϑ̂α(x, v∥, v⊥, t) =

(
A(x) + v∥b(x)

)
· dx (31)

+
1

2

v2⊥
||B(x)||

(
dθ −R(x) · dx

)
−

(
1

2
v2∥ +

1

2
v2⊥

)
dt,

which involves the unphysical e1, e2 through R. However, the combination dθ − R · dx

is actually equal to the guiding center connection expressed in the bundle chart ϕα (see

appendix B). Therefore, upon changing back to the natural rectangular position and velocity

space representation of the phase space (i.e. applying ϕ∗
α to ϑ̂α), the Poincaré-Cartan form

becomes

ϑ̂(x, v, t) =

(
A(x) + v · b(x)b(x)

)
· dx (32)

+
1

2

(Π(x) · v)2

||B(x)||

[(
∇b · b(x)× vv · b(x)

||b(x)× v||2

)
· dx

−
(

b(x)× v

||b(x)× v||2

)
· dv

]
− 1

2
v · vdt,

where Π(x) = 1 − b(x)b(x) is the perpendicular projection tensor. This one-form satisfies

Φ0∗
θ ϑ̂ = ϑ̂ exactly for all θ ∈ S1 and clearly only involves physical quantities. It also has the

following geometrically appealing expression:

ϑ̂ = τ ∗DA+ ⟨ϑo⟩+ µA0 − 1

2
Idt, (33)

where, in left-to-right order, the symbols that appear are TD’s projection map, the mag-

netic vector potential one-form, the averaged canonical one-form on P , the momentum map

associated to the gyrosymmetry, the guiding center connection, and the first fundamental

form associated to the metric on D. We would also like to point out that this result can be

derived directly without ever resorting to the bundle charts32.
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VI. CONCLUSION AND DISCUSSION

At last we have shown how the guiding center theory works when perpendicular unit

vectors cannot be defined globally. Along the way, we identified the obstruction to the global

existence of these vectors in terms of integrals of the vectorN . Through examples, we showed

that this obstruction does not trivially vanish in all cases. However, we demonstrated that

when the physical domain particles move through is an open solid torus, it does vanish.

Throughout our discussion, principal circle bundles have played a central role. They at

once provided the framework for our identification of the obstruction to global perpendicular

unit vectors and the organizational tool that allowed us to determine how Lie perturbation

theory can be done in a global way via stitching together a number of local calculations.

While the mathematical theory of principal circle bundles may not be well known amongst

plasma physicists, we have shown that much of the existing guiding center theory, from

the time-honored cylindrical parameterization of the velocity space to the modern notion

of gyrogauge invariance, fits perfectly in this framework. But we have also seen that by

recognizing the presence of this structure in the guiding center problem, and working with it

directly, the guiding center Poincaré-Cartan one-form can be expressed in cartesian position

and velocity space in a way that is manifestly independent of the perpendicular unit vectors.

Looking at what we have done from a practical point of view, we have identified some

difficulties researchers will face when trying to simulate gyrophase-dependent dynamics33–35

in configurations where global perpendicular unit vectors cannot be defined. When dealing

with such deviant cases numerically, for instance in a particle-in-cell simulation, it will be

necessary to either define a number of gyrophase conventions that cover the phase space and

keep track of which of these “patches” particles live in, or resort to the global expression

for the Poincaré-Cartan one-form given at the end of the previous section. In the former

case, care must be taken to avoid spending too much time keeping track of a particle’s

“patch”, while in the latter case this could be avoided. However, the cost incurred by using

the global version of the one-form comes in the form of complicated equations of motion.

While simulations of the interior of tokamaks should be able to avoid multiple gyrophase

conventions by finding global perpendicular unit vectors (which must exist), this may not be

the case in configurations that involve field nulls in the region of interest. These field nulls

will in general put “holes” in the guiding center phase space that open up the possibility for
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a lack of global perpendicular unit vectors.
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Appendix A: Principal circle bundles

Here we define and discuss the notion of principal circle bundle. A more complete ex-

position can be found in Ref. 36. First some terminology. Let P be a manifold and

Φ : S1 × P → P a smooth map, where S1 = R mod 2π denotes the circle. If θ1, θ2 ∈ S1,

then we take the symbol θ1 + θ2 to mean addition modulo 2π. For a fixed θ ∈ S1 define

the map Φθ : P → P by the formula Φθ(p) = Φ(θ, p), where p is any point in P . Φ is said

to be a left circle action when Φθ1 ◦ Φθ2 = Φθ1+θ2 and Φ0 is the identity on P . Given a

point p ∈ P , the set Op = {p′ ∈ P |∃θ ∈ S1 s.t. Φθ(p) = p′} is called the orbit of Φ through

p. A left circle action is said to be free if Φθ(p) = p if and only if θ = 0. Intuitively, a

left circle action is free if when the second argument of Φ is held fixed at po, the resulting

map establishes a one-to-one correspondence between the orbit through po and the circle. A

principal circle bundle is a manifold P together with a free left circle action Φ : S1×P → P .

If there is a manifold B and a smooth map π : P → B such that π is surjective, its Jacobian

matrix has full rank at each point p ∈ P , and π−1(b) is an entire orbit for each b ∈ B, then

P/S1 ≡ B is referred to as the base of the principal circle bundle P and π is referred to

as the bundle projection map. Because it can be shown23 such a B and π can always be

found for a principal circle bundle, the following intuitive picture of such bundles emerges.

A principal circle bundle is nothing more than a collection of circles (the orbits) smoothly

parameterized by the base P/S1.

There is a subtle aspect of this picture however. Notice that while it is possible to fix

a point po ∈ P as the second argument in Φ and establish a correspondence between the

orbit through po and S1, if Φθ(po) were used in place of po, the result would be a different

correspondence between the same two objects Opo and S1. This is because Opo = OΦθ(po).

Therefore, while the orbits Op “look” like distorted copies of the circle, they lack a natural
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choice for the 0, or reference angle.

On the other hand, it is often convenient take a bunch of nearby orbits and smoothly

assign to each of them a reference point so that each point on this bunch of orbits can be

assigned an angle in an unambiguous way. Such an assignment of reference points is called

a local section. Formally, given an open subset Uα ⊂ P/S1 of the base, a local section

sα : Uα → π−1(Uα) is a mapping from Uα into the collection of orbits that project onto Uα

that satisfies the equation π ◦ sα = idUα , which simply says that sα assigns a single point to

each of the orbits “attached” to Uα. Local sections can always be found. However, a global

section s : P/S1 → P , which would smoothly assign a reference point to all of the orbits

that make up P , may not exist. If a global section does exist, then the principal bundle is

referred to as being trivial.

In the presence of a local section, the process of assigning an angle to each point in the

bunch of orbits attached to Uα can be formalized as a special coordinate system on π−1(Uα)

known as a bundle chart. If p ∈ π−1(Uα), then, because the action is free, there is a unique

gα(p) ∈ S1 such that p = Φgα(p)sα(π(p)). This defines the functions gα : π−1(Uα) → S1. The

bundle charts ϕα : π−1(Uα) → Uα × S1 are then given by the formula ϕα(p) = (π(p), gα(p)).

By this definition, when looking at a principal circle bundle locally in a bundle chart, it

looks like a bunch of bike tires hanging on a multi-dimensional horizontal rod. The orbits

are the tires while the base is the rod. It is also useful to think of the bundle charts as

“symmetry-aligned” coordinate systems, where the symmetry is defined by Φ.

Appendix B: Principal connections

This appendix gives the definition of a principal connection and briefly explores some

of the basic properties of these objects relevant to this article. A much more thorough

discussion can be found in Ref. 37.

Given a principal circle bundle (P,Φ) and a real number ξ, the infinitesimal generator ξP

associated to ξ is the vector field on P given by ξP (p) =
d
dθ

∣∣
θ=0

Φξθ(p). So ξP points in the

direction of the symmetry associated with Φ. A principal connection, or connection form on
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P is a one-form, A, with the following two properties:

1) ∀ξ ∈ R, A(ξP ) = ξ

2) ∀θ ∈ S1, Φ∗
θA = A.

Connection forms have a useful local structure when viewed in the bundle charts defined

in the previous section. Let sα : Uα → π−1(Uα) be a local section and ϕα its associated

bundle chart. Define the gauge field Aα : T (P/S1) → R and the Maurer-Cartan one-form

θL : TS1 → R by

Aα = s∗αA (B1)

θL(θ, ξ) = ξ, (B2)

where we have made the identification TS1 = S1 × R. Note that θL is nothing more than

the coordinate differential on S1. It is not difficult to show that on π−1(Uα) A is made up

of these two quantities according to

A = π∗Aα + g∗αθL. (B3)

This formula has two important consequences. First of all, if Aβ is another gauge field

defined on an overlapping patch of P/S1, Uα ∩Uβ ̸= ∅, then it must be related to Aα on the

overlap:

Aα = Aβ + g∗αβθL, (B4)

where gαβ : Uα ∩ Uβ → S1 is the circle-valued function defined by the relation gαβ(π(p)) =

gβ(p) − gα(p). Second, it implies that the gauge field strengths Fα = dAα, apparently only

locally defined quantities, actually define a global two-form, the curvature form F , over

the entire base P/S1. This result follows from applying the exterior derivative to (B4) and

recalling that dθL = 0. On any of the Uα, F = Fα. As discussed in Ref. 24, the curvature

two-form encodes the basic topological properties of the principal circle bundle it comes

from.

Connection forms also provide a convenient structure for expressing the transformation

law for the bundle chart representatives of globally defined vector fields on P . If X :

P → TP is a smooth vector field on P , then given a bundle chart ϕα, its bundle chart

representative is Xα ≡ ϕα∗X : Uα × S1 → TUα × S1 × R; the bundle chart representatives
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are just the vector field expressed in the coordinates provided by the bundle charts. Set

Xα(u, θ) = (wα(u, θ), θ, ξα(u, θ)), where wα(u, θ) ∈ Tu(P/S
1) and ξα(u, θ) ∈ R. Using the

fact that ϕ∗
αXα = ϕ∗

βXβ on π−1(Uα∩Uβ), it is straightforward to show that the bundle chart

representatives are related by

wα(u, θ) = wβ(u, θ
′) (B5)

ξα(u, θ) = ξβ(u, θ
′) + g∗βαθL(wβ(u, θ

′)), (B6)

where θ′ = θ + gαβ(u). Using the transformation law for the gauge fields, this can be recast

as

ηα(u, θ) ≡ ξα(u, θ) + Aα(wα(u, θ)) (B7)

wα(u, θ) = wβ(u, θ
′) (B8)

ηα(u, θ) = ηβ(u, θ
′). (B9)

So we see that the wα and ηα are local representatives of globally defined maps. To be

precise, wα = w ◦ ϕ−1
α and ηα = η ◦ ϕ−1

α , where w : P → T (P/S1) and η : P → R are

globally defined maps only constrained to satisfy τP/S1 ◦w = π (τP/S1 is the tangent bundle

projection map associated to T (P/S1)).

Conversely, if there is an assignment of a local vector field Xα to each of the bundle charts

ϕα whose components satisfy (B8) and (B9), then this collection of locally defined vector

fields will define a global vector field X : P → TP that agrees with each of the Xα in the

bundle charts.

Why is expressing the vector transformation law in terms of the gauge fields useful?

Because of the organization it brings to the process of stitching together local vector fields

into a global one. The vector transformation law for passing from one arbitrary (non-bundle)

coordinate chart to another would be quite messy to work with for this purpose. By working

with the bundle charts and finding expressions for the gauge fields, the process is streamlined

to finding the two functions w and η.
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