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Abstract

It is shown that when tokamaks are perturbed the kinetic energy principle is closely related to

the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks

are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the

kinetic energy principle is equivalent to the toroidal torque by the Neoclassical Toroidal Viscosity

(NTV). A unified description therefore should be made for both physics. It is also shown in this

case that the potential energy operator can be self-adjoint and thus the stability calculation can

be simplified by minimizing the potential energy.
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A tokamak maintains hot plasmas in a toroidal vessel and thus the stability of the plasma

confinement is always an important issue. The essence of the stability can be obtained with

the linear method, by investigating plasma responses to small perturbations. Especially the

energy principle based on the ideal MagnetoHydroDynamic (MHD), which determines the

stability using the ideal potential energy associated with perturbations, has been extensively

studied and applied to various stability problems in tokamaks. The ideal MHD however only

gives the lower bound of the stability and thus the kinetic modification to the energy principle

has also been studied to find the stability bound more precisely [1–6].

The kinetic energy principle takes into account the perturbed particle orbits, which in a

guiding center plasma drive a pressure anisotropy δp∥−δp⊥ and change the energy associated

with perturbations. The perturbed energy is mostly positive definite, so it is known as the

kinetic stabilization increasing the stability bound [2]. On the other hand, a similar approach

has been used to describe the toroidal torque arising due to perturbations. This is often called

the Neoclassical Toroidal Viscosity (NTV) torque [7–9] in tokamaks, and is the momentum

part of the non-ambipolar transport in general [10–13]. Although the kinetic stability theory

is based on a randomly exerted perturbation and the NTV theory is based on an externally

applied perturbation, their physics origins are equivalent; The kinetic potential energy δWk,

in the kinetic energy principle, and the neoclassical toroidal torque Tφ are both required to

perturb the tokamak plasma, in order to conserve the action of particles.

The action invariance in a guiding center plasma gives

Tφ = 2inδWk, (1)

where n is the toroidal harmonic number of perturbations, especially if the unperturbed

plasma equilibrium obeys ∇⃗p = j⃗ × B⃗. The complex number i means that the part of the

distortion involves the displacement orthogonal to the direction of the perturbed force and

becomes the toroidal torque. This close relation between δWk and Tφ will be proved and

discussed in this paper.

The kinetic potential energy and the neoclassical toroidal torque in a guiding center

plasma are in fact analogous to the additional physics of a spinning ball on a hill, Figure 1,

compared to a non-spinning ball on a hill, which is frequently used to describe ideal MHD

stability. The illuminating feature can be obtained using three Eulerian angles (ψ, ϑ, α)

where α is the body axis normal to the surface of the hill. Assuming a no slip condition,
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FIG. 1. The stability in a rotating tokamak plasma is similar to a spinning ball on a hill. The

action conservation in a guiding center plasma plays a similar role to the momentum conservation

of the ball. The three angles are Eulerian angles (ψ, ϑ, α).

the Lagrangian of the system is L = (1/2)IT (ϑ̇
2 sin2 ψ + ψ̇2) + (1/2)I(ϑ̇ cosψ + α̇)2 − U(ψ).

Here I is the moment of inertia and IT = I +MR2 with the mass M and the radius R

of the ball, and U(ψ) is the gravitational energy that can be determined by the shape of

the hill. The Lagrangian is cyclic in the α-coordinate, so a constant of the motion exists

as pα = I(ϑ̇ cosψ + α̇). Therefore, the second term of the Lagrangian is invariant and the

effective potential of the system is V (ψ, ϑ) = (1/2)IT (ϑ̇
2 sin2 ψ)+U(ψ). The additional term

is always stabilizing against a perturbation and thus the ball does not fall if the spin is fast

enough. The perturbation also produces a torque on the body, α̇ of pα = I(ϑ̇ cosψ + α̇),

which is self-conserved and thus not participating in the energy stabilization. A guiding

center plasma exhibits similar physical phenomena, but by a different constant of the motion

- the action of particles J =
∮
Mv∥dℓ.

The action invariance of particles results in the anisotropic tensor pressure in a per-

turbation
↔
Π = δp⊥I

↔
+ (δp∥ − δp⊥)b̂b̂. It will be shown that the kinetic potential energy

is

δWk =
1

2

∫
dx3

[
(δp∥ − δp⊥)

δBL

B
+ δp∥(∇⃗ · ξ⃗)

]
, (2)

and the neoclassical toroidal torque is

Tφ = −
∫
dx3

[
(δp∥ − δp⊥)

1

B

∂δBL

∂φ
+ δp∥

∂

∂φ
(∇⃗ · ξ⃗)

]
, (3)

when a tokamak is perturbed with a plasma displacement ξ⃗(ψ, ϑ, φ) ∼ ei(mϑ−nφ). Equation

(1) is obvious by these two equations. The variation in the field strength δBL is the La-

grangian quantity, that is, the variation in the field strength measured on the perturbed

field lines. It is different from the variation in the field strength at a fixed spatial point
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δBE = |∇⃗ × (ξ⃗ × B⃗)| as δBL = δBE + ξ⃗ · ∇⃗B⃗. A convenient form is given by

δBL

B
= b̂ · (∇⃗ξ⃗) · b̂− (∇⃗ · ξ⃗), (4)

where b̂ is the unit vector of the magnetic field B⃗.

The simplest derivation to Equation (2) is to use δWk = −(1/2)
∫
dx3ξ⃗ · (∇⃗ ·

↔
Π). Using

the several integrations by parts and vector relations, it is straightforward to show that the

non-zero integrand is −(δp∥ − δp⊥)(b̂ · (∇⃗ξ⃗) · b̂) − δp⊥(∇⃗ · ξ⃗). The details are skipped here

since this is in fact identical to the form derived by Rosenbluth and Rostoker [2], and Taylor

and Hastie [3] or Antonsen [4] when the unperturbed equilibrium is assumed as ∇⃗p = j⃗× B⃗.

Using Equation (4), one can show Equation (2).

Equation (3) can be obtained using the general relation by Boozer [14]

Tφ =

∫
dx3

[
∂x⃗

∂φ
· ∇⃗ ·

↔
Π

]
= −1

2

∑
ij

∫
dx3

∂gij
∂φ

Πij, (5)

where the metric tensor gij = (∂x⃗/∂xi) · (∂x⃗/∂xj), since
↔
Π = 0 on the surface. Using the

expression for the magnetic field 2πJ B⃗ = (∂x⃗/∂φ)+ ι(∂x⃗/∂ϑ) with the Jacobian J and the

rational transform ι, the metric tensors have the relations gφφ + ιgϑφ = 2πJ B⃗(∂x⃗/∂φ) and

gφϑ + ιgϑϑ = 2πJ B⃗(∂x⃗/∂ϑ). If the particle pressure tensor is expressed by
↔
Π =

↔
Π∥ + δp⊥I

↔
,

then Πϑϑ
∥ = ιΠφϑ

∥ = ι2Πφφ
∥ . Using these relations, the identity I ij = gij, and (∂gij/∂φ)g

ij =

(2/J )(∂J /∂φ), one can obtain

Tφ = −1

2

∫
dx3

[
∂

∂φ
(2πJB)2Πφφ

∥ + δp⊥
2

J
∂J
∂φ

]
, (6)

where the tensor component is

Πφφ
∥ = (δp∥ − δp⊥)(∇⃗φ · b̂)2 =

(δp∥ − δp⊥)

(2πJB)2
. (7)

To the first order, one should consider the arc-length change of the integration due to the

perturbed flux surfaces as J → J (1 + ∇⃗ · ξ⃗). Combining results, one can show Equation

(3). Note in this case the frame is naturally along the perturbed field lines b̂.

Equations (2) and (3) can be rewritten into a more insightful form if one uses the defini-

tions δp∥ ≡
∫
dv3Mv2∥δf and δp⊥ ≡

∫
dv3(1/2)Mv2⊥δf for a species and uses the variation

in the action δJ = 2π
∮
dϑ(M/ψ′

p)δ(JBv∥) on magnetic coordinates (ψ, ϑ, φ) that make

B⃗ = 2πψ′
p∇⃗ψ × ∇⃗α, where α ≡ qϑ − φ, ψp is the poloidal flux, and ψ′

p = dψp/dψ. Us-

ing v⃗(E, µ) with the energy E and the magnetic moment µ of particles, and assuming δf
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averaged over ϑ, one can show that the kinetic potential energy is

δWk =
1

2M2

∫
dψpdφdEdµ (δJδf) , (8)

and the neoclassical toroidal torque is

Tφ =
1

M2

∫
dψpdφdEdµ

(
∂δJ

∂α

)
δf. (9)

Equations (8) and (9), which also prove Equation (1), imply that the kinetic potential energy

and the neoclassical toroidal torque both depend on the variation in the action, but different

part by the phase. Consequently, they are dominated by different particles in δf as will be

shown later.

The presented relations imply that studies of the kinetic energy stabilization and the

NTV should be consistent. Recent numerical and empirical studies for the kinetic energy

stabilization for Resistive Wall Modes (RWMs) revealed a complex dependence of stability

on rotation [15], and also found that the fast ion contributions are perhaps important [16].

On the other hand, the NTV magnetic braking experiments have shown the toroidal mo-

mentum dissipation [17], the neoclassical offset rotation [18], and the resonance between the

electric and magnetic precessions [19], as predicted by the analytic theory. Analytic and

numerical NTV studies have also been rapidly evolved to achieve more precise prediction,

by calculating the perturbed distribution function with a more complex collisional operator

[20, 21]. Progress in any of these efforts should be reflected on both studies.

Note that a subtlety arises in the calculations of the variation in the action δJ given a

perturbation ξ⃗. The variation in the action is given by

δJ =
2πM

ψ′
p

∮
J dϑ

[
d(Bv∥)

dB
δB +Bv∥

δJ
J

]
. (10)

The Lagrangian variation in the field strength δB = δBL can be written as δBL = ξ⃗∥ ·

∇⃗B0 − B0(∇⃗ · ξ⃗⊥ + ξ⃗⊥ · κ⃗0) [22], with the curvature κ⃗0 = b̂0 · ∇⃗b̂0. One can see that the

variation in the field strength δBL depends on the parallel displacement ξ⃗∥. However, the

variation in the action δJ is independent of ξ⃗∥ due to the variation in the Jacobian, as

expected since the choice of ξ⃗∥ defines the choice of the coordinate used for the integration

variable. Therefore, one can use δBL = δBL(ξ⃗⊥) for δJ . The proof is as follows: Using

δJ /J = ∇⃗ · ξ⃗ = ∇⃗ · ξ⃗∥ + ∇⃗ · ξ⃗⊥, and denoting F (B) = Bv∥(B), the part of Equation (10)
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that depends on the parallel displacement is∮
J dϑ

[
dF

dB
ξ⃗∥ · ∇⃗B + F ∇⃗ · ξ⃗∥

]
=

∮
J dϑ∇⃗ · (F ξ⃗∥). (11)

Now ξ⃗∥ · ∇⃗α = (ξ∥/B)B⃗ · ∇⃗α = 0, and ξ⃗∥ · ∇⃗ψ = 0, so J ∇⃗ · (F ξ⃗∥) = ∂(JF ξ⃗∥ · ∇⃗ϑ)/∂ϑ. At

the end points of the integral F vanishes, so
∮
J dϑ∇⃗ · (F ξ⃗∥) = 0.

The derived Equations (8) and (9) require the calculation of δf . Here an analytic example

will be used to illustrate basic features in δWk and Tφ, but any advanced calculation of δf

[21, 23] can be applied consistently for both. Analytically δf is solvable with the pitch-

angle collision operator if the regimes are separately treated. However, recently it has been

noticed that the regimes are significantly overlapping and thus combining the regimes is

more important even if sacrificing the accuracy of the collision operator [9]. Using a Krook

collision operator νK(E) with an effective correction, it can be shown that the bounce-

average perturbed distribution function δf = ⟨δf⟩b in a slowly varying perturbation is given

by

δfℓ =
(ωb/e)

iℓωb − in(ωE + ωB)− νK

(
∂Jℓ
∂α

)
∂f0
∂ψp

, (12)

for the ℓ-class of particles, with the bounce frequency ωb(E, µ), the electric precession fre-

quency ωE, and the magnetic precession frequency ωB(E, µ). The f0 is the zeroth-order

distribution in the equilibrium state. The bounce-average action for the ℓ-class of particles

is given by

δJ =
2π

ωb

⟨
(2E − 3µB)

δ(BLPℓ)

B
+ (2E − 2µB) ∇⃗ · ξ⃗⊥

⟩
b

, (13)

with an appropriate phase factor Pℓ [9].

The δf is proportional to the action variation. By simplifying the notation δf =

R(∂δJ/∂α)(∂f0/∂ψp) and omitting ℓ, one obtains the kinetic potential energy

δWk =
1

2M2

∫
dψpdφdEdµR

(
δJ
∂δJ

∂α

)
∂f0
∂ψp

, (14)

and the neoclassical toroidal torque

Tφ =
1

M2

∫
dψpdφdEdµR

(
∂δJ

∂α

∂δJ

∂α

)
∂f0
∂ψp

. (15)

Note that Equations (14) and (15) are independent of ξ⃗∥, as often implicitly claimed in the

literature. Also, one can see in this case that the energy operator δWk(ξ⃗, η⃗) for any arbitrary

displacements ξ⃗ and η⃗ is symmetric, and thus the operator is self-adjoint. This means that
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one can use the energy principle together with the ideal MHD energy operator δWp. That is,

the minimized potential δWp + δWk will determine the stability and also give the perturbed

force balance.

The practical forms for each can also be obtained if one performs the further ordering

by ϵ = r/R0 for the field, B = B0(1− ϵ cosϑ) + B0

∑
nm δnme

i(m−nq)ϑ+inα, and assumes the

Maxwellian f0 = fM and the contributions only by trapped particles. Using the normalized

variables x ≡ E/T and κ2 ≡ (E − µB0(1 − ϵ))/2µB0ϵ, where T is the temperature, one

can show the term 2E − 2µB becomes the next order and thus δJ ∝ δBL, δWk ∝ (δBL)
2,

and Tφ ∝ (δBL)
2. Combining Equation (12) with Equations (14) and (15), with several

approximations, one can show the kinetic potential energy

δWk =
∑

ℓnmm′

∫
dV

∫ 1

0

dκ2
∫ ∞

0

dx
ϵ1/2p

2
√
2π3/2

δ2wℓReℓω
φ
eℓ, (16)

and the neoclassical toroidal torque

Tφ =
∑

ℓnmm′

∫
dV

∫ 1

0

dκ2
∫ ∞

0

dx
ϵ1/2p√
2π3/2

δ2wℓRtℓω
φ
tℓ, . (17)

Here the weighted variation in the field strength is

δ2wℓ = δ2nmm′
F

−1/2
nmℓ F

−1/2
nm′ℓ

4K(κ)
, (18)

with δ2nmm′ ≡ Re(δnm)Re(δnm′) + Im(δnm)Im(δnm′), and the special function F y
nmℓ(κ) =∫ ϑt

−ϑt
dϑ(κ2 − sin2(ϑ/2))y cos[Θnmℓ(ϑ)], Θnmℓ(ϑ) ≈ (m − nq − σℓ)ϑ with the sign function σ

that σ = +1 for co-rotation relative to the plasma current, and the complete elliptic integral

of the first kind K. The resonant terms are

Reℓ =
1

2

n[n(ωE + ωB)− ℓωb](x
5/2e−x)

[ℓωb − n(ωE + ωB)]2 + ν2Dℓx
−3
, (19)

Rtℓ =
1

2

n2νDℓ(xe
−x)

[ℓωb − n(ωE + ωB)]2 + ν2Dℓx
−3
, (20)

where the effective collision frequency νKℓ = νDℓx
−3/2 and νDℓ = (ν/2ϵ)[1+ (ℓ/2)2]. The ωφ

eℓ

and ωφ
tℓ are toroidal rotation frequencies with the neoclassical offset for each, and defined as

ωφ
(e,t)ℓ = ωφ + σ

∫∞
0
(x− 3/2)R(e,t)ℓdx∫∞

0
R(e,t)ℓdx

∣∣∣∣2πe dT

dψp

∣∣∣∣ . (21)

Equations (16) and (17) are intrinsically similar, but the different resonant terms R(e,t)ℓ

can give different consequences in the parametric space of the rotation or the collisionality.
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The largest contribution to the energy is produced by particles with ℓωb−n(ωE+ωB) ∼ νKℓ,

while the torque is dominated by ℓωb −n(ωE +ωB) ∼ 0, that is, the resonant particles. The

neoclassical offsets are also different over the parameter space of rotation and collisionality.

Each offset is (2 ∼ 5)|(2π/e)(dT/dψp)| for the energy, and (0.5 ∼ 3.5)|(2π/e)(dT/dψp)| for

the torque, considering that the smallest offset is given when ν → 0 (ν-regime) [24] and

the largest offset is when ν → ∞ (1/ν-regime) [8]. When a perturbation gives a continuous

torque and consequently the rotation becomes ωφ ∼ −ωφ
tℓ, the torque becomes zero for any

perturbation, but the kinetic stabilizing effect can still exist.

The kinetic potential energy and the neoclassical toroidal torque arise for any perturba-

tion, and can change any of the ideal MHD modes including kink, peeling, and ballooning

modes. It will also change the plasma response to external perturbations and thus RWMs.

The general relation between the plasma and the external perturbation can be derived by

integrating the Maxwell stress tensor, similarly to the particle pressure tensor, and the char-

acteristic plasma response is given by 1/(s + iα) [25, 26]. Here s is the negative of the

normalized energy and α is the normalized toroidal torque. The prediction of the plasma

response using only the ideal MHD energy sp has been well validated when sp < 0, that

is, below the no-wall stability limit [26, 27]. When sp → 0, the plasma response will be

dominated by the kinetic potential energy and the neoclassical toroidal torque 1/(sk + iα),

and the toroidal phase shift will be 45◦ ∼ 90◦. This means that the no-wall limit is actually

greater than the ideal no-wall limit. Eventually the perturbation in the plasma will mod-

ify itself from the ideal state towards sp + sk → 0. The torque can remain, and then the

plasma response will exhibit a phase shift up to 90◦. This is the true no-wall limit. However,

the torque will also be decreased when approaching the true no-wall limit since minimizing

potential requires minimizing δBL as well as other quadratic terms in ideal MHD.

This paper demonstrates that the kinetic potential energy and the neoclassical toroidal

torque in tokamaks are closely related to each other, and should be studied consistently.

Both arise due to the action invariance in perturbations and depend quadratically on the

variation in the action. They however have different dependencies on the phase in the action

variation, and different particles are dominant for each. The resulting energy operator can

be self-adjoint, and thus more accurate stability boundary can be studied in the same way

as ideal MHD. The plasma response to external perturbations is also modified by both, and

can be studied beyond the ideal stability limit.
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