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Abstract

The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized

plasmas is studied theoretically. The variation of the propagation direction of circularly polarized

waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to

the standard dynamical phase. The origin and properties of the geometric phase is investigated.

The influence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed

as an application of the theory.
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The geometric phase is a ubiquitous phenomenon in almost all subfields of physics [1–16].

Early in 1958, Spitzer anticipated its existence when inventing the figure-8 stellarator [17].

In 1984, M. Berry discovered the famous Berry phase in quantum adiabatic systems [3].

Soon Hannay brought forward the Hannay’s angle in the context of classical mechanics [18],

and Simon discussed the geometric phase through a more abstract viewpoint of mathematics

[19]. In plasma physics, the geometric phase associated with gyrophase has been studied

[20–22], offering a deeper insight into the modern gyrokinetic theory. In this paper we discuss

another geometric phase phenomenon in plasma physics, the geometric phase of the Faraday

rotation of electromagnetic (EM) waves in magnetized plasmas.

The Faraday rotation effect is a magneto-optical phenomenon first discovered by Faraday

in 1845. It describes the change of the polarization direction of a linearly polarized EM wave

when propagating parallel to the background magnetic field in a magnetized medium. The

linearly polarized EM wave can be expressed as the linear superposition of two circularly

polarized characteristic waves, a right circularly polarized and a left circularly polarized wave

[see Eq. (23)]. The polarization orientation of the linearly polarized wave is determined by

the phase difference of the two circularly polarized waves [see Eq. (23)]. Because of the

existence of the background magnetic field, the right and left circularly polarized waves

have different dispersion relations, which induce a phase difference for the linearly polarized

wave increasing along the wave trajectory.

For a wave propagating in a general direction, if its frequency is high enough compared

with the electron gyrofrequency and it propagates not too close to the perpendicular direc-

tion, the two characteristic waves are still circularly polarized [23]. Thus, the analysis on

the Faraday effect based on two circularly polarized characteristic waves is also valid in this

case.

When propagating in inhomogeneous, magnetized plasmas, in addition to the normal

dynamical phase, a circularly polarized wave may also contain a geometric phase. Because

of the inhomogeneity, the propagation directions of EM waves vary from place to place. In

addition, the surfaces, in which the polarization orientations reside, rotate correspondingly.

As a result of the rotation, there appears an additional geometric phase which doesn’t evolve

according to the dispersion relations. It contributes to the Faraday rotation angle as well

(See Fig. 1).

In laboratory plasma experiments, diagnostic methods have been proposed to probe plas-
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FIG. 1. Illustration of a linearly polarized EM wave propagates through a magnetized medium.

If the magnetized medium is homogeneous, the wave trajectory is straight as in figure (a). The

Faraday rotation angle θF contains only the dynamical part θFd, which is determined by the

difference of the dispersion relations of right and left circularly polarized waves. If the wave

propagates in nonuniform magnetized plasmas, its trajectory is a curve and may twist as in figure

(b), the Faraday rotation angle contains an additional geometric part θFg, which relies on the

spatial geometric structure of the wave vector. The bold line and curve indicate trajectories of

waves, and the black arrows on the polarization plane indicate the waves’ polarization directions

of the linearly polarized wave.

ma properties through the Faraday rotation, such as the plasma density and the poloidal

fields in tokamaks [24–31]. In the last part of this paper, we will estimate the influence of

the geometric phase on plasma diagnostics and propose some possible schemes to measure

the geometric Faraday rotation angle experimentally.

Through this paper, the background magnetic field is denoted by B0, the complex per-

turbed fields with a specific frequency ω after time-domain Fourier transform as B and E,

and their complex amplitudes as B̃ and Ẽ.

First, we give a general description of the geometric phase associated with the Faraday

rotation. The waves in a uniformly magnetized cold plasma can be treated by the standard

method [32]. However, almost all real magnetized plasmas, both in laboratory and space

plasmas, are spatially nonuniform. In many cases, the nonuniformity is weak in the sense

that the space scale of the nonuniformity of background field LB0 = B0/∇B0 is much
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FIG. 2. When the wave-vector kd(r) returns its original position in the parameter space composed

of (kx, ky, kz), its path forms a closed loop C. Here, S denotes the surface enclosed by C. The

magnitude of the type-I geometric phase of the circular polarized wave, and hence the corresponding

type-I geometric Faraday rotation angle, is equal to the solid angle α spanned by C. The geometric

phases of right and left circularly polarized waves have opposite signs.

larger than the wave length λ, i.e., ε ≡ λ/LB0 � 1. The analyses in this paper focus

on EM waves propagating in such weakly inhomogeneous magnetized plasmas. The weak

nonuniformity may bring a small deviation to the wave propagation direction. At the same

time, the phase of circularly polarized waves in nonuniform magnetized plasmas contains an

additional geometric part θg besides the familiar dynamical phase θd =
∫
P

kd · dr−ωt defined

by the wave’s frequency and the local dispersion relation kd = kd(ω,B0(r)) along the wave

trajectory P . The geometric phase can be expressed as θg =
∫
P

kg · dr for some wave vector

kg [see Eq. (15)] resulting from the variation of the wave’s polarization surface. As its name

implies, the geometric phase has a deep geometric origin, and depends only on the geometric

property of the wave vector, instead of the wave’s frequency and other plasma parameters.

The geometric phase θg can be further divided into two parts, the type-I geometric phase

θgI and the type-II geometric phase θgII. Similar to the Berry phase in quantum physics, the

type-I geometric phase θgI comes from the inevitable rotation of the frame because of the

non-commutativity of spatial rotation operations, which corresponds to the Rytov law [33].

If the dynamical part of the wave vector kd returns to its origin value after the wave travels

a distance, the magnitude of θgI equals exactly the solid angle spanned by the closed path

of the wave vector kd in the parameter space (see Fig. 2). On the other hand, the type-II

geometric phase θgII originates from the non-inertial frame effect caused by the rotation of

the polarization surface.
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Now we give a theoretical derivation of the geometric phase θg by considering a circularly

polarized EM wave propagating in a magnetized plasma. If the background field is both

spatially and temporally uniform, the wave equation in the Fourier space is

k× k× E +
ω2

c2
εr · E = 0 , (1)

where εr is the relative permittivity tensor determined by the properties of the magnetized

plasma. Dispersion relations can be obtained from Eq. (1). For the parallel propagating

right circularly polarized (R) wave and left circularly polarized (L) wave in a cold collisionless

plasma, the dispersion relations can be written as

k2 =
ω2

c2

[
1−

∑
s

ω2
ps

ω(ω ± Ωs)

]
(2)

respectively, where ωps and Ωs are the plasma frequency and gyrofrequency for particles of

species s respectively. Following the standard convention in plasma physics, the right and

left here are defined with respect to the background field. In a slightly spatially nonuniform

magnetic field, we can only apply the Fourier analysis in the time-domain, and the wave

equation becomes

∇×∇× E− ω2

c2
ε · E = 0 . (3)

Here, the EM perturbations are assumed to have the form

E(r, t) = Ẽ(r)ei[θ(r)−ωt+θ0] , (4)

where the complex amplitude Ẽ(r) and θ(r) are both functions of the spatial coordinates r.

If we define wave vector as

k =
d

dr
θ(r) , (5)

then Eq. (3) can be rewritten as

k× k× Ẽ +
ω2

c2
εr(r) · Ẽ = i∇× (k× Ẽ) + ik× (∇× Ẽ) +∇×∇× Ẽ . (6)

The wave vector k can be split into two parts:

k = kd + kg , (7)

where kd is called the dynamical wave vector and it is defined by the local dispersion relation

kd × kd × Ẽ +
ω2

c2
εr(r) · Ẽ = 0 . (8)
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Equation (8) has the same form as Eq. (1), but the relative permittivity tensor εr(r) is a

slowly varying function of position now. The difference between k and kd is defined to be

the geometric wave vector kg.

In this paper, we focus on the circularly polarized characteristic waves determined by

Eq. (8). It’s familiar that in a homogeneous magnetized plasma there are two circularly

polarized characteristic waves propagating parallel to the background field. In an inhomo-

geneous magnetized plasma, the wave cannot propagate exactly parallel to the background

field everywhere any more, and we should analyze the polarization of a wave propagating

at a general angle ψ to the background magnetic field. Defining the z axis to be parallel

to the wave vector k and the x axis perpendicular to the background magnetic field, we

obtain an orthogonal frame (x,y, z). In this frame, the transverse components of the two

characteristic waves can be written as [23]

Ex
Ey

= −i
Y sin2 ψ

2(1−X) cosψ
± i

[
1 +

Y 2 sin4 ψ

4(1−X)2 cos2 ψ

]1/2
. (9)

In Eq. (9), X and Y are defined respectively as

X =
ω2
pe

ω2
and Y =

Ωe

ω
, (10)

where ω is the wave’s frequency, ωpe is the electron plasma frequency, and Ωe is the electron

gyrofrequency. If the wave propagates quasi-parrallel to the background field, i.e., sinψ � 1

and cosψ ∼ 1, we have
Y sin2 ψ

2(1−X) cosψ
≈ 0 . (11)

Equation (9) then becomes
Ex
Ey
≈ ±i , (12)

which means the characteristic waves can be taken as circularly polarized for quasi-parallel

propagation. On the other hand, for high frequency EM waves satisfying ω � Ωe, we have

Y � 1. As long as the propagation direction is not too close to the perpendicular direction,

i.e., cosψ is not small enough to break Eq. (11), Eq. (12) still holds. In this situation, the

analysis of the Faraday effect based on circularly polarized characteristic waves is still valid.

As pointed out in Ref. [24], in a real polarimetric system, the Cotton-Mouton effect and the

Faraday effect co-exist. However, the existence of the Cotton-Mouton effect does not invalid

the existence of the Faraday effect. The Faraday effect can be measured even when the wave
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becomes elliptically polarized. Indeed, both effects can be used as diagnostic tools [24]. As

long as the Faraday effect can be measured, it is valid to discuss the dynamical phase and

the geometric phase of the Faraday rotation angle.

DeMarco and Segre studied the polarization of an EM wave with a wave vector that has a

component perpendicular to the background magnetic field using the WKB approximation

[29]. They proved that linearly polarized waves propagating in general direction can remain

linearly polarized. They also suggested that the Faraday rotation can be used to measure the

poloidal magnetic field in tokamaks, which has been experimentally verified [31]. According

to their results, for a linearly polarized wave propagating in general direction, the dynamical

Faraday rotation angle, which depends on the local dispersion relations of the circularly

polarized characteristic waves, takes the form of

θFd = 2.5× 10−17λ2
∫
P

n(r)Br(r)dr , (13)

where λ denotes the wavelength, Br is the component of background magnetic field along

the wave propagation direction, the integral path P is the wave trajectory, and this formula

is expressed in Gaussian units.

To represent the wave’s polarization, a frame sitting in the polarization surface is re-

quired. Since the wave’s polarization surface varies from place to place, there exists no

global reference frames. A set of local frames have to be chosen to describe the wave’s

polarization orientations. We choose two orthogonal unit vectors e1 and e2 within the po-

larization surface and a third unit vector e3 perpendicular to them, satisfying e1 × e2 = e3.

Then, for circularly polarized characteristic waves, the dynamical part of wave vector kd is

along e3. The complex amplitude Ẽ(r) in Eq. (4) can be expressed as

Ẽ = Ẽ⊥(e1 ± ie2) , (14)

where the “+” denotes the right circularly polarized wave and the “−” denotes the left

circularly polarized one.

Combining Eqs. (6)-(8) and (14), we can solve for the geometric wave vector kg to the

order of O(ε). It satisfies the relation

kg · ek = ∓
(
∇e2 · e1 +

1

2
∇× e3

)
· ek , (15)

where ek is the unit vector along the k direction. The difference between ek and e3 is small,

i.e., |ek − e3| is of order ε. This shows that the electric field perturbation, the magnetic
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field perturbation, and the wave vector are no longer perpendicular to each other exactly

because of the nonuniformity of the magnetized plasmas, though the deviation is very small.

We note that kg is called the geometric wave vector because of its geometric origin. It’s

easy to observe that the kg depends the spatial variations of the local frame instead of the

dispersion relations. Obviously, kg/kd ∼ O(ε).

The circularly polarized wave’s phase can then be expressed as

θ = θd + θg =

(∫
P

kd · dr− ωt
)

+

∫
P

kg · dr , (16)

where the integral path P is the wave trajectory. The dynamical phase θd depends on the

wave’s local dispersion relation along its trajectory, which is well-known. The additional

geometric phase θg is of our interest. To study the geometric phase in more detail, we

further divide it into two parts

θg =

∫
P

kg · dr = θgI + θgII , (17)

θgI = ∓
∫
P

de2 · e1 , (18)

θgII = ∓1

2

∫
P

(∇× e3) · dr . (19)

Here, θgI and θgII are named type-I and type-II geometric phase respectively.

We emphasize that the two circularly polarized waves’ trajectories are close to each other

only guarantees that their integral paths P are the same. It doesn’t mean that kg have to

be the same. Indeed, their kg depend only on the behavior of kd along their trajectories,

but they depend on kd through different function forms. According to Eq. (15), kg for right

and left circularly polarized waves have the same magnitude but different signs.

It’s easy to see from Eq. (18) that θgI depends on e1 and e2, while there is a freedom to

choose local reference frames because they can rotate freely within the plane perpendicular

to e3. The definition of local frames is actually a choice of gauge. We choose a specific gauge

as follows

e1 =
kz

k
√
k2x + k2y

(kxex + kyey −
k2x + k2y
kz

ez) , (20)

e2 =
1√

k2x + k2y
(−kyex + kxey) , (21)
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where (kx, ky, kz) are three components of kd, ex, ey, and ez are unit vectors in x, y and

z direction respectively, and kd =
√
k2x + k2y + k2z is the magnitude of the dynamical wave

vector. This gauge keeps e2 within the x-y plane. Under this gauge, the type-I geometric

phase is

θgI = ±
∫
P

kz(kxdky − kydkx)
kd(k2x + k2y)

. (22)

If the evolving path of kd in the parameter space forms a closed loop, i.e., the polarization

surface returns to its original direction after the wave travels some distance, then the Stokes

theorem can be applied to Eq. (22) to obtain

θgI(τ) = ±
∫∫

S

kxdkydkz + kydkzdkx + kzdkxdky
k3

= ±
∫∫

S

k · dSk
k3

,

which equals exactly the solid angle spanned by the integral path in the parameter space

of kd (see Fig. 2). The value of θgI obviously depends on the choice of gauge. However, if

the polarization surface returns to its initial direction, it can be proved that different gauges

only bring differences of integer multiples of 2π to θgI, which has no observable effects. The

path dependence of type-I geometric phase shows that the wave phase is not a single-value

function of position r. It relies on the trajectory of the wave.

On the other hand, θgII is gauge-invariant because it depends only on e3 and has nothing to

do with the gauge choice. The polarization surface of the wave may rotates slightly because

of the spatially nonuniformity of the background magnetic field. In this non-inertial reference

frame, the rotation of the polarization surface provides a centrifugal force on the oscillating

plasma. The centrifugal force has the same period as the plasma oscillation, and generates

an extra phase, i.e., the type-II geometric phase, to the plasma waves. It is interesting

to note that the gyrophase of charged particles moving in spatially non-uniform magnetic

field also manifests the type-II geometric phase similarly. Let’s consider the gyromotion of

a charged particle in a spatially non-uniform background magnetic field. Let b be the unit

vector along the background field. The particle rotates in the gyro-surface perpendicular to

the background field. We choose two other unit vectors e1 and e2 satisfying b = e1 × e2 to

form the local frame. Particle’s velocity v can be expressed as v = v‖b+v⊥(cos θe1+sin θe2),

where v‖ is the parallel velocity, v⊥ is the perpendicular velocity, and θ is the gyrophase.

However, the direction of the background field may change during each gyro period as the
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particle moves. The gyro-surface will rotate with the angular velocity Ω = b × ḃ. In

this non-inertial frame, there is a centrifugal force on the particle, which provides an extra

acceleration a = −Ω × v. This acceleration thus generates an extra angular velocity to

particle’s gyromotion, θ̇extra = −v‖/v⊥ · ḃ · (− sin θe1 + cos θe2). Averaging over one period,

we have dθextra = −1/2 · (∇× b) · dr‖, which is exactly the type-II geometric phase for the

EM waves given by Eq. (19).

We note that there are differences in both dynamical and geometric phases between right

and left circularly polarized waves along (approximately) the same trajectory. These differ-

ences are manifested as the Faraday rotation. A linearly polarized wave is the superposition

of a right and a left circularly polarized waves,

Elinear = ẼReiθR + ẼLeiθL

= E⊥(e1 + ie2)e
iθR + E⊥(e1 − ie2)e

iθL

= 2E⊥(cos
θL − θR

2
e1 + sin

θL − θR
2

e2)e
i
θL+θR

2 ,

which shows that the angle between the polarization orientation and e1, i.e., the Faraday

rotation angle, is

θF =
θL − θR

2
, (23)

and the phase of the wave is

θlinear =
θL + θR

2
. (24)

Because θg has opposite signs for the right and left circularly polarized waves, it contributes

to the Faraday rotation angle θF but not to the phase θlinear, while the dynamical phase

contributes to both. The Faraday rotation angle then takes the form of

θF = θFd + θFg , (25)

where the dynamical phase θFd depends on the difference between the dispersion relations of

the right and left circularly polarized waves, and the geometric phase θFg can be expressed

as

θFg =

∫
P

de1 · e2 −
1

2

∫
P

(∇× e3) · dr . (26)

The first term on the right-hand side is the type-I geometric rotation angle θFgI, and the

second term is the type-II geometric rotation angle θFgII.
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To calculate the geometric phase, the integral path P should be specified. It is determined

by the ray-tracing equation
dr

dt
=
∂ω(kd, r)

∂kd
. (27)

The evolution of the dynamical wave vector kd is described by

dkd
dt

= −∂ω(kd, r)

∂r
. (28)

The expression of ω(kd, r) can be obtained from Eq. (8) according to the profiles of the

magnetized plasma.

We now evaluate the influence of the geometric phase to the Faraday rotation angle mea-

surement, since it is an important technique for plasma diagnostics. The wave’s frequency

in Faraday rotation diagnostics are commonly very high, which implies that the variation

of the polarization surface is small. To compare the magnitude of the geometric Faraday

rotation angle θFg with that of the dynamical Faraday rotation angle θFd, we consider their

ratios to the dynamical phase θd of the circularly polarized characteristic wave. For circu-

larly polarized waves, the ratio between the geometric phase and the dynamical phase θg/θd

is of order ε. According to Eq. (23), θFg = (θLg − θLg)/2, where the geometric phase of the

left and right circularly polarized waves, θLg and θRg, have the same magnitude but opposite

signs, that is θLg = −θRg = θg. Thus θFg = θg holds, and the ratio θFg/θd is also of order ε.

For the 0.89THz FIR wave used in a typical polarimetric system (as in Ref. [31]), the wave

length λ is about 3×10−4m. While in real devices the typical scale of nonuniformity L is 1m

[34, 35]. The value of ε ≡ λ/L is 10−4, which means that θFg/θd = O(ε) ∼ 10−4. According

to Eq. (13), the ratio between the dynamic Faraday angle θFd and θd can be estimated as

θFd
θd
≈ 4× 10−14λ3neBr , (29)

where all the quantities are in SI unit. Given ne = 1020/m3, Br = 2T , and λ = 3× 10−4m,

we obtain θFd/θd ≈ 2× 10−4. Therefore

θFg
θFd

=
θFg/θd
θFd/θd

∼ 10−4

2× 10−4
= O(1) , (30)

which indicates that the magnitudes of geometric and dynamical Faraday rotation angles are

of the same order. Though the order comparison is only a rough estimation, it nevertheless

shows that the contribution from the geometric phase to the Faraday rotation angle can be

significant in certain situations.
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The gauge-dependent property of the geometric phase also brings difficulty to the mea-

surement of the Faraday rotation angle. When measuring polarization direction in different

polarization surface, different gauge choice may give different result. Two observers should

specify their gauge choices and the relation between their gauges to compare their experi-

mental results.

Different parts of the Faraday rotation angle have different properties. The dynamical

part depends on wave’s frequency, the background field, and the properties of the plasma,

while the geometric part has nothing to do with wave’s frequency and only depends on

the spatial geometric structure of the wave vector. When diagnosing plasmas with Faraday

rotation, if we can separate the geometric Faraday rotation angle from the dynamical one,

then the geometric phase can be experimentally observed, which can be used to improve

the diagnostic accuracy. One method to separate them is to utilize the dependence of the

dynamical Faraday rotation angle on the frequency of the probing wave (see Fig. 3). Another

method is to employ two waves with same frequency and trajectory but opposite directions

(see Fig. 4). In addition, the fact that the phase of linearly polarized wave θlinear contains

only dynamical phase [see Eq. (24)], can be utilized. The existence of the geometric Faraday

rotation angle brings in extra complexity to applications of the Faraday effect in plasma

diagnostics. However, realizing its existence and understanding its unique properties can

help to improve the measurement accuracy and develop new diagnostic techniques. There

are other possible error sources in Faraday rotation experiments, such as depolarization

of the probing beam due to the perpendicular gradients of electron density, temperature,

velocity, and absorption anisotropy of the EM waves [36]. We will consider these effects in

future studies.
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