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Excitation of Alfvén Modes by Energetic
Particles in Magnetic Fusion

N.N. Gorelenkov

PPPL, Princeton University

Abstract. Ions with energies above the plasma ion temperature (also called super ther-

mal, hot or energetic particles - EP) are utilized in laboratory experiments as a plasma

heat source to compensate for energy loss. Sources for super thermal ions are direct injec-

tion via neutral beams, RF heating and fusion reactions. Being super thermal, ions have

the potential to induce instabilities of a certain class of magnetohydrodynamics (MHD)

cavity modes, in particular, various Alfvén and Alfvén-acoustic Eigenmodes. It is an area

where ideal MHD and kinetic theories can be tested with great accuracy. This paper

touches upon key motivations to study the energetic ion interactions with MHD modes.

One is the possibility of controlling the heating channel of present and future tokamak

reactors via EP transport. In some extreme circumstances, uncontrolled instabilities led

to vessel wall damages. This paper reviews some experimental and theoretical advances

and the developments of the predictive tools in the area of EP wave interactions. Some

recent important results and challenges are discussed. Many predicted instabilities pose a

challenge for ITER, where the alpha-particle population is likely to excite various modes.

Keywords: Alfvén waves, energetic particles, magnetic fusion.

I. INTRODUCTION

This lecture paper is based on the material presented in the course of a student lecture
given at the International ITER Summer School (IISS 2011) held in Cadarache, France. It is
written to summarize in the introductory form some key achievements obtained in the area
of EP (Energetic Particle) related physics. This paper is far from an overview, but gives
an idea on the achieved progress. The key topics covered are single particle confinement,
classical distribution function, instabilities due to EPs, EP modeling using methods ranging
from the initial value codes to more sophisticated numerical codes, applications of such
codes to EP instabilities in present-day tokamaks and finally applications to ITER plasma
expected to be near burning conditions. Other effects due to EPs are important and are
covered in other publications of these proceedings.

EPs play an important role in present-day experiments. They are key to the main control-
lable mechanisms of plasma heating of thermonuclear plasma. As such three main sources
of EPs are known and widely used. They are neutral beam injection (NBI), ion cyclotron
resonant heating (ICRH) particles, and energetic fusion products (α’s, protons, T and so
on).

Because of their importance to near-burning plasma conditions, EPs attracted the at-
tention of plasma scientists since the field was established. Initially EPs were argued to
excite the so-called “thermonuclear” instabilities with the following publication among the
first (and seminal) on this subject [1]. As the field grew many papers and some reviews
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were published. Some are listed in this paper, which should be helpful for the introductory
purpose [2–6]. Recently many people further acknowledged the progress in the EP physics
and some other reviews appeared [7–9].

The purpose of this paper is to highlight some aspects that are poorely covered by the
published reviews, but seem to be important for the EP field. In particular, this lecture
highlights the topics interesting for the young reseacher working as a numerical simulator.

II. SINGLE PARTICLES CONFINEMENT AND THEIR DISTRIBUTION FUNC-
TION

The single particle confinement of EPs is similar to any other particle motion and is
covered well by the drift theories [2]. The EP peculiarities may come from the practical
energies used in fusion experiments worldwide, which are by default (for the purpose of
plasma heating) much higher than the thermal ion temperature,

Eh ≫ Ti,e. (1)

Because of this it can be shown that the EPs are affected primarily by the collisional drag
from thermal electrons with relatively moderate pitch angle scattering on thermal ions. As a
result, the EP distribution function (DF) is formed slowing down from the injection energy
(for NBI ions, or birth energy for fusion products) down to the characteristic thermal energy,
which is close to the plasma temperature. If the plasma temperature is low the pitch angle
scattering can be neglected and particle pitch angle remains almost constant so that

λ =
µB0

Eh
= const. (2)

As the EP drifts, its motion is characterized by the conservation of its canonical integral,
which is the toroidal moment and is given by the drift theory:

Pϕ =
ωcψ

B2π
− vϕR. (3)

In this limit we find that the DF is a function of constants of motion (COM), which are the
aforementioned variables plus the particle velocity, v:

fh = fh (v, Pϕ, λ, t) =
Sα

(

ψ̄, t
)

τsv
2
0H (v − v0)

4π (v3 + v3
∗)

, (4)

where Sα is the source of EPs or fusion alphas, and H (x) is a Heaviside step-function, = 0
at x < 0, = 1 at x > 0. Here we introduced a time averaged magnetic flux over the particle
orbit, which is by itself a function of COM. We note that the DF in the form of Eq.(4)
is a very good approximation as the particle source is evaluated at ψ̄. More sophisticated
distribution is a solution found by solving the drift kinetic equation (see for example Ref.[10])

∂fh

∂t
−

1

τsev2

∂

∂v

(

v3 + v3

∗

)

fh +
fh

τloss
− Sα = 0, (5)

where we added the loss term in a general form characterized by the loss time, τloss.
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Figure 1: Measured (points) and modeled (lines) α-particle distribution function in TFTR beam

blip experiments. Shown are the distribution functions measured in two different similar TFTR

discharges. The measurements are compared with the simulations taken at the consequent times.

EP DF with the effect of particle losses follows directly from the last equation:

f =
CnbH

v3 + v3
∗

(

v3 + v3
∗

v3
b0 + v3

∗

)τse/3τloss

,

which then transformed into a steady state function if the loss time goes to infinity, i.e.
f ∼ 1/ (v3 + v3

∗) if τloss → ∞.
It turned out that the formation of the distribution function, such as in Eq.(4), was

checked experimentally in TFTR DT (deuterium-tritium) experiments. In those experiments
a special diagnostic, Pellet Charge eXchange (PCX) [11], was installed, which allowed instant
single pitch angle measurements of the velocity spectrum of fusion alphas in different radial
locations. The PCX diagnostic was a powerful tool and presented a lot of valuable data
during the series of DT and DD experiments on TFTR as well as on JET.

In one particular series of TFTR experiments [10] PCX measured fusion α-particle dis-
tribution function locally at different times after the injection. The results are illustrated
in Fig. 1, where the measured points are compared with the expectations followed from the
numerical simulations using the FPPT (Fokker-Planck post TRANSP processor) code.

III. ALFVÉNIC MODES IN FUSION RESEARCH

Alfvén oscillations are natural and arguably one of the most fundamental types for the
fusion plasma close to burning conditions. They are capable of resonant interactions with
EPs. The reason for this is remarkable and has to do with the characteristic energetic
particle velocities, which, as can be shown, are well above the plasma ion thermal speed.
At the same time the Alfvén speed must be high enough to ensure relatively low plasma
pressure, i.e.,

βi =
8πniTi

B2
=
v2

i

v2
A

≃ 0.1 ∼ O (ǫ) ≪ 1, (6)

where vA is the local Alfvén velocity. The latter is required from the macroscopic stability
point of view. It turns out that both the Alfvén speed and EP velocity must be above the
thermal one, which often requires their proximity and implies a possibility of a resonance.
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This was realized first theoretically and later was confirmed experimentally. As men-
tioned, the beginning of the research on fast ions can be arguably traced back to such
papers as Refs.[1, 12], where the authors focused on the superalfvenic nature of the ener-
getic particle component in a future fusion tokamak reactor. Studied instabilities due to
EPs were called thermonuclear. The researchers did not pursue those lines of arguments in
subsequent research for different reasons. One of them was that there were no cavity modes
known to the theory, which could be responsible for releasing energy associated with the
fast ions. Instead they looked at the local instabilities.

Only after the new discoveries, which showed theoretically that the Alfvénic cavity modes
exist could the scientists seriously consider the new family of eigenmodes. This new family
has to do with the way the poloidal harmonics of the Alfvén waves couple together in order
to form the coherent radially trapped structures. The modes associated with such coupled
harmonics were called toroidicity-induced Alfvén eigenmodes (TAE).

A. Alfvén continuum concept is a key for addressing eigenmode problems

The concept of the Alfvén continuum (AC) (see for example [13, 14]) is instrumental in
addressing the eigenmode problem. It is a concept used widely in plasma theory in order
to identify the region of the plasma where the ideal MHD equations have a singularity
or, in other words, where the local shear Alfvén wave exists given the peculiarities of the
geometrical bounds of a wavevector. In a simple case of a homogeneous plasma such a local
solution can be schematically written as

ω = ωA = k‖vA, (7)

where k‖ is the parallel component of the wavevector of a propagating wave. If the plasma
carries the current and is essentially nonuniform, ωA (r) provides the continuum functional
dependence. In realistic plasma geometry of a tokamak any oscillation can be expanded in
terms of the poloidal harmonics

ξ =
∑

m

ξme
−iωt+ikmx = e−iωt−inϕ

∑

m

ξme
imθ, (8)

where we introduced m and n the poloidal and toroidal mode numbers. For such a form
of the perturbations one can obtain the parallel wavevector component expression as k‖ ≃
(m− nq) /qR with q (r) ≃ rBϕ/RBθ.

It is instructive to show AC in a given geometry and the possibility to use its conceptual
properties, which are being routinely exploited in the analysis of problems aimed at studies
of the Alfvén eigenmodes. In addition to the Alfvén continuum people often use the acoustic
(or sonic) continuum (which is another fundamental MHD oscillation) and in the following
illustration we consider both.

If one considers the plasma in a cylinder and makes use of the representation, Eq.(8),
the simplified picture emerges with the uncoupled set of continuum dependencies, which
are shown in Fig. 2a. Both Alfvénic and acoustic continua are shown (here we follow
the arguments given in Ref.[15]). Each point on each curve in this figure corresponds to
the singular behavior of a corresponding harmonic. Note that we show schematically both
continua typical for a laboratory plasma case when the acoustic (subscript s for sonic)
velocity, v2

s = v2
Aγβpl/2, is much smaller than the Alfvénic one, where βpl ≪ 1 and γ is the

specific heat ratio.
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Figure 2: Schematic of the low-frequency Alfvénic and acoustic continua in a cylinder (a) and in a

torus (b).

A more rigorous theory can be developed within the ideal MHD formulation where both
continua are coupled [14, 16]. The system can be derived, which combines two equations

ω2ρ
|∇ψ|2

B2
ξs + (B · ∇)

|∇ψ|2

B2
(B · ∇) ξs +γpks∇ · ~ξ = 0,

(

γp

B2
+ 1

)

∇ · ~ξ +
γp

ω2ρ
(B · ∇)

B · ∇

B2
∇ · ~ξ +ksξs = 0, (9)

where ψ is the poloidal magnetic flux, ρ is the plasma density, ξs ≡ ~ξ · [B×∇ψ] / |∇ψ|2, ~ξ is
the plasma displacement, ks ≡ 2k · [B ×∇ψ] /B2 and k and B are vectors of the magnetic
curvature and field. Alfvén-acoustic wave coupling, which may lead to the formation of the
continuum and the global modes in toroidal geometry, follows from the tokamak ordering
limit. We then find that the expression for the geodesic curvature is ks = 2ε sin θ/q, where
ε = r/R ≪ 1 and we neglect corrections of order O (ε2) and higher. This is justified for
the low mode frequency, such that Ω2 = O (1), where we defined Ω2 ≡ (ωR0/vA)2 /δ and
δ ≡ γβ/2 = O (ε2). Thus, keeping only leading order terms one can reduce the system of
equations Eq.(9) to

Ω2y + δ−1∂2

‖y +2 sin θ z = 0, (10)

Ω2z + ∂2

‖z +2Ω2 sin θ y = 0, (11)

where y ≡ ξsε/q, z ≡ ∇ · ~ξ, ∂‖ ≡ R0d/dl and l is the distance along the field line. For
sufficiently small values of ε and β, numerical solutions of Eqs.(9,11) are found to be almost
identical to accurate numerical solutions of NOVA code [14], which also solves Eqs.(9).

One can see that two equations, Eqs.(9,11), are coupled due to the finite compressibility
of the toroidal plasma. The coupling of acoustic or Alfvénic branches with the dominant
poloidal mode number m is via the m ± 1 sideband harmonics of the other branch. The
result of such coupling is shown as Alfvén-acoustic continuum in Fig. 2b. It is seen from
this figure that the continuum curves break and the continuum gaps emerge. The presence
of such gaps is remarkable. In fact, they open up a possibility for global weakly damped
contained eigenmodes to exist without the interaction with the continuum.

It was also found that the Alfvén-acoustic solutions are difficult to treat analytically
because the small parameters are not readily found [17]. In those cases one has to rely on
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numerical solutions, such as to consider the coupling of higher order poloidal harmonics,
m ± 2 and so on. In realistic plasmas the shift to the mode frequency can be on the order
of local plasma β, which can be a fraction of unity.

In this paper we present the key points with the Alfvénic waves without detailing the
physics of its coupling to the acoustic branch[18].

B. Alfvénic gap modes and numerical solutions

The Alfvénic continuum, if existing in the region of low shear (constant q profile) and flat
density profile, is consistent with the regions of the global solutions. Because the rigorous
formulation is beyond the scope of this paper we show some of the results and derivations
only schematically. With this goal in mind we write the Alfvén equation for a single poloidal
harmonic in a cylinder

1

r2

∂

∂r
r3R2

0

[

k2

‖m −
ω2

v2
A

]

∂

∂r

φ (r, t)

r
−
m2

r2
R2

0

[

k2

‖m −
ω2

v2
A

]

φ (r, t) = 0. (12)

The analysis of this equation shows that near the continuum its solution has a logariphmic
singularity in radius at a point which is give by the Alfvén frequency, Eq.(7). The radial
dependence of ωA (r) for example leads to the existence condition of the GAEs (global Alfvén
eigenmodes) when ωA (r) has a local extremum point. It was shown that its local minimum
corresponds to the so-called Global Alfvén Eigenmodes (or GAE) [19, 20].

In the case where the local continuum produces gaps a new type of global solution emerges
known as toroidicity-induced Alfvén eigenmodes (TAEs) [14, 16]. These modes are weakly
damped and are considered one of the most probable candidate driven by the fusion alphas
in a DT reactor such as ITER [21, 22].

Important properties of TAEs can be used to determine their frequency. These modes

are located at the intersection of m and m + 1 poloidal harmonics, so that
∣

∣

∣k‖m
∣

∣

∣ =
∣

∣

∣k‖m+1

∣

∣

∣

and thus

qTAE =
m− 1/2

n
. (13)

For the TAE frequency we have then

ωTAE =
vAf

2qTAER
, (14)

where function f = 1 + O (ε, s) is the refinement correction due to finite toroidicity and
magnetic shear [23]. One can see from the last equation that if we know the mode frequency
we can deduce the information about the safety factor at the TAE location, which is one
element of the so-called MHD spectroscopy [24]. Also an excitation of GAEs can have similar
information about the local q value and can be exploited.

The following figure shows an example of the AC plotted for the ITER normal shear dis-
charge simulated by the transport analyzing code TRANSP [25]. We indicate the location of
three big gaps: BAE (beta-induced Eigenmode), TAE and EAE (ellipticity-induced Eigen-
mode) gaps. In ITER the continuum gap envelope radial dependence follows approximately
the Alfvén frequency as the TAE gap shown in the figure. In the particular example shown
the Alfvén frequency dependence is approximately q−1 (r) because the density profile (and
thus the Alfvén velocity) is almost constant.
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Figure 3: Ideal MHD continuum for ITER normal shear H-mode plasma run #20000T02 TRANSP

run and the most unstable core localized TAE poloidal harmonic radial structure for this case with

NBI aiming 10cm below the magnetic axis. The radial extent of this mode is shown in the left figure

as a dashed line corresponding to the normalized TAE eigenfrequency. (The figure is reproduced

from Ref.[26]).

Eigenmode structures of the aforementioned modes, TAEs, were found numerically for
the ITER normal shear plasma. The eigenmodes were computed with the help of the ideal
MHD NOVA code [14]. The code solves general geometry ideal MHD equations, similar to
Eq.(12), but written for the set of poloidal harmonics and thus coupled together in a system.
The solution found for the considered case, Fig.(3,b) is clearly showing the “classic” TAE
couplet, which is characterized by two dominant poloidal harmonics. The radial width of
such core-localized TAEs is narrow and determined by radial dependence of the q-profile
[27], which is relatively flat near the axis.

C. Experimental validation of linear TAE theory

We realized that the energetic particle driven modes in the linear regimes are due to a
higher order MHD effects, which need to be kept, in theory, in order to develop a framework
to find these eigenmodes. This is arguably the most powerful tool to verify the whole MHD
model. As we discussed above, such a higher order correction to the “homogeneous” approx-
imations as geometry (toroidicity, cross-section non-circularity, etc.), plasma pressure (via
coupling to the acoustic branches), FLR kinetic effects and others are therefore small, but
can be rigorously tested. Perhaps the most compelling case for such tests corresponds to the
excitation of *AEs (we use a generalized abbreviation for a variety of Alfvénic eigenmodes).
One example of such a case corresponds to plasma with NBI driven modes in DIIID.

In DIIID a recent experimental campaign was directed at fast ion studies [28]. One key
element of the studies was the use of a special diagnostic, FIDA, (fast ion Dα) spectroscopy
for fast ion relaxation measurements and the electron-cyclotron-emission (ECE) diagnostic
for *AE measurements. Among many reported results the authors focused on linear physics
[29], which resulted in strong validation not only of the ideal MHD code NOVA but of
the whole MHD theory. Together with Mirnov magnetic probes, ECE was used to identify
and document several *AE modes. In addition, for each mode with the measured toroidal
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(a)

(b)

Figure 4: DIIID results on *AE excitation by beam ions in a reversed shear plasma. Figure (a)

represents the ECE signal radiometer spectrum. Figure (b) shows AC profiles with the solid lines

corresponding to RSAE and TAE frequencies and their radial extend.

mode number a numerical analysis provided the radial structure of the perturbed plasma
displacement, which was in turn compared with the ECE signal.

The following figures show the results of such a comparison, which we show following
publication [29]. First we show the internal signal coming from the ECE radiometer power
spectra on Fig. 4a. It represents the TAE and RSAE modes, which were identified with
the help of the NOVA code and additional diagnostics data. Fig. 4b shows the AC for this
case with two mode frequencies indicated as horizontal lines, which are radially extended
according to the mode structure.

Perhaps the most impressive data comes from the ECE radial structure of these modes
and how it compares with the computed ones. Figure 5 shows the comparison for two modes,
n = 2 RSAE and n = 3 TAE. The radial plasma displacement dependence with all the phase
inversions can easily be seen to agree with the MHD theory. Given finite accuracy of the
ECE data and other used modeling tools the agreement seems to be very impressive and
important for the MHD theory in general.

One of the key and surprising conclusions of the DIIID campaign was that they did show
that RSAE modes are the ones that contribute most to the EP transport. The surprise
comes from a fact that the RSAEs are relatively localized modes and typically characterized
by only one dominant poloidal harmonic [30]. Possibly this is due to the presence of low
magnetic shear, whereas the TAEs are global and exist in a region of relatively strong shear.
In the next section we address the transport issues on EPs due to the presence of *AEs.

D. EP linear drive of *AEs

Alfvénic modes can be excited and studied in several ways. One is “natural” excitation
due to the presence of superalfvénic EPs, which can be in resonance with a certain mode,
such as TAE, EAE or other. Another is the external excitation of a mode via the external
antennae. Typically the antennae excitation of *AEs is used to study their damping[31]. To
utilize the antennae excitation further it was suggested that we control EP behavior in the
phase space [32] for subsequent ash removal of the fusion products (cooled alpha particles)
from a fusion plasma. One of the dependencies that mechanism relies on is the relation
between the energy and the canonical momentum change during the low frequency activity,
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Figure 5: Comparison of DIIID TAE and RSAE radial structures results as measured by ECE

diagnostics with predictions by the NOVA code.

which includes TAEs. It is known from a wave particle theory that it can be expressed as

∆Pϕ

n
=

∆Eh

ω
. (15)

It follows from this expression that the low-frequency oscillations have rather low energy
change whereas the high-frequency ones lead primarily to the particle energy variation. The
same relation is important in the formulation of the growth rate expression.

We will write the growth rate expression of TAEs due to resonances with EPs driven
by their gradient. For that we will be following the heuristic rules. First the growth rate
should be proportional to the EP beta, βh. Moreover, the drive is coming mostly from the
beta gradient, and should be proportional to n∂ ln βEP/∂ ln r, where we included Eq.(15).
Because only resonant particles can effectively interact with a certain mode, the following
resonant factor accounts for this

´

dv3

v3

h

δ (ω − ωh). This is done by choosing only certain

group of particles from the whole velocity space. Here, for the sake of simplicity, we present
the particle characteristic wave-phase frequency as ωh, which can be approximated as k‖v‖
in the simple case of the narrow eigenmode.

Combining together all these factors we can find that the drive should be proportional to

γh

ω
≃ βh

n∂ ln βh

∂ ln r

ˆ

dv3

Cv3
h

δ
(

ω − k‖v‖
)

, (16)

where in addition we introduced a normalization/correction constant C.
In the last expression we presented the so-called universal, gradient drive. We left velocity

and anisotropy contributions out of the consideration [3], which are important especially in
the interpretation of the experimental data [5]. A more complete expression for the growth
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Figure 6: Experimental evidence for the predictions of the most unstable mode number scaling TAEs

from DIIID/NSTX similarity experiments [34].

rate does include those effects, which we present in the following form without the derivation
(see for example [33])

γh

ω
= βh

ˆ

dv3

Cv3
h

δ
(

ω − k‖v‖
)

[

−ω +
m

ωch

∂ ln βh

∂ ln r

]

f (vres)
1

∆h/∆m + 1
. (17)

One important addition to the growth rate expression here accounts for the finite width
of the EP drift orbits. It does not change the growth rate expression if the mode number is
small, i.e. ∆m = r2/msR ≫ ∆h = qρh, where ρh is the Larmor radius of EP, and eliminates
the growth rate mode number n−dependence at ∆m ∼ ∆h, i.e., when this expression reaches
maximum value. We would like to note that ∆h/∆m dependence of the growth rate is
practically important for a fusion reactor design as it plays a stabilizing role reducing and
limiting γh/ω dangerous growth. Such a limitation is being speculated to benefit burning
plasmas [21].

It seems fairly important to show the observed proofs of the last point following from the
similarity experiments on DIIID and NSTX. In those experiments the plasmas were set up in
a similar way but with different major radii. Fig. 6(a) represents these results, which include
a variety of experiments with NBI, ICRH, fusion alphas on DIIID, as well as with beam ions
on NSTX. Because the toroidal number of the most unstable mode satisfies the condition
∆h/∆m = 1 one can find that it requires n ≃ r/ρhq

2 [33]. Expected versus observed mode
numbers are shown as points on that figure. The main effect in those experiments was due
to the difference in DIIID and NSTX q factor.

Theory predicts this dependence by analyzing the orbit width effect on the TAE drive
using several methods. In one work the authors made use of the high-n ballooning formalism,
which resulted in the growth rate plato at kθρh ≃ 1. This resulting dependence is reproduced
in Fig. 6(b).

The same theory serves as a baseline for predictive simulations of TAE stability performed
for ITER plasma. As expected, these results shift the range of unstable mode numbers to
relatively high values of n = 5 − 15. We would like to show the example of the TAE range
frequency modes growth rates as a function of n (see figure 3). In the shown results we have
chosen a case with the most unstable modes characterized by highest growth rates.

Later an international group of EP physics experts attempted to compare the computer
codes computations and found an excellent agreement in the mode structure of TAEs and
in the computed radiative and continuum damping rates among them [35].

10



IV. NONLINEAR RELAXATION OF FAST ION PROFILES

We considered a relatively simple way of treating the confined EPs in a plasma close to
burning conditions, which is aimed at treating the fast ion profiles beyond the linear physics.
For that we rely on the arguably the one of the most successful and verified part of the EP
physics, which is the linear physics of *AE instabilities.

First, here is an outline the quasilinear theoretical model [36]. Several elements of linear
theory are of use. One is that the mode damping due to the background components is
relatively constant. It is assumed to be fixed in the model described hereafter. The second
assumption is that the instability is characterized by many modes, sometimes called a “sea”
of modes. This is required by the quasilinear theory for the diffusion process to be applicable
on a global scale of the plasma cross-section. We also assume that EPs are moving quickly
within the unstable domain, which is the flattening region of EP density near the resonance.
This way we can ignore any dynamics of the EP-plasma system due to the nonlinear physics.

Qualitatively, the formulation of the redistribution of EPs can be described in the follow-
ing way. We balance the linear drive with the background damping locally at each radial
point. The first one, drive, is assumed to be proportional to the gradient of fast ion pressure,
γL ∝ ∂βh/∂r. Subsequently, the mode should grow at a rate γ = γL + γdamp where γdamp

is the background plasma damping. The fast ions are redistributed and their growth rate
contribution diminishes until it becomes comparable to the damping rate at which stage
the marginal stability is achieved. As a result of such a balance the critical EP pressure
gradient emerges and the value of the damping gives the expression for the “critical” pressure
gradient. It can be mixed over the velocity space between the resonant and non-resonant
particles and integrated in radius to find the relaxed EP pressure profile.

The phase space diffusion near each resonance can be due to either particle-wave phase
mixing or to multiple mode resonance overlapping. It is reasonable to expect one of those
mechanisms present in the system given the assumption of high numbers of unstable modes.

We also should note that applying the growth rate expression we find the critical pressure
gradient including the resonant particles in an analytic form. Thus, having in mind that
the radial pressure dependence is being modified and the fact that the velocity distribution
is being only partially accounted for, this model is called the 1.5D quasilinear relaxation
model.

We should say that the nonlinear saturation dynamics may be important, especially for
the details of the EP profile relaxation, such as its temporal evolution. However, for a reactor
it seems sufficient to propose a model which captures basic linear physics to establish the
EP profile evolution [37]. With that purpose in mind the experimental validation of the
proposed model was performed and is being prepared for publication [ibid].

A. 1.5D quasilinear model formulation

The 1.5D quasilinear fast ion profile relaxation model develops a certain methodology
to assess the instability case to determine whether or not there is likely to be a substantial
loss of energetic particles due to diffusion from the fields generated by the TAE modes. In
the rest of this section we follow this methodology and the model description as given in
Ref.[36].

The local critical alpha particle pressure gradient within this theory can be estimated
from the balance between the drive and the dissipative mechanisms, which were ion Landau
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damping, γiL, and trapped electron collisions, γecoll [38]. Indeed, it was shown that these two
damping mechanisms are dominant for the expected radial location of the medium mode
number, unstable TAEs at r/a ≥ 0.5. Equating driving and damping terms reads,

∂βhcr

∂r
= −

γdamp

γ′h
, (18)

where γh′ = γh/ (∂βh/∂r). The right side of this equation is independent on βh and depends
on the background plasma parameters. In our 1.5D model we consider a one dimensional
quasi-linear equation where the spatially local diffusion coefficient, D(r), grows at a rate
proportional to γh + γiL + γecoll.

The diffusion coefficient growth when the instabilities set up relaxes the critical EP pres-
sure gradient and may increase the size of the surrounding stable region. The net result
is the relaxation of the distribution function to a marginally stable one over a region that
is larger than the original instability region. Consequently, this model makes a prediction
for the amount of redistribution and transport of the alpha particles, without performing
the complicated calculations of obtaining the perturbed fields that produce the diffusion
coefficient.

The model assumes that initially an unstable region lies in a single radial band. It is
expected that the alphas beta profile flattens beyond the unstable region of linear theory
and a relaxed (denoted as rlx) alpha particle beta profile βhrlx (r) forms. The quasi-linear
theoretical model predicts that the original unstable region spreads in space to satisfy the
condition, ∂βhrlx/∂r = ∂βhcr/∂r in a region r1 < r < r3 and at these interfaces, βhrlx (r1,3) =
βh (r1,3). We need to find both r1 and r3, which lie within the boundaries of the plasma.

In the relaxed state the beta profile remains unmodified outside the relaxed region, while
the beta profile is at marginal stability within the relaxed region. Hence within the relaxed
region we find βhrlx(r) = βh (r1) +

´ r

r1

(∂βhcr/∂r
′) dr′. As βhrlx (r3) = βh (r3), one of the

conditions to determine the endpoints is, βh(r3) − βh (r1) =
´ r3

r1

(∂βhcr/∂r
′) dr′.
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Figure 7: Alpha beta profiles initial

and reconstructed using Eq.(18). Pro-

file β̂h1 is obtained for critical beta from

Eq. (18) multiplied by 0.7. Profiles are

shown in linear and logarithmic scales.

We note that the actual energy density that is
redistributed is smaller than the above estimate [2].
Only a part of alpha particle fraction, η, undergoes
redistribution due to the resonant interaction. This
fraction was estimated η =

(

vh0 − v‖
)

v‖/v
2
h0 ≤ 0.25

for the straight cylinder geometry [2, 39], where v‖ is
particle parallel velocity resonant with TAE. In the
relaxation region the beta profile of alphas is then
β̂h (r) = ηβhrlx (r) + (1 − η)βh (r). The resulting al-
pha profile is then given by

β̂h (r) =











βh(r), r < r1
ηβhrlx(r) + (1 − η) βh (r) , r1 < r < r3

βh(r), r > r3

.

(19)
In this section we also demonstrate the applica-

tion of 1.5D quasilinear model to a burning ITER-like
plasma with the parameters based on the TRANSP
calculations. Steady-state beta profile of alphas can

be fitted closely to βh = 0.008
[

1 − (r/a)2
]5

. Another important profile is the plasma
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ion temperature profile taken as Ti (keV ) = 20
[

1 − (r/a)2
]

, while the background beta

is βpc = 0.06
[

1 − (r/a)2
]

. We apply the relaxation of the beta profile with η = 0.25 and

show it in Fig. 7.
For this case shown on Fig.7, TAEs are locally unstable within 0.39 < r/a < 0.72.

After the quasi-linear transport model is applied, alphas are redistributed within a wider
domain, r1/a = 0.30 < r/a < r3/a = 0.89, (see curve marked with β̂h) in Fig. 7. After EP
redistribution, the growth rate in our model equals the damping rate and by making use of
the result of Ref.[38] is γh = −γiL − γecoll = 4% at the most unstable point, r/a ≃ 0.6. At
this point we have s = 0.3, q = 1.5, Ti = 12keV (Ti0 = 20keV ). This compares with the
growth rate before the redistribution γh ≃ 4.7% for the same background plasma.
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Figure 8: Expected alpha particle losses are shown

as fa unction of increased βα0 keeping fixed total

plasma beta (dashed, β ≡ βpc+βαh = const, βh0 ∼

T
5/2

i0 ) and density (solid, βh0 ∼ T
7/2

i0 ).

Stronger radial transport is expected if
the thermal ion temperature is raised be-
cause fusion alpha-particle beta depends on

Ti: βh/βpc = σ20.117T
5/2

i / (1 + σ), where
σ ≡ (nD + nT ) /ne = 0.8. Figure 8 shows
the expected loss dependence with increased
alpha particle beta as the temperature was
increased from a baseline case of Ti0 =
20keV , βpc0 = 6%, and βh0 = 0.8%. Here, in
one case, the plasma density is fixed (solid
curve) and in another case, the plasma beta
(dashed curve) is, while keeping fixed r3 = a.
In the case of fixed plasma density the pre-
dicted TAE induced transport is weaker be-
cause the ion Landau damping is increas-
ing with ion temperature. With the con-
stant beta, the ion temperature was varied
from 20 keV at βh0 = 0.8% to ∼ 24 keV at
βh0 = 1.3%, whereas at fixed density the corresponding temperature range was from 20keV
to ∼ 23keV . We see that losses can become severe with increased temperature especially
for the fixed beta case.

In the calculations in this section the quasilinear relaxation model neglects the TAE
interaction with beams assuming that only one specie is driving the instability. It seems
possible to renormalize the critical gradients proportional to the contribution of each specie
to the total drive. The proposed model needs to be corrected by numerical calculations to
account for extra damping mechanisms. More detailed investigations can be adjusted to
numerically evaluated damping and growth rates, as obtained in NOVA-K simulations. The
outlined model shows that in the case of local instability theory the TAE instability effects
allow window of operation in ITER, but will establish the high-temperature limits.

V. SUMMARY

We demonstrated several key successes of EP physics in fusion research. Most of them
are directly applicable to ITER and in general to burning plasmas. They span from sin-
gle particle confinement, excitation of the low frequency Alfvénic modes, to the nonlinear
saturation of these modes and so on.
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A specific example of EP physics progress seems to be fairly important to note separately,
which is the confirmation of MHD theory in general. These models are built on higher order
corrections to ideal homogeneous plasma MHD and their effects due to the plasma toroidicity,
non-circularity of the cross section, finite plasma pressure and so on. This confirmation is
coming primarily from the comparison of the mode structure and their stability.

There are several remarks we would like to make here to help summarize the presented
material. One is that it is of great importance to have accurate estimates of the damping
and growth rates to understand the stability properties of EP driven modes and their effect
on plasma performance. However, if one makes plans to build a fusion reactor, it is not
necessary to do the estimates too accurately for all the modes. One has to develop a model
which would capture the parameter dependencies accurately and be qualitatively correct.
In the example of the quasilinear model we saw that it can predict the profiles of EPs, but
lacks certain observable features. Nevertheless, it can be applied for future devices. In fact,
such application to experiments on DIIID are being done in order to validate its predictive
capabilities [37].

The qualitative estimate for the damping/driving rates is often enough to validate the
use of a certain EP theory. In cases when prediction has to be quantitatively efficient, the
stability model has to be corrected by more advanced accurate tools.
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