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1. Introduction

In this article1 I attempt to put into perspective some of Bob Dewar’s contributions

to plasma turbulence theory. Any serious analytical work on the theory of turbulence

is courageous, as the subject is notoriously difficult and extremely challenging. Bob

brought his own special, very creative insights to the problem, hence my subtitle

“Lessons in Creativity and Courage.” We can all profit by considering Bob’s unique,

deeply physical and mathematical approach.

My discussion in this paper is somewhat informal and heuristic. There are few

equations, and important logical steps are omitted. My goal is to transmit the spirit

of Bob’s motivations and approach, not to teach the technical details (which one can

always look up). My intended audience is students of nonlinear plasma turbulence

theory. Whether young or old, we physicists must remain students throughout our

careers, so the discussion should be of interest to everyone. But I hope it will have

special impact on the younger generation of beginning plasma physicists. They are

confronted with a relatively mature and systematized field, which can be overwhelming;

it is not always easy to know how one got to the present from our confused roots. I believe

that an appreciation of the early days of the field, specifically the deep physical insights

and mathematical tools that Bob Dewar contributed — the “Lessons in Creativity and

Courage” — can pay great dividends in paving the way for further progress.

I will begin in Sec. 2 with some general remarks on the problem of the transition to

turbulence. Those will motivate consideration of states of fully developed turbulence.

Bob contributed in several ways: in studies of turbulence-related bifurcations and zonal-

flow generation (section 3); and in attempts to formulate a new statistical theory of

plasma turbulence (section 4). Because of the time constraint for my Symposium talk

and the length constraint for this paper, I will say only a few words about the former

topic; the heart of the paper is on statistical turbulence theory.

2. General remarks about the transition to turbulence

The prototypical partial differential equations (PDEs) for studies of the nonlinear

behavior of fluids and plasma are well known: the Navier–Stokes equation for neutral

fluids; and the Vlasov equation or Landau kinetic equation for plasmas. Both of those

equations are quadratically nonlinear, and it is well known that they can support

stochastic, chaotic, or turbulent behavior.2 Such equations exhibit a transition to

turbulence as an appropriate bifurcation parameter (such as a background profile

gradient) is increased. There are many “routes to chaos” (Martin, 1982), well described

in textbooks and monographs such as that of Lichtenberg and Lieberman (1992).

1 This article recounts the talk I gave at the Dewar Symposium (October 31, 2009, Atlanta), which

honored the research career of Bob Dewar.
2 Stochastic generally implies a Hamiltonian description; chaotic implies random dissipative behavior

in systems with small numbers of degrees of freedom; and turbulent implies random spatio–temporal

behavior in systems with many excited degrees of freedom.
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For Hamiltonian systems, one may begin with an integrable Hamiltonian with good

Kolmogorov–Arnold–Moser surfaces. Addition of a small, angle-dependent perturbation

generally introduces tiny, nonoverlapping islands. Further increase of the amplitude of

the perturbation leads to local island overlap and ultimately to global stochasticity.

Dissipative systems may pass from linear stability through a supercritical bifurcation,

to multiple excited modes, and ultimately to turbulence. Alternatively, linearly stable

systems may suffer a subcritical bifurcation (nonlinear instability) and may become

turbulent even in the face of linear stability. There are other exotic possibilities.

Near the transition to turbulence, specific techniques drawn from the theory of

nonlinear dynamics (Guckenheimer and Holmes, 1983) may be useful. One can, for

example, attempt to use center-manifold theory (Kuznetsov, 1998) to eliminate rapidly

decaying modes. If that succeeds, one is left with a low-dimensional system for the

slow modes, which one can then analyze qualitatively. An example of this kind of

calculation is given by the work of Kolesnikov and Krommes (2005b,a) on the transition

to collisionless ion-temperature-gradient-driven turbulence and the role of zonal flows

on the so-called Dimits shift (Dimits et al., 2000).

Major problems arise, however, if many modes bifurcate at almost the same value

of the bifurcation parameter. This is the case for microscale fluctuations (e.g., drift

waves) in a macroscopic system such as the tokamak. Here straightforward center-

manifold analysis leads to a system, containing many coupled modes, for which standard

nonlinear-dynamics analysis becomes intractable. The traditional solution has been to

ignore the details of the transition and consider analytical statistical techniques that

predicts details of the saturated fluctuation spectrum on a wave-number by wave-

number basis. Those are discussed in Sec. 4. But two other approaches have also

proven fruitful: direct numerical simulations; and bifurcation analysis of equations for

turbulent intensities, in which details of the wave-number spectrum are ignored. Bob

Dewar contributed insights to both of those, as I describe briefly in the next section.

3. Turbulence-related bifurcations and zonal flows

It is not difficult to construct and analyze a simple predator–prey model of the

interactions of drift waves and zonal flows (Diamond et al., 1994). A simple two-field

model possesses a very simple bifurcation structure with two stable states, qualitatively

reminiscent of the L–H transition (between low- and high-confinement states) observed

in tokamak experiments. But more complicated equations, with richer physics, can

be nontrivial to analyze. An example is given by the model of Sugama and Horton

(1995), whose bifurcation structure was thoroughly studied by Ball and Dewar (2000)

and Ball, Dewar, and Sugama (2002). Their results point to the importance of hysteresis

and symmetry breaking in models of the L–H transition and support the belief “that

remarkably low-dimensional models can capture and help explain essential aspects of

turbulent flows.”

Ultimately numerical simulation is essential even for simple paradigm models. A



Bob Dewar and Turbulence Theory 4

classic example of such a model is the system first proposed by Hasegawa and Wakatani

(1983, HW), frequently advanced as a paradigm for collisional drift-wave turbulence in

a tokamak edge. Numata, Ball, and Dewar (2007) used numerical simulations (on a

3D HW model that properly respected the physics of zonal flows) to support a general

scenario of primary, secondary, and tertiary instabilities. That work identified the analog

of the Dimits shift for collisional drift waves and showed that the ultimate onset of

turbulence was “due to the disruption of zonal flows by [Kelvin–Helmholtz] instability.”

If this were a proper review article, much more should be said about both the

work cited in this section and similarly focused research by others. Here I have merely

tried to point out that Bob has worked broadly on state-of-the-art issues relating to

the development and suppression of plasma microturbulence. In the next section I will

go into more depth about his courageous attempts to deal with the problem of fully

developed turbulence.

4. Bob Dewar and the statistical theory of turbulence

Turbulence is inherently statistical in nature. The well-known extreme sensitivity to

small changes in initial conditions means that detailed microstructure may not be

observable even in principle. The use of some sort of averaging procedure seems to

be inevitable (Tsinober, 2009). Consider, for example, the calculation of a turbulent

transport flux, for example the flux Γ of density n due to advection by a turbulent

velocity field Ṽ . One can define an instantaneous, microscopic flux by Γ̃
.
= δV δn, where

δ denotes the fluctuation from the mean: δV
.
= Ṽ −〈V 〉. (I use

.
= for definitions.) This

quantity, measured either experimentally or from computer simulation, is a random time

series. The “observable” or mean flux is usually defined to be the time average of Γ̃:

Γ
.
= Γ̃. Analytically, one usually implicitly assumes some sort of ergodic theorem and

introduces an ensemble average: Γ = 〈Γ̃〉.

Thus, by definition, turbulent fluxes or transport coefficients are inherently

statistically averaged quantities. But averaging can be performed at various stages of

the calculations. Given a nonlinear equation, one can either (i) measure experimentally

or calculate (probably numerically) a detailed solution for the microscopic nonlinear

dynamics, then average to find a mean turbulent flux; or (ii) apply a statistical averaging

procedure directly to the nonlinear equation, then extract the mean flux directly from

the predicted averaged quantities (the turbulent flux involves just a second-order cross

correlation function). In principle, both procedures should lead to the same result. In

practice, however, it is not so simple. Practical approaches to direct statistical averaging

are inevitably approximate and can be very tricky. Although modern statistical closure

theory is about a half-century old [and its roots date back about a century; see, for

example, Taylor (1915)], it is still very difficult to assess from first principles the degree

of error in an approximate calculation. Deep physical insight and powerful mathematics

are equally essential. Bob Dewar provided both.

Plasma turbulence is a difficult problem! One must cope with mixtures of integrable
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and stochastic regions (for Hamiltonian dynamics) and the possibility of “coherent”

structures embedded in a random sea of turbulence (for forced, dissipative systems).

The details of the particle distribution function in velocity space may be important

(for linear growth rates and kinetic dissipation), one must calculate self-consistent

electromagnetic fields, and one must face up to the complications introduced by the

presence of many kinds of wave-like linear eigenmodes (absent in the “simple” case of

homogeneous, isotropic, incompressible neutral-fluid turbulence).

For coping with this diversity of complications, two techniques stand out. The

first is renormalization, which for present purposes may be thought of as describing the

statistical effects of nonlinear mode coupling. (I will say more about renormalization

shortly.) The second technique is less often discussed and is frequently overlooked; it

relates to the optimal choice of variables. It is, of course, well known that complicated

physics can be elucidated by a proper choice of representation (and can be rendered

inscrutible by a poor choice). Dewar’s creative and courageous contributions relate to

attempts to marry these two techniques.

4.1. Renormalization

If one wishes to truly understand renormalization, there may be no alternative to serious

study of very thick and very dense books [e.g., that of Zinn-Justin (1996)]. But the basic

ideas are actually quite intuitive. A variety of useful perspectives, both historical and

modern, are discussed in the collection edited by Brown (1993), which [particularly the

article by Dresden (1993)] have informed my following brief remarks.

Consider a sphere, of mass m0 and radius R, accelerated from rest in an

incompressible fluid of density ρ. It was already known to Stokes in 1843 that the

equation of motion for the sphere is

(m0 + mfluid)
dv

dt
= F, (1)

where mfluid
.
= 1

2

(
4
3
πR3ρ

)
. (The parenthesized factor is obviously the mass of the

displaced fluid; the coefficient of 1
2

depends on the shape of the object.) One says that

the presence of the fluid has renormalized the “bare” mass m0 of the sphere to the

effective mass meff
.
= m0 + mfluid.

Later, similar ideas were applied to the problem of the motion of charged particles

through the purported ether. Thomson (circa 1881) and Lorentz considered an

electromagnetic mass mEM = 2e2/(3ac2), where a is the radius of a uniformly charged

sphere. (The moving sphere excites electromagnetic fields, which then act back on the

sphere.) Thus the electromagnetic field renormalizes the mass m0 of the particle to the

total mass m
.
= m0 + mEM. Only the latter is experimentally observable.

Such an interpretation suffers from the indignity that mEM → ∞ as a → 0. That

implies that m0 must also be (negatively!) infinite if the experimental mass m is to

be finite. Thus renormalization may involve tricky infinities. Those are so common

in quantum field theory that sometimes renormalization is equated with a program
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for removing infinities. But the discussion of mfluid above, which does not involve an

obvious infinity, shows that a more general interpretation is useful. It is better to

think of renormalization as a way of calculating approximate expressions for physically

observable quantities such as mass and charge. In the general theory of nonlinear PDEs,

the observables are statistically averaged quantities such as the mean field and the

two-point correlation and response (Green’s) functions. Renormalized equations for

the Navier–Stokes equation (which by definition includes viscous dissipation) are not

divergent (although infinities may surface in discussions of particular asymptotic limits).

How does one deal with infinities when they do arise? A further bit of history is

very relevant for understanding of the approach Dewar took to renormalized plasma

turbulence theory. Dresden (1993) nicely describes a program outlined by Kramers

(circa 1938) with the goal of quantizing classical electrodynamics. I paraphrase:

(i) Begin with an extended, classical charge distribution (of radius a) interacting with

a given external electromagnetic field.

(ii) Construct an exact or approximate Hamiltonian for that system.

(iii) Separate the total electromagnetic field into a self field and an external field, and

also separate the mass into mechanical and electromagnetic components. This

leads to a dynamical Hamiltonian formulation that contains a mixture of structure-

independent and structure-dependent terms.

(iv) Eliminate the structure-dependent terms from the Hamiltonian by one or a series

of canonical transformations. This should lead to an autonomous structure-

independent Hamiltonian K.

(v) Now carry out the limit a → 0, which should be finite.

(vi) Finally, quantize the (presumably finite) structure-independent K.

Kramers’ program was never completed; it was overtaken by the explosion of new

ideas and insights relating to relativistic quantum electrodynamics as formulated by such

giants as Schwinger, Tomonaga, Feynman, and Dyson.3 But it is of great conceptual

importance. In particular, the key step of transforming away the structure-dependent

terms, leaving a nondivergent or “true” Hamiltonian K, anticipates Dewar’s use of

canonical transformations to oscillation-center coordinates, as we will see in section 4.3.

4.2. The transformative month of July, 1973

Although it is greatly tempting to linger in the challenging realm of classical and

quantum electrodynamics, let us now leave the 1930’s and 1940’s and fast-forward to

the month of July, 1973. In the world at large, this was not an unusually interesting

month, although there were a few noteworthy events: Betty Grable died; Monica

Lewinsky was born; the existence of the Nixon tapes was revealed to the Senate

Watergate Committee; and novelist, philosopher, and psychonaut Robert Anton Wilson

3 A good route to obtaining a first understanding of this exciting period in the history of physics is to

peruse the scientific biographies of Schwinger (Mehra and Milton, 2000) and Feynman (Mehra, 1994).
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(RAW, 2009) apparently4 established contact with extraterrestrials from Sirius. But

in the world of physics, this month stands out because of the publication of two

transformative physics papers: Dewar’s “Oscillation center quasilinear theory” (Dewar,

1973, see figure 1); and the work of Martin, Siggia, and Rose on the “Statistical

dynamics of classical systems” (Martin et al., 1973, see figure 3). As we will see, those

papers [as well as the important sequel of Dewar (1976) on “Renormalized canonical

perturbation theory for stochastic propagators”] laid the foundations for two approaches

to the problem of renormalization that, although superficially quite distinct, are actually

closely related. I will discuss Dewar’s work in the next section; I will address the MSR

formalism (which introduced the concepts of “mass” and “charge” renormalization for

classical systems with quadratic nonlinearity) in section 4.4.

4.3. Oscillation-center quasilinear theory: original, and renormalized

4.3.1. The original (unrenormalized) oscillation-center quasilinear theory. To

understand the motivation for the work of Dewar (1973), one must back up one year,

when Kaufman (1972) described his “Reformulation of quasi-linear theory.” Quasilinear

theory was then in a state of some confusion because of the “fake diffusion” associated

with nonresonant particles and uncertainties relating to the very existence of a positive

velocity-space diffusion coefficient in the presence of stable (negative growth rate)

linear waves. By using the method of multiple time scales, Kaufman showed that

the nonresonant particles should properly be counted as part of the wave action (thus

contributing to the momentum and energy of the waves), and that the resonant particles

obey the standard velocity-space diffusion equation (with a diffusion coefficient that is

intrinsically positive even for decaying modes).

Dewar (1973, figure 1) then showed that Kaufman’s results had a beautiful

interpretation in terms of Hamiltonian canonical transformation theory. The idea was

that the oscillating waves induce small wiggles on the basically straight-line motion of

the nonresonant particles. Dewar removed those oscillations by a canonical change of

variables to oscillation-center coordinates; he showed that it is the oscillation centers

that obey the quasilinear diffusion equation. The sloshing motion of the nonresonant

particles, tied up in the definition of the coordinate transformation, is just what is

required to prove momentum and energy conservation for the combined system of

resonant and nonresonant particles. A decade later, similar ideas (with some technical

innovations) were used in developing the Hamiltonian formulation of gyrokinetics (Dubin

et al., 1983); further elegant developments were reviewed by Brizard and Hahm (2007)

and Krommes (2012).

4.3.2. Renormalized canonical perturbation theory. The heart of Dewar’s attack on

the plasma turbulence problem can be found in his extremely ambitious, creative,

and courageous paper on “Renormalized canonical perturbation theory for stochastic

4 I learned this striking information from a google search on the web. It therefore must be true. . .
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Figure 1. The header of Dewar’s seminal paper on oscillation-center quasilinear

theory. Reprinted with permission from Dewar (1973), copyright 1973 by the American

Institute of Physics.

propagators” (Dewar, 1976). It is essentially a sophisticated application of oscillation-

center theory to the description of renormalized Green’s functions. Motivation can

be found by considering the well-known representation of the velocity-space diffusion

coefficient as a time integral of the Lagrangian (measured along the trajectories)

correlation function of the acceleration a = qE/m:

Dv =

∫
∞

0

dτ Caa(τ). (2)

(I consider one-dimensional motion for simplicity.) Such a correlation function, depicted

in figure 2, is the net response to two distinct physical effects. First, there is the

decorrelation of a particle, moving with velocity v = vph, from the wave packet (moving

with velocity vgr) that accelerates it. If the spectral width of the wave packet is ∆k

(corresponding to an x space width of 2π/∆k), one readily estimates the autocorrelation

time to be τ lin
ac ∝ (|vph − vgr|∆k)−1. I use the superscript lin to emphasize that τ lin

ac can

be calculated entirely from properties of the linear wave spectrum.

When the wave-number spectrum is discrete, as it would be for plasma confined

in a periodic box, one can show [see more detailed discussion in Krommes (2002,

Appendix D)] that the correlation function including only the τ lin
ac effect is recurrent on

a long time scale τr ≫ τ lin
ac . The infinite-time integral of such a function is pathological,

but one expects that in a stochastic regime (when the Chirikov criterion for resonance

overlap is satisfied) C(τ) should decay irreversibly, not recur. The time scale for that

decay can be estimated to be Dupree’s diffusion time5 τd ∝ (k
2
Dv)

−1/3, where k is

a typical spectral wave number. One can show that in the stochastic regime one

has τ lin
ac ≪ τd ≪ τr. Thus the effect of stochastic diffusion is to provide a decaying

envelope that cuts off the recurrent peaks and gives a true correlation function that

5 This time has the same scaling as, but is not identical to, the Lyapunov time for the exponential

separation of adjacent trajectories.
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ac
linτ

τ
d

τ
r

τ
Figure 2. Schematic representation of the correlation function Caa(τ), showing linear

response (dotted lines, with width τ lin
ac

) and nonlinear envelope (dashed line, with

width τd) in the quasilinear regime. Their product is the actual response (solid line),

with width τac ≈ τ lin
ac

. The envelope prevents recurrence on the timescale τr. This

figure is a slight correction of Fig. 12 of Krommes (2002).

decays irreversibly on the τ lin
ac scale.

The stochastic diffusion gives rise to a resonance broadening. Consider the function

R(τ) =

∫
∞

0

dτ e−iωτ+ikvτ−τ/τd = [−i(ω − kv + iτ−1
d )]−1, (3)

which occurs if the τ integration is interchanged with the wave-number summation that

is buried in the represention of Caa in terms of Eulerian Fourier amplitudes.6 The

resonance width is thus ∆ω = τ−1
d . This observation motivated the pioneering work

of Dupree (1966) on what is now called resonance-broadening theory ; see also Dupree

(1967) for the initial application to magnetized plasmas. It underlies the work of Dewar

(1976), as I will now discuss.

The basic idea of the application of Dewar’s oscillation-center theory to plasma

turbulence is the following. Since the presence of the stochastic envelope is essential

for the proper definition of the correlation function, bring that to the fore by focusing

on the response function of the oscillation centers (which as we know obey a diffusion

equation). Linear response (associated with wave-packet decorrelation and recurrences)

is encapsulated in the transformation of variables. Ultimately, the nonlinear envelope

and the linear response must be appropriately multiplied together to give the total

response, as depicted in figure 2.

In more detail, the goal set by Dewar (1976) was to find “a canonical transformation

which removes the coherent oscillatory motion of a particle in a stochastic potential.”

Just as in unrenormalized oscillation-center theory, this is only possible for nonresonant

particles. The extra difficulty here is that the resonances are broadened, so the concepts

of “resonant” and “nonresonant” are not cleanly defined. One needs to determine the

6 Detailed discussion of this point can be found in section D.2 of Krommes (2002).
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width of the resonance self-consistently. That is, one must determine a “renormalized

oscillation-centre transformation.”

To accomplish this goal, Dewar first developed an operator formalism for canonical

transformations. That has been quite influential in many subsequent applications

unrelated to renormalized plasma turbulence; see the review article by Cary (1981)

on “Lie transform perturbation theory for Hamiltonian systems.” Then Dewar focused

on the Dyson equation for the mean Green’s function of the oscillation center. (I will

define a Dyson equation in the next section.) The details are not important here, but

Dewar’s conclusions are worth repeating: “We have developed a canonical perturbation

theory for the single particle propagator which allows systematic calculation of non-

linear effects and the inclusion of resonance broadening. The use of Green functions

is reminiscent of quantum field theory and statistical mechanics . . . ; conversely, the

Poisson bracket structure of the perturbation theory should allow straightforward

quantization.” His program should be compared to Kramers’s quantization program

recounted in section 4.1. Clearly in both cases the core of the formalism involves a

canonical transformation to remove or encapsulate unwanted physics that disguises the

intrinsic features of the problem. This is intuitively plausible, and it lends itself to

specific and nontrivial technical manipulations.

Dewar’s approach is certainly appealing. However, it raises some difficult questions.

For example, is it really correct to apply statistical methods to the oscillation-

center response function? The oscillation-center transformation is both stochastic and

nonlinear. If one requires a correlation function in original particle variables,7 then it is

likely that an average of the product of a stochastic response function and some function

of the stochastic transformation will be required. In general, such averages do not factor

due to complicated statistical dependencies. And if the results of Dewar (1976) omit

certain statistical correlations (i.e., if in some sense it is a lowest-order formalism), is a

systematic strategy indicated that would enable one to proceed, at least in principle, to

higher order?8

A procedure which applies statistical methods directly to the original PDE, in the

original variables, and also can be (in principle) systematically extended to include more

and more statistical correlations is the formalism of Martin, Siggia, and Rose (MSR),

also published in July, 1973. I discuss it briefly in the next section.

4.4. The Martin–Siggia–Rose formalism

The MSR formalism (Martin et al., 1973, figure 3) is the classical version of Schwinger’s

functional formalism for quantum field theory. It can be applied to any nonlinear

7 How does one know that the original variables were in any sense appropriate? One answer is that

they may have something to do with the symmetries of the problem, and one wants the ultimately

calculated statistical observables to reflect those symmetries.
8 I am not referring here to refining the OC transformation, which can be done systematically. The

remark relates to improvements to the procedure of applying statistical methods to the OC response

function.
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Figure 3. The header of the famous paper that introduced the “MSR formalism.”

Reprinted with permission from Martin et al. (1973), copyright 1973 by the American

Physical Society.

equation or system with polynomial nonlinearity (the original paper discussed quadratic

nonlinearity, which is the most common application). It is fully renormalized, meaning

that it works only with statistical observables (the mean field, the two-point correlation

function, the two-point response function, and some three-point vertex functions).

At lowest order, in a certain well-defined sense, it recovers the direct-interaction

approximation (DIA), which had been developed earlier by Kraichnan (1959) using

different methodology. A lengthy review article that emphasizes the MSR formalism

and contains many references is by Krommes (2002).

Although the renormalized equations of the DIA or other MSR-derived closures

are sophisticated, they need not always work well in practice. In particular, they

may give the wrong answer unless one already knows the qualitative physics in

advance and inserts extra asystematic tweaks to keep the formalism physically on track.

The most famous example is the lack of invariance of the DIA to random Galilean

transformations (Kraichnan, 1964), a consequence of which is that for high-Reynolds-

number turbulence it predicts the wrong inertial-range spectrum (k−3/2 instead of

Kolmogorov’s k−5/3). Also, systems with highly intermittent (non-Gaussian) statistics

cannot be well described by low-order truncations of the MSR functional equations.

One prediction of the MSR formalism that may be correct is that various kinds of

physical effects are mixed together in a very complicated way by the statistical averaging.

The formalism does not necessarily help one in understanding that mixture. Therefore,

alternate approaches such as that of Dewar have intrinsic appeal. One is reminded of the
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quote by Frisch (1993), “I will not rule out that renormalization methods will have a lot

to say about turbulence once they are applied to the right objects, which has not been

the case so far.” This remark came well after Dewar’s work, of which I am guessing

that Frisch was not aware. But in any event his remark is very apropos. Dewar’s

attempt to introduce better variables into the self-consistent calculation of turbulent

Green’s functions is novel, creative, and courageous. It was driven by deep physical

insight, aimed specifically at finding the “right objects,” and synthesized two powerful

techniques, namely renormalization and canonical perturbation theory. It is interesting

to compare Dewar’s introduction of oscillation-center variables into statistical turbulence

theory with Kraichnan’s development of Lagrangian statistical closures (Kraichnan,

1965). The latter cure the problem with random Galilean invariance of the DIA by

introducing Lagrangian Green’s functions that, essentially, follow along moving eddies.

Dewar’s desire to work with the oscillation centers is conceptually similar. It would

be instructive to explore the connection between renormalized oscillation-center theory

and Lagrangian closures at a deep mathematical level.

In spite of obvious difficulties, the appeals of the MSR formalism and the DIA

were sufficiently great that they dominated formal work on statistical plasma turbulence

theory for decades. The plasma DIA was studied in depth by Dubois and independently

Krommes in the mid-1970’s through the early 1980’s. [Sample references include DuBois

and Espedal (1978) and Krommes (1978); many more are given by Krommes (2002).]

However, the plasma DIA is very complicated because it attempts to describe the

statistical dynamics of nonlinear interactions in velocity space. An easier yet nontrivial

route is to study fluid models. Pioneering work was done by Sudan and Keskinen (1977,

1979), and Krommes made various fluid-DIA-related contributions in the mid-1970’s

through the 1980’s. Extensive study of DIA-based Markovian closures was performed

by Krommes’s group in the 1990’s; see Krommes (2002) for references. Around 2000,

attention shifted to the analytical theory of zonal flows. A seminal paper by Diamond

et al. (1998) was followed by a lengthy discussion by Krommes and Kim (2000) that

developed the statistical theory of zonal-flow generation in terms of the MSR formalism

and Markovian statistical closures.

Those and similar works employ various versions of statistical closure methodology.

They should be viewed in the context of Dewar’s philosophy, which states (Dewar, 1985),

“The theory [of transforming to the OC representation] is basically geometrical . . . , and

we prefer not to prejudge which of the various statistical approaches to turbulence,

applied after the transformation has been performed, would be better.”

4.4.1. The relation between renormalized oscillation-center theory and the MSR

formalism. Dewar’s approach is, at the very least, a valiant attempt. But in assessing

its fidelity, one important observation must be kept in mind: The MSR formalism is

formally complete in and of itself. Given a nonlinear PDE, the formalism provides

a self-consistent theory of coupled statistical observables that in principle provides a

complete statistical description. This implies that the physics of oscillation centers,
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ponderomotive Hamiltonians, etc. must somehow be buried in the MSR equations —

but where? It is interesting that a (partial) answer to this question was only given in

2007, some thirty years after Dewar’s work on renormalized oscillation-center theory. In

the proceedings of the symposium honoring Allan Kaufman’s 80th birthday, the articles

for which may be found online (Brizard and Tracy, 2009),9 Krommes (2009) carefully

worked out the mass operator Σ for renormalized, inhomogeneous quasilinear theory,

from which he was able to extract the usual ponderomotive force. However, whereas

that force follows so neatly from oscillation-center theory, it is somewhat buried in

tedious algebra in the MSR approach. Part of the difficulty is that the MSR formalism

proceeds in laboratory coordinates, so one must be able to somehow recognize the change

of variables from those of the oscillation center to those of the particle. That was done,

but it is important to remark that knowing the answer in advance was extremely helpful

in reconciling the algebra! The generality and power of the MSR approach should not

be denied, but it was the physical insights of the pioneers such as Dewar that provided

the rock-solid foundations on which future progress can proceed.

5. Summary and conclusions

I described some of the contributions that Bob Dewar made to the theory and physical

understanding of plasma turbulence, including both the transition thereto and the

analytical description of the fully developed state. It is remarkable that Bob was able

to make substantial, deeply insightful contributions to those problems, both of which

are challenging and difficult yet represent only a small fraction of the research problems

that Bob has tackled (so far!) during his career. He provides an wonderful example that

we would all do well to emulate.
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Turbulence’ Birkhäuser Basel p. 420.

Guckenheimer J and Holmes P 1983 Nonlinear Oscillations, Dynamical Systems, and

Bifurcations of Vector Fields Springer New York.

Hasegawa A and Wakatani M 1983 Phys. Rev. Lett. 50, 682–6.

Kaufman A N 1972 J. Plasma Phys. 8, 1–5.

Kaufman A N 2009 J. Phys.: Conf. Ser. 169, 012002 (18 pages).

Kolesnikov R A and Krommes J A 2005a Phys. Plasmas 12, 122302 (25 pages).

Kolesnikov R A and Krommes J A 2005b Phys. Rev. Lett. 94, 235002 (4 pages).

Kraichnan R H 1959 J. Fluid Mech. 5, 497–543.

Kraichnan R H 1964 Phys. Fluids 7, 1723–34.

Kraichnan R H 1965 Phys. Fluids 8, 575–98. Erratum: Phys. Fluids 9, 1884 (1966).

Krommes J A 1978 in ‘Theoretical and Computational Plasma Physics’ International

Atomic Energy Agency Vienna pp. 405–17.

Krommes J A 2002 Phys. Rep. 360, 1–352.

Krommes J A 2009 J. Phys.: Conf. Ser. 169, 012005 (35 pages).



REFERENCES 15

Krommes J A 2012 Annu. Rev. Fluid Mech. 44. In press.

Krommes J A and Kim C B 2000 Phys. Rev. E 62, 8508–39.

Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory second edn Springer New

York.

Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics second edn

Springer New York.

Martin P C 1982 in R K Kalia and P Vashishta, eds, ‘Melting, Localization, and Chaos’

North–Holland New York p. 179.

Martin P C, Siggia E D and Rose H A 1973 Phys. Rev. A 8, 423–37.

Mehra J 1994 The Beat of a Different Drum: The Life and Science of Richard Feynman

Oxford University Press Oxford.

Mehra J and Milton K A 2000 Climbing the Mountain—The Scientific Biography of

Julian Schwinger Oxford University Press Oxford.

Numata R, Ball R and Dewar R L 2007 Phys. Plasmas 14, 102312 (8 pages).

RAW 2009. http://en.wikipedia.org/wiki/Robert Anton Wilson.

Sudan R N and Keskinen M J 1977 Phys. Rev. Lett. 38, 966–70.

Sudan R N and Keskinen M J 1979 Phys. Fluids 22, 2305–14.

Sugama H and Horton W 1995 Plasma Phys. Control. Fusion 37, 345–62.

Taylor G I 1915 Philos. Trans. R. Soc. London, Ser. A 215, 1.

Tsinober A 2009 An Informal Conceptual Introduction to Turbulence Springer

Dordrecht.

Zinn-Justin J 1996 Quantum Field Theory and Critical Phenomena third edn Oxford

University Press Oxford.



The Princeton Plasma Physics Laboratory is operated 
by Princeton University under contract 
with the U.S. Department of Energy. 

 
Information Services  

Princeton Plasma Physics Laboratory 
P.O. Box 451 

Princeton, NJ 08543 
 
 
 
 

Phone: 609-243-2245 
Fax: 609-243-2751 

e-mail: pppl_info@pppl.gov 
Internet Address: http://www.pppl.gov 


	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4709
	Title: Bob Dewar and Turbulence Theory: 
Lessons in Creativity and Courage
	Date: November, 2011
	authors: John A. Krommes


